Dye separation and self-cleaning performance of graphite carbon nitride-bismuth sulfide composite membrane
-
摘要: 随着废水零排放的标准与要求不断深化,高效可持续的膜分离水处理技术成为研究热点,但面临着水通量低、易污染等问题。本研究通过石墨相氮化碳(g-C3N4)、细菌纤维素(BC)和硫化铋(Bi2S3)三者的有机结合,经真空辅助抽滤法制备得到光催化自清洁复合膜。通过一系列表征手段对粉末及膜材料进行物相结构与元素能态分析,研究了g-C3N4和Bi2S3不同添加量对复合膜染料分离性能的影响规律,探讨了两者在光催化下对染料的降解机制。结果表明,60wt%的g-C3N4、10wt%的BC、30wt%的Bi2S3与复合膜的综合性能最佳,水通量和截留率分别为23.48 L·m−2· h−1和100%,长时间过滤中依然保持16.65 L·m−2·h−1的水通量和90%左右的染料截留,在光照下浸泡3 h后通量恢复率达到96.5%,表明了该膜具有良好的光催化自清洁性能。该研究为高通量、可持续分离膜的设计提供了新的思路及基础探索。Abstract: With the deepening standards and requirements of zero wastewater discharge, efficient and sustainable membrane separation water treatment technology has become a research hotspot, but faces problems such as low water flux and easy pollution. In this work, photocatalytic self-cleaning composite membranes were prepared by the organic combination of graphitic carbon nitride (g-C3N4), bacterial cellulose (BC) and bismuth sulfide (Bi2S3) by vacuum-assisted filtration. The effects of different additions of g-C3N4 and Bi2S3 on the dye separation performance of the composite membranes were investigated through a series of characterization methods to analyze the physical structure and elemental energy states of the powders and membrane materials, and the degradation mechanism of the dyes under photocatalysis were explored. The results show that 60wt%g-C3N4, 10wt%BC, 30wt%Bi2S3 and the composite membrane have the best overall performance, with the water flux and rejection rate of 23.48 L·m−2·h−1 and 100%, respectively. The water flux of 16.65 L·m−2·h−1 and dye rejection rate of about 90% are still maintained in the long term filtration. The flux recovery rate reach 96.5% after soaking for 3 h under light, indicating that the membrane has good photocatalytic self-cleaning performance. This paper provides new ideas and basic exploration for the design of high-throughput and sustainable separation membranes.
-
Key words:
- g-C3N4 /
- Bi2S3 /
- membrane separation /
- dye degradation /
- photocatalytic mechanism /
- bacterial cellulose
-
图 7 (a) 复合膜CNB1~CNB3水通量和截留率;(b) 刚果红(CR)的截留率;(c) 考马斯亮蓝(CBB)的截留率;(d) CR的归一化水通量;(e) CBB的归一化水通量
Figure 7. (a) Water flux and rejection rate of composite membrane CNB1-CNB3; (b) Rejection rate of Congo red (CR); (c) Rejection rate of coomassie brilliant blue (CBB); (d) Normalized water flux of CR; (e) Normalized water flux of CBB
图 9 本研究复合膜与其他纳滤膜截留率和水通量的比较
GO—Graphene oxide; MOF—Metal-organic frameworks; RO—Reverse osmosis; NF—Nanofiltration; AAO—Anodic aluminum oxide; PVDF—Polyvinylidene difluoride; CA—Cellulose acetate; PA—Polypiperazine-amide; BIPOL/PAN-5—Biphenol/polyacrylonitrile-5
Figure 9. Comparison of rejection rate and water flux between composite membrane and other nanofiltration membranes in this study
表 1 不同膜的添加比例
Table 1. Addition ratio of different membrane
Membrane g-C3N4
/wt%BC
/wt%Bi2S3
/wt%Total
/mgCNB1 90 10 — 60 CNB2 90 10 — 90 CNB3 90 10 — 120 CNBB1 80 10 10 90 CNBB2 60 10 30 90 CNBB3 40 10 50 90 Notes: BC—Bacterial cellulose; g-C3N4—Graphitic carbon nitride; CNB—g-C3N4-BC; CNBB—g-C3N4-BC-Bi2S3. 表 2 不同膜的孔隙与比表面积
Table 2. Porosity and specific surface area of different membranes
Membrane Specific surface area/(m2·g−1) Pore diameter/nm Pore volume/
(cm3·g−1)CNB2 76.37 5.89 0.16 CNBB2 61.96 7.81 0.13 -
[1] 乔函, 张璐, 李薇, 等. 活性炭吸附处理印染废水及再生研究[J]. 化工新型材料, 2022, 50(S1):422-426. doi: 10.19817/j.cnki.issn1006-3536.2022.S.082QIAO Han, ZHANG LU, LI Wei, et al. Study on AC adsorption treatment of printing and dyeing wastewater and the regeneration process[J]. New Chemical Materials,2022,50(S1):422-426(in Chinese). doi: 10.19817/j.cnki.issn1006-3536.2022.S.082 [2] WANG Y, ZHAO Y, DING X, et al. Recent advances in the electrochemistry of layered post-transition metal chalcogenide nanomaterials for hydrogen evolution reaction[J]. Journal of Energy Chemistry,2021,60:451-479. doi: 10.1016/j.jechem.2021.01.021 [3] CHARVAT J, MAZUR P, PAIDAR M, et al. The role of ion exchange membrane in vanadium oxygen fuel cell[J]. Journal of Membrane Science,2021,629:119271. doi: 10.1016/j.memsci.2021.119271 [4] CHEN W T, LI T T, YAN X M, et al. Constructing ionic channels in anion exchange membrane via a Zn2+ soft template: Experiment and molecular dynamics simulation[J]. Journal of Membrane Science,2021,629:119293. doi: 10.1016/j.memsci.2021.119293 [5] 张泽慧, 吕志伟, 茆平. MOFs复合膜的制备及其在液体分离领域的研究进展[J]. 水处理技术, 2021, 47(12): 19-25.ZHANG Zehui, LV Zhiwei, MAO Pin. Research progress of metal-organic frame composite nanofiltration membrane[J]. Technology of Water Treatment, 2021, 47(12): 19-25(in Chinese). [6] 王艳杰. 二维g-C3N4纳米片分离膜的制备、表征及分离性能研究[D]. 广州: 华南理工大学, 2017.WANG Yanjie. Preparation, characterization and separation performance of two-dimensional g-C3N4 nanosheets membrane[D]. Guangzhou: South China University of Technology, 2017(in Chinese). [7] FAN Z, TANG K, XU Z, et al. Highly efficient membrane-based techniques in separation of harsh mixtures[J]. IOP Conference Series: Earth and Environmental Science,2018,208:012050. doi: 10.1088/1755-1315/208/1/012050 [8] 李诗蓉. 碳纳米管复合纳滤膜的制备及对染料废水的处理研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.LI Shirong. Research on preparation of carbon nanotube composite nanofiltration membrane and treatment of dye wastewater[D]. Harbin: Harbin Institute of Technology, 2021(in Chinese). [9] 左行涛, 王励, 于水利. 原油对纳米SiO2/聚偏氟乙烯离子膜的污染及清洗技术研究[J]. 环境污染与防治, 2013, 35(6):5-9, 21. doi: 10.3969/j.issn.1001-3865.2013.06.002ZUO Xingtao, WANG Li, YU Shuili. Stndy on SiO2/PVDF ion-exchange membrane fouling by crude oil and cleaning technology[J]. Environmental Pollution and Control,2013,35(6):5-9, 21(in Chinese). doi: 10.3969/j.issn.1001-3865.2013.06.002 [10] YAO L, ZHANG L, WANG R, et al. A new integrated approach for dye removal from wastewater by polyoxometalates functionalized membranes[J]. Journal of Hazardous Materials,2016,301:462-470. doi: 10.1016/j.jhazmat.2015.09.027 [11] NARESH YADAV D, ANAND KISHORE K, BETHI B, et al. ZnO nanophotocatalysts coupled with ceramic membrane method for treatment of rhodamine-B dye waste water[J]. Environment, Development and Sustainability,2018,20(5):2065-2078. doi: 10.1007/s10668-017-9977-x [12] YAN S C, LI Z S, ZOU Z G. Photodegradation performance of g-C3N4 fabricated by directly heating melamine[J]. Langmuir,2009,25(17):10397-10401. doi: 10.1021/la900923z [13] LI J, CAO C, ZHU H. Synthesis and characterization of graphite-like carbon nitride nanobelts and nanotubes[J]. Nanotechnology,2007,18(11):115605. doi: 10.1088/0957-4484/18/11/115605 [14] GUO Q, XIE Y, WANG X, et al. Synthesis of carbon nitride nanotubes with the C3N4 stoichiometry via a benzene-thermal process at low temperatures[J]. Chemical Communications,2004,1:26-27. [15] FU J, XU Q, LOW J, et al. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst[J]. Applied Catalysis B: Environmental,2019,243:556-65. doi: 10.1016/j.apcatb.2018.11.011 [16] GÜNDOĞMUŞ F, PARK J, ÖZTÜRK A. Preparation and photocatalytic activity of g-C3N4/TiO2 heterojunctions under solar light illumination[J]. Ceramics International,2020,46(13):21431-21438. doi: 10.1016/j.ceramint.2020.05.241 [17] LIU Y, MA Z. TiOF2/g-C3N4 composite for visible-light driven photocatalysis[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2021,618:126471. doi: 10.1016/j.colsurfa.2021.126471 [18] HU C, WANG M S, CHEN C H, et al. Phosphorus-doped g-C3N4 integrated photocatalytic membrane reactor for wastewater treatment[J]. Journal of Membrane Science,2019,580:1-11. doi: 10.1016/j.memsci.2019.03.012 [19] HOU R, HE Y, YU H, et al. A self-cleaning membrane based on NG/g-C3N4 and graphene oxide with enhanced nanofiltration performance[J]. Journal of Materials Science,2022,57(20):9118-9133. doi: 10.1007/s10853-022-07083-1 [20] ABDELL-MONIEM S M, EI-LIETHY M A, IBRAHIM H S, et al. Innovative green/non-toxic Bi2S3@g-C3N4 nanosheets for dark antimicrobial activity and photocatalytic depollution: Turnover assessment[J]. Ecotoxicology and Environmental Safety,2021,226:112808. doi: 10.1016/j.ecoenv.2021.112808 [21] LUO L, SHEN X, SONG L, et al. MoS2/Bi2S3 heterojunctions-decorated carbon-fiber cloth as flexible and filter-membrane-shaped photocatalyst for the efficient degradation of flowing waste water[J]. Journal of Alloys and Compounds,2019,779:599-608. doi: 10.1016/j.jallcom.2018.11.154 [22] WANG H, GONG R, QIAN X. Preparation and characterization of TiO2/g-C3N4/PVDF composite membrane with enhanced physical properties[J]. Membranes,2018,8(1):14. doi: 10.3390/membranes8010014 [23] MKHALID I A. Photocatalytic activity of Bi2S3 enlargement by decoration of silver for visible light thiophene degradation[J]. Applied Nanoscience,2018,8(7):1855-1864. doi: 10.1007/s13204-018-0860-3 [24] AYODHYA D, VEERABHADRAM G. Microwave-assisted fabrication of g-C3N4 nanosheets sustained Bi2S3 heterojunction composites for the catalytic reduction of 4-nitrophenol[J]. Environmental Technology,2021,42(6):826-841. doi: 10.1080/09593330.2019.1646323 [25] CAO J, QIN C, WANG Y, et al. Calcination method synthesis of SnO2/g-C3N4 composites for a high-performance ethanol gas sensing application[J]. Nanomaterials,2017,7(5):98. doi: 10.3390/nano7050098 [26] XIAO F, XU J, CAO L, et al. In situ hydrothermal fabrication of visible light-driven g-C3N4/SrTiO3 composite for photocatalytic degradation of TC[J]. Environmental Science and Pollution Research,2019,27(6):5788-5796. [27] DUTTA A K, MAJI S K, MITRA K, et al. Single source precursor approach to the synthesis of Bi2S3 nanoparticles: A new amperometric hydrogen peroxide biosensor[J]. Sensors and Actuators B: Chemical,2014,192:578-585. doi: 10.1016/j.snb.2013.11.030 [28] LIN Y C, LEE M W. Bi2S3 liquid-junction demiconductor-sensitized SnO2 solar cells[J]. Journal of the Electrochemical Society,2014,161(1):H1-H5. doi: 10.1149/2.002401jes [29] MA L, ZHAO Q, ZHANG Q, et al. Controlled assembly of Bi2S3 architectures as schottky diode, supercapacitor electrodes and highly efficient photocatalysts[J]. RSC Advances,2014,4(78):41636-41641. doi: 10.1039/C4RA07169G [30] WASIM M, KHAN M R, MUSHTAQ M, et al. Surface modification of bacterial cellulose by copper and zinc oxide sputter coating for UV-resistance/antistatic/antibacterial characteristics[J]. Coatings,2020,10(4):364. doi: 10.3390/coatings10040364 [31] LIU C, YANG D, WANG Y, et al. Fabrication of antimicrobial bacterial cellulose-Ag/AgCl nanocomposite using bacteria as versatile biofactory[J]. Journal of Nanoparticle Research,2012,14(8):1084. doi: 10.1007/s11051-012-1084-1 [32] ROSS N, NQAKALA N, WILLENBERG S, et al. Electrochemical properties of polyoxometalate (H3PMo12O40)-functionalized graphitic carbon nitride (g-C3N4)[J]. Electrocatalysis,2019,10(4):392-398. doi: 10.1007/s12678-019-00523-8 [33] NOMURA K, TERWILLIGER P. Self-dual leonard pairs[J]. Special Matrices,2019,7(1):1-19. doi: 10.1515/spma-2019-0001 [34] 陈一文, 李铃铃, 徐全龙, 等. 反蛋白石结构的g-C3N4可控合成及其优异的光催化产氢性能[J]. 物理化学学报, 2021, 37(6):128-136.CHEN Yiwen, LI Lingling, XU Quanlong, et al. Controllable synthesis of g-C3N4 inverse opal photocatalysts for superior hydrogen evolution[J]. Acta Physico-Chimica Sinica,2021,37(6):128-136(in Chinese). [35] QIAO F, WANG J, AI S, et al. As a new peroxidase mimetics: The synthesis of selenium doped graphitic carbon nitride nanosheets and applications on colorimetric detection of H2O2 and xanthine[J]. Sensors and Actuators B: Chemical,2015,216:418-427. doi: 10.1016/j.snb.2015.04.074 [36] MINIACH E, GRYGLEWICZ G. Solvent-controlled morphology of bismuth sulfide for supercapacitor applications[J]. Journal of Materials Science,2018,53:16511-16523. doi: 10.1007/s10853-018-2785-3 [37] HUANG J, SHEN J, LI S, et al. TiO2 nanotube arrays decorated with Au and Bi2S3 nanoparticles for efficient Fe3+ ions detection and dye photocatalytic degradation[J]. Journal of Materials Science & Technology,2020,39:28-38. [38] ZHOU J, TIAN G, CHEN Y, et al. Growth rate controlled synthesis of hierarchical Bi2S3/In2S3 core/shell microspheres with enhanced photocatalytic activity[J]. Scientific Reports,2014,4(1):4027. doi: 10.1038/srep04027 [39] XIONG D N, HUANG G F, ZHOU B X, et al. Facile ion-exchange synthesis of mesoporous Bi2S3/ZnS nanoplate with high adsorption capability and photocatalytic activity[J]. Journal of Colloid and Interface Science,2016,464:103-109. doi: 10.1016/j.jcis.2015.11.015 [40] 渠怀娇. 传质孔道调控的GO/MOF杂化纳滤膜的构筑及性能研究[D]. 青岛: 青岛大学, 2022.QU Huaijiao. Construction and properties of GO/MOF hybrid nanofiltration membrane controlled by mass transfer pores[D]. Qingdao: Qingdao University, 2022(in Chinese). [41] 孙雪瑾. 电化学法ZIF-8复合膜制备及其处理染料废水性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.SUN Xuejin. Electrochemical-method preparation of ZIF-8 composite membrane for treatment of dye wastewater[D]. Harbin: Harbin Institute of Technology, 2021(in Chinese). [42] 方倩. 氮化碳异质结的构建及其光催化性能研究 [D]. 长沙: 湖南大学, 2020.FANG Qian. Preparation of carbon nitride heterojunctionand its photocatalytic performance[D]. Changsha: Hunan University, 2020(in Chinese). [43] HU T P, DAI K, ZHANG J F, et al. One-pot synthesis of step-scheme Bi2S3/porous g-C3N4 heterostructure for enhanced photocatalytic performance[J]. Materials Letters,2019,257:126740. doi: 10.1016/j.matlet.2019.126740 [44] HAO Q, XIE C, HUANG Y, et al. Accelerated separation of photogenerated charge carriers and enhanced photocatalytic performance of g-C3N4 by Bi2S3 nanoparticles[J]. Chinese Journal of Catalysis,2020,41(2):249-258. doi: 10.1016/S1872-2067(19)63450-9