留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨相氮化碳-硫化铋复合膜的染料分离与自清洁性能

李德 黄海萌 张天蒙 李改叶 董平 WANGZhongchang 张建峰

李德, 黄海萌, 张天蒙, 等. 石墨相氮化碳-硫化铋复合膜的染料分离与自清洁性能[J]. 复合材料学报, 2024, 41(1): 293-306. doi: 10.13801/j.cnki.fhclxb.20230425.004
引用本文: 李德, 黄海萌, 张天蒙, 等. 石墨相氮化碳-硫化铋复合膜的染料分离与自清洁性能[J]. 复合材料学报, 2024, 41(1): 293-306. doi: 10.13801/j.cnki.fhclxb.20230425.004
LI De, HUANG Haimeng, ZHANG Tianmeng, et al. Dye separation and self-cleaning performance of graphite carbon nitride-bismuth sulfide composite membrane[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 293-306. doi: 10.13801/j.cnki.fhclxb.20230425.004
Citation: LI De, HUANG Haimeng, ZHANG Tianmeng, et al. Dye separation and self-cleaning performance of graphite carbon nitride-bismuth sulfide composite membrane[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 293-306. doi: 10.13801/j.cnki.fhclxb.20230425.004

石墨相氮化碳-硫化铋复合膜的染料分离与自清洁性能

doi: 10.13801/j.cnki.fhclxb.20230425.004
基金项目: 南京国际合作项目 (2022010025)
详细信息
    通讯作者:

    张建峰,博士,教授,博士生导师,研究方向为水环境净化材料、粉体表面技术、超硬材料 E-mail: jfzhang_sic@163.com

  • 中图分类号: TB332

Dye separation and self-cleaning performance of graphite carbon nitride-bismuth sulfide composite membrane

Funds: Nanjing International Cooperation Project (2022010025)
  • 摘要: 随着废水零排放的标准与要求不断深化,高效可持续的膜分离水处理技术成为研究热点,但面临着水通量低、易污染等问题。本研究通过石墨相氮化碳(g-C3N4)、细菌纤维素(BC)和硫化铋(Bi2S3)三者的有机结合,经真空辅助抽滤法制备得到光催化自清洁复合膜。通过一系列表征手段对粉末及膜材料进行物相结构与元素能态分析,研究了g-C3N4和Bi2S3不同添加量对复合膜染料分离性能的影响规律,探讨了两者在光催化下对染料的降解机制。结果表明,60wt%的g-C3N4、10wt%的BC、30wt%的Bi2S3与复合膜的综合性能最佳,水通量和截留率分别为23.48 L·m−2· h−1和100%,长时间过滤中依然保持16.65 L·m−2·h−1的水通量和90%左右的染料截留,在光照下浸泡3 h后通量恢复率达到96.5%,表明了该膜具有良好的光催化自清洁性能。该研究为高通量、可持续分离膜的设计提供了新的思路及基础探索。

     

  • 图  1  复合膜的XRD图谱

    Figure  1.  XRD patterns of composite membrane

    图  2  g-C3N4-BC-30%Bi2S3的XPS图谱:(a) 总谱图;(b) C1s;(c) N1s;(d) S2p;(e) Bi4f

    Figure  2.  XPS spectra of g-C3N4-BC-30%Bi2S3: (a) Total spectrum; (b) C1; (c) N1s; (d) S2p; (e) Bi4f

    图  3  CNB2、CNBB1、CNBB2、CNBB3不同倍率下截面的SEM图像((a1)~(d1), (a2)~(d2));((a3)~(d3)) CNB2、CNBB1、CNBB2、CNBB3表面的SEM图像

    Figure  3.  SEM images of sections of CNB2, CNBB1, CNBB2 and CNBB3 at different magnification ((a1)-(d1), (a2)-(d2)); ((a3)-(d3)) SEM images of CNB2, CNBB1, CNBB2 and CNBB3 surfaces

    图  4  (a) g-C3N4粉末;(b) CNB2;((c)~(d)) CNBB2不同倍率TEM图像

    Figure  4.  (a) g-C3N4 powder; (b) CNB2; ((c)-(d)) TEM images of CNBB2 at different magnification

    图  5  CNB2、CNBB2的氮气吸附-脱附等温线 (a) 和孔径分布 (b)

    Figure  5.  Nitrogen adsorption desorption isotherms (a) and pore size distribution (b) of CNB2 and CNBB2

    dp—Pore size; V—Volume; STP—Standard temperature and pressure

    图  6  不同膜材料的水接触角(a)和纯水通量(b)

    Figure  6.  Water contact angle (a) and pure water flux (b) of various membranes

    图  7  (a) 复合膜CNB1~CNB3水通量和截留率;(b) 刚果红(CR)的截留率;(c) 考马斯亮蓝(CBB)的截留率;(d) CR的归一化水通量;(e) CBB的归一化水通量

    Figure  7.  (a) Water flux and rejection rate of composite membrane CNB1-CNB3; (b) Rejection rate of Congo red (CR); (c) Rejection rate of coomassie brilliant blue (CBB); (d) Normalized water flux of CR; (e) Normalized water flux of CBB

    图  8  (a) CR和CBB的水通量和截留率; (b) CR的截留率;(c) CBB的截留率;(d) CR的归一化水通量;(e) CBB的归一化水通量

    Figure  8.  (a) Water flux and rejection rate of CR and CBB; (b) Rejection rate of CR; (c) Rejection rate of CBB; (d) Normalized water flux of CR; (e) Normalized water flux of CBB

    图  9  本研究复合膜与其他纳滤膜截留率和水通量的比较

    GO—Graphene oxide; MOF—Metal-organic frameworks; RO—Reverse osmosis; NF—Nanofiltration; AAO—Anodic aluminum oxide; PVDF—Polyvinylidene difluoride; CA—Cellulose acetate; PA—Polypiperazine-amide; BIPOL/PAN-5—Biphenol/polyacrylonitrile-5

    Figure  9.  Comparison of rejection rate and water flux between composite membrane and other nanofiltration membranes in this study

    图  10  CNB2、CNBB2光催化降解性能与自支撑效果

    Figure  10.  Photocatalytic degradation performance of CNB2, CNBB2

    C—Concentration of solution after photocatalysis; C0—Concentration of solution before photocatalysis; DOM—Ammonium oxalate monohydrate; IPA—Isopropanol; BQ—Benzoquinone

    图  11  CNB2和CNBB2的通量恢复率

    Figure  11.  Flux recovery rate of CNB2 and CNBB2

    DI—Deionized water

    图  12  g-C3N4、CNB2、CNBB2的光学性能:(a) 紫外-可见漫反射光谱图;(b) 带隙能(αhv)1/2与光子能(hv)的关系图

    Figure  12.  Optical properties of g-C3N4, CNB2 and CNBB2: (a) Diffuse reflectance UV-vis spectra; (b) Plots of band gap energy (αhv)1/2 vs photon energy (hv)

    Eg—Band gap

    图  13  CNBB2在可见光照射下记录的5, 5-二甲基-1-吡咯啉-N-氧化物 (DMPO)-•OH (a)、DMPO-•O2加合物(b)的ESR图谱

    Figure  13.  ESR spectra of the 5,5-dimethyl-1-pyrroline-N-oxide (DMPO)-•OH (a) and DMPO-•O2 adducts recorded with the CNBB2 under visible light irradiation

    图  14  g-C3N4-BC-Bi2S3复合膜有机染料去除及光催化机制

    Figure  14.  Separation and photocatalytic mechanism of organic dyesin g-C3N4-BC-Bi2S3 composite membranes

    表  1  不同膜的添加比例

    Table  1.   Addition ratio of different membrane

    Membraneg-C3N4
    /wt%
    BC
    /wt%
    Bi2S3
    /wt%
    Total
    /mg
    CNB19010 60
    CNB29010 90
    CNB39010120
    CNBB1801010 90
    CNBB2601030 90
    CNBB3401050 90
    Notes: BC—Bacterial cellulose; g-C3N4—Graphitic carbon nitride; CNB—g-C3N4-BC; CNBB—g-C3N4-BC-Bi2S3.
    下载: 导出CSV

    表  2  不同膜的孔隙与比表面积

    Table  2.   Porosity and specific surface area of different membranes

    MembraneSpecific surface area/(m2·g−1)Pore diameter/nmPore volume/
    (cm3·g−1)
    CNB276.375.890.16
    CNBB261.967.810.13
    下载: 导出CSV
  • [1] 乔函, 张璐, 李薇, 等. 活性炭吸附处理印染废水及再生研究[J]. 化工新型材料, 2022, 50(S1):422-426. doi: 10.19817/j.cnki.issn1006-3536.2022.S.082

    QIAO Han, ZHANG LU, LI Wei, et al. Study on AC adsorption treatment of printing and dyeing wastewater and the regeneration process[J]. New Chemical Materials,2022,50(S1):422-426(in Chinese). doi: 10.19817/j.cnki.issn1006-3536.2022.S.082
    [2] WANG Y, ZHAO Y, DING X, et al. Recent advances in the electrochemistry of layered post-transition metal chalcogenide nanomaterials for hydrogen evolution reaction[J]. Journal of Energy Chemistry,2021,60:451-479. doi: 10.1016/j.jechem.2021.01.021
    [3] CHARVAT J, MAZUR P, PAIDAR M, et al. The role of ion exchange membrane in vanadium oxygen fuel cell[J]. Journal of Membrane Science,2021,629:119271. doi: 10.1016/j.memsci.2021.119271
    [4] CHEN W T, LI T T, YAN X M, et al. Constructing ionic channels in anion exchange membrane via a Zn2+­ soft template: Experiment and molecular dynamics simulation[J]. Journal of Membrane Science,2021,629:119293. doi: 10.1016/j.memsci.2021.119293
    [5] 张泽慧, 吕志伟, 茆平. MOFs复合膜的制备及其在液体分离领域的研究进展[J]. 水处理技术, 2021, 47(12): 19-25.

    ZHANG Zehui, LV Zhiwei, MAO Pin. Research progress of metal-organic frame composite nanofiltration membrane[J]. Technology of Water Treatment, 2021, 47(12): 19-25(in Chinese).
    [6] 王艳杰. 二维g-C3N4纳米片分离膜的制备、表征及分离性能研究[D]. 广州: 华南理工大学, 2017.

    WANG Yanjie. Preparation, characterization and separation performance of two-dimensional g-C3N4 nanosheets membrane[D]. Guangzhou: South China University of Technology, 2017(in Chinese).
    [7] FAN Z, TANG K, XU Z, et al. Highly efficient membrane-based techniques in separation of harsh mixtures[J]. IOP Conference Series: Earth and Environmental Science,2018,208:012050. doi: 10.1088/1755-1315/208/1/012050
    [8] 李诗蓉. 碳纳米管复合纳滤膜的制备及对染料废水的处理研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.

    LI Shirong. Research on preparation of carbon nanotube composite nanofiltration membrane and treatment of dye wastewater[D]. Harbin: Harbin Institute of Technology, 2021(in Chinese).
    [9] 左行涛, 王励, 于水利. 原油对纳米SiO2/聚偏氟乙烯离子膜的污染及清洗技术研究[J]. 环境污染与防治, 2013, 35(6):5-9, 21. doi: 10.3969/j.issn.1001-3865.2013.06.002

    ZUO Xingtao, WANG Li, YU Shuili. Stndy on SiO2/PVDF ion-exchange membrane fouling by crude oil and cleaning technology[J]. Environmental Pollution and Control,2013,35(6):5-9, 21(in Chinese). doi: 10.3969/j.issn.1001-3865.2013.06.002
    [10] YAO L, ZHANG L, WANG R, et al. A new integrated approach for dye removal from wastewater by polyoxometalates functionalized membranes[J]. Journal of Hazardous Materials,2016,301:462-470. doi: 10.1016/j.jhazmat.2015.09.027
    [11] NARESH YADAV D, ANAND KISHORE K, BETHI B, et al. ZnO nanophotocatalysts coupled with ceramic membrane method for treatment of rhodamine-B dye waste water[J]. Environment, Development and Sustainability,2018,20(5):2065-2078. doi: 10.1007/s10668-017-9977-x
    [12] YAN S C, LI Z S, ZOU Z G. Photodegradation performance of g-C3N4 fabricated by directly heating melamine[J]. Langmuir,2009,25(17):10397-10401. doi: 10.1021/la900923z
    [13] LI J, CAO C, ZHU H. Synthesis and characterization of graphite-like carbon nitride nanobelts and nanotubes[J]. Nanotechnology,2007,18(11):115605. doi: 10.1088/0957-4484/18/11/115605
    [14] GUO Q, XIE Y, WANG X, et al. Synthesis of carbon nitride nanotubes with the C3N4 stoichiometry via a benzene-thermal process at low temperatures[J]. Chemical Communications,2004,1:26-27.
    [15] FU J, XU Q, LOW J, et al. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst[J]. Applied Catalysis B: Environmental,2019,243:556-65. doi: 10.1016/j.apcatb.2018.11.011
    [16] GÜNDOĞMUŞ F, PARK J, ÖZTÜRK A. Preparation and photocatalytic activity of g-C3N4/TiO2 heterojunctions under solar light illumination[J]. Ceramics International,2020,46(13):21431-21438. doi: 10.1016/j.ceramint.2020.05.241
    [17] LIU Y, MA Z. TiOF2/g-C3N4 composite for visible-light driven photocatalysis[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2021,618:126471. doi: 10.1016/j.colsurfa.2021.126471
    [18] HU C, WANG M S, CHEN C H, et al. Phosphorus-doped g-C3N4 integrated photocatalytic membrane reactor for wastewater treatment[J]. Journal of Membrane Science,2019,580:1-11. doi: 10.1016/j.memsci.2019.03.012
    [19] HOU R, HE Y, YU H, et al. A self-cleaning membrane based on NG/g-C3N4 and graphene oxide with enhanced nanofiltration performance[J]. Journal of Materials Science,2022,57(20):9118-9133. doi: 10.1007/s10853-022-07083-1
    [20] ABDELL-MONIEM S M, EI-LIETHY M A, IBRAHIM H S, et al. Innovative green/non-toxic Bi2S3@g-C3N4 nanosheets for dark antimicrobial activity and photocatalytic depollution: Turnover assessment[J]. Ecotoxicology and Environmental Safety,2021,226:112808. doi: 10.1016/j.ecoenv.2021.112808
    [21] LUO L, SHEN X, SONG L, et al. MoS2/Bi2S3 heterojunctions-decorated carbon-fiber cloth as flexible and filter-membrane-shaped photocatalyst for the efficient degradation of flowing waste water[J]. Journal of Alloys and Compounds,2019,779:599-608. doi: 10.1016/j.jallcom.2018.11.154
    [22] WANG H, GONG R, QIAN X. Preparation and characterization of TiO2/g-C3N4/PVDF composite membrane with enhanced physical properties[J]. Membranes,2018,8(1):14. doi: 10.3390/membranes8010014
    [23] MKHALID I A. Photocatalytic activity of Bi2S3 enlargement by decoration of silver for visible light thiophene degradation[J]. Applied Nanoscience,2018,8(7):1855-1864. doi: 10.1007/s13204-018-0860-3
    [24] AYODHYA D, VEERABHADRAM G. Microwave-assisted fabrication of g-C3N4 nanosheets sustained Bi2S3 heterojunction composites for the catalytic reduction of 4-nitrophenol[J]. Environmental Technology,2021,42(6):826-841. doi: 10.1080/09593330.2019.1646323
    [25] CAO J, QIN C, WANG Y, et al. Calcination method synthesis of SnO2/g-C3N4 composites for a high-performance ethanol gas sensing application[J]. Nanomaterials,2017,7(5):98. doi: 10.3390/nano7050098
    [26] XIAO F, XU J, CAO L, et al. In situ hydrothermal fabrication of visible light-driven g-C3N4/SrTiO3 composite for photocatalytic degradation of TC[J]. Environmental Science and Pollution Research,2019,27(6):5788-5796.
    [27] DUTTA A K, MAJI S K, MITRA K, et al. Single source precursor approach to the synthesis of Bi2S3 nanoparticles: A new amperometric hydrogen peroxide biosensor[J]. Sensors and Actuators B: Chemical,2014,192:578-585. doi: 10.1016/j.snb.2013.11.030
    [28] LIN Y C, LEE M W. Bi2S3 liquid-junction demiconductor-sensitized SnO2 solar cells[J]. Journal of the Electrochemical Society,2014,161(1):H1-H5. doi: 10.1149/2.002401jes
    [29] MA L, ZHAO Q, ZHANG Q, et al. Controlled assembly of Bi2S3 architectures as schottky diode, supercapacitor electrodes and highly efficient photocatalysts[J]. RSC Advances,2014,4(78):41636-41641. doi: 10.1039/C4RA07169G
    [30] WASIM M, KHAN M R, MUSHTAQ M, et al. Surface modification of bacterial cellulose by copper and zinc oxide sputter coating for UV-resistance/antistatic/antibacterial characteristics[J]. Coatings,2020,10(4):364. doi: 10.3390/coatings10040364
    [31] LIU C, YANG D, WANG Y, et al. Fabrication of antimicrobial bacterial cellulose-Ag/AgCl nanocomposite using bacteria as versatile biofactory[J]. Journal of Nanoparticle Research,2012,14(8):1084. doi: 10.1007/s11051-012-1084-1
    [32] ROSS N, NQAKALA N, WILLENBERG S, et al. Electrochemical properties of polyoxometalate (H3PMo12O40)-functionalized graphitic carbon nitride (g-C3N4)[J]. Electrocatalysis,2019,10(4):392-398. doi: 10.1007/s12678-019-00523-8
    [33] NOMURA K, TERWILLIGER P. Self-dual leonard pairs[J]. Special Matrices,2019,7(1):1-19. doi: 10.1515/spma-2019-0001
    [34] 陈一文, 李铃铃, 徐全龙, 等. 反蛋白石结构的g-C3N4可控合成及其优异的光催化产氢性能[J]. 物理化学学报, 2021, 37(6):128-136.

    CHEN Yiwen, LI Lingling, XU Quanlong, et al. Controllable synthesis of g-C3N4 inverse opal photocatalysts for superior hydrogen evolution[J]. Acta Physico-Chimica Sinica,2021,37(6):128-136(in Chinese).
    [35] QIAO F, WANG J, AI S, et al. As a new peroxidase mimetics: The synthesis of selenium doped graphitic carbon nitride nanosheets and applications on colorimetric detection of H2O2 and xanthine[J]. Sensors and Actuators B: Chemical,2015,216:418-427. doi: 10.1016/j.snb.2015.04.074
    [36] MINIACH E, GRYGLEWICZ G. Solvent-controlled morphology of bismuth sulfide for supercapacitor applications[J]. Journal of Materials Science,2018,53:16511-16523. doi: 10.1007/s10853-018-2785-3
    [37] HUANG J, SHEN J, LI S, et al. TiO2 nanotube arrays decorated with Au and Bi2S3 nanoparticles for efficient Fe3+ ions detection and dye photocatalytic degradation[J]. Journal of Materials Science & Technology,2020,39:28-38.
    [38] ZHOU J, TIAN G, CHEN Y, et al. Growth rate controlled synthesis of hierarchical Bi2S3/In2S3 core/shell microspheres with enhanced photocatalytic activity[J]. Scientific Reports,2014,4(1):4027. doi: 10.1038/srep04027
    [39] XIONG D N, HUANG G F, ZHOU B X, et al. Facile ion-exchange synthesis of mesoporous Bi2S3/ZnS nanoplate with high adsorption capability and photocatalytic activity[J]. Journal of Colloid and Interface Science,2016,464:103-109. doi: 10.1016/j.jcis.2015.11.015
    [40] 渠怀娇. 传质孔道调控的GO/MOF杂化纳滤膜的构筑及性能研究[D]. 青岛: 青岛大学, 2022.

    QU Huaijiao. Construction and properties of GO/MOF hybrid nanofiltration membrane controlled by mass transfer pores[D]. Qingdao: Qingdao University, 2022(in Chinese).
    [41] 孙雪瑾. 电化学法ZIF-8复合膜制备及其处理染料废水性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.

    SUN Xuejin. Electrochemical-method preparation of ZIF-8 composite membrane for treatment of dye wastewater[D]. Harbin: Harbin Institute of Technology, 2021(in Chinese).
    [42] 方倩. 氮化碳异质结的构建及其光催化性能研究 [D]. 长沙: 湖南大学, 2020.

    FANG Qian. Preparation of carbon nitride heterojunctionand its photocatalytic performance[D]. Changsha: Hunan University, 2020(in Chinese).
    [43] HU T P, DAI K, ZHANG J F, et al. One-pot synthesis of step-scheme Bi2S3/porous g-C3N4 heterostructure for enhanced photocatalytic performance[J]. Materials Letters,2019,257:126740. doi: 10.1016/j.matlet.2019.126740
    [44] HAO Q, XIE C, HUANG Y, et al. Accelerated separation of photogenerated charge carriers and enhanced photocatalytic performance of g-C3N4 by Bi2S3 nanoparticles[J]. Chinese Journal of Catalysis,2020,41(2):249-258. doi: 10.1016/S1872-2067(19)63450-9
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  581
  • HTML全文浏览量:  300
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-08
  • 修回日期:  2023-04-14
  • 录用日期:  2023-04-15
  • 网络出版日期:  2023-04-26
  • 刊出日期:  2024-01-01

目录

    /

    返回文章
    返回