Characterization and pH-response release of chitosan-polyvinylpyrrolidone hydrogel films loaded with tea polyphenols
-
摘要: 为提高活性物质的利用率,选取壳聚糖、聚乙烯吡咯烷酮作为基材,以甘油为增塑剂、戊二醛为交联剂、茶多酚为抗氧化剂制备了具有pH响应的负载茶多酚的壳聚糖-聚乙烯吡咯烷酮水凝胶膜。通过SEM、FTIR表征薄膜的微观结构,测试了薄膜的水蒸气透过率、力学性能、溶胀度、凝胶含量及抗氧化能力,进而通过测定不同pH值环境下水凝胶膜中茶多酚的释放速率,探究其pH响应性,构建动力学模型确定茶多酚的释放规律。结果表明:交联剂与壳聚糖之间的相互作用形成了稳定的水凝胶结构,而茶多酚的加入使各组分之间的交联强度进一步提高,结构更加稳定;交联剂和茶多酚的加入在整体上改善了薄膜的理化性质,水凝胶膜水蒸气透过率为(0.159±0.010) g·mm/(m2·h·kPa)、抗拉强度为(40.58±2.11) MPa、断裂伸长率为62.32%±3.50%、溶胀平衡时的溶胀度为346.27%±3.16%、凝胶含量为87.94%±0.50%,抗氧化活性相对于传统薄膜提高了近5倍;负载茶多酚的水凝胶膜能够对pH变化有效响应,当pH值越小,茶多酚的累积释放率越大,相对于Higuchi、Ritger-Peppas模型,茶多酚的释放规律与一级动力学模型相吻合。负载茶多酚的壳聚糖-聚乙烯吡咯烷酮水凝胶膜能够有效实现茶多酚等活性物质的pH响应释放,有潜力应用于食品包装领域。Abstract: In order to improve the utilization rate of active substances, chitosan-polyvinylpyrrolidone hydrogel film loaded with tea polyphenols with pH response was prepared by selecting chitosan, polyvinylpyrrolidone as the substrate, glycerin as plasticizer, glutaraldehyde as crosslinker and tea polyphenol as antioxidant. The microstructure of the film was characterized by SEM and FTIR, and the water vapor transmittance, mechanical properties, swelling, gel content and oxidation resistance of the film were tested, and then the release rate of tea polyphenols in hydrogel films under different pH values was determined, the pH responsiveness was explored, and the release law of tea polyphenols was determined by constructing a kinetic model. The results show that the interaction between the crosslinker and chitosan forms a stable hydrogel structure, while the addition of tea polyphenols further improves the crosslinking strength and more stable structure between the components. The addition of crosslinking agent and tea polyphenols improves the physical and chemical properties of the film as a whole, the water vapor transmittance of the hydrogel film is (0.159±0.010) g·mm/(m2·h·kPa), the tensile strength was (40.58±2.11) MPa, the elongation at break is 62.32%±3.50%, the swelling ratio at swelling equilibrium is 346.27%±3.16%, and the gel content is 87.94%±0.50%. Compared with traditional films, the antioxidant activity is nearly 5 times higher. The hydrogel film loaded with tea polyphenols can effectively respond to pH changes, when the pH value is smaller, the cumulative release rate of tea polyphenols is larger, compared with the Higuchi and Ritger-Peppas model, the release law of tea polyphenols is consistent with the first-order kinetic model. Chitosan-polyvinylpyrrolidone hydrogel film loaded with tea polyphenols can effectively realize the pH response release of tea polyphenols and other active substances, and has the potential to be used in the field of food packaging.
-
Key words:
- hydrogel film /
- oxidation resistance /
- pH response /
- active substance /
- release the kinetic model
-
表 1 不同pH值条件下CS-PVP-GL-TP薄膜中TP的释放动力学拟合方程
Table 1. Release kinetic fitting equations of TP in CS-PVP-GL-TP film at different pH values
The fitted equation pH value The expression of the fit R2 First-order kinetic equation 3 $ {M}_{t}=82.78289\left(1-{\mathrm{e}}^{-0.17951 t}\right) $ 0.99338 4 $ {M}_{t}=75.18297\left(1-{\mathrm{e}}^{-0.16145 t}\right) $ 0.99619 5 $ {M}_{t}=58.97272\left(1-{\mathrm{e}}^{-0.12216 t}\right) $ 0.98828 6 $ {M}_{t}=51.00868\left(1-{\mathrm{e}}^{-0.09799 t}\right) $ 0.99636 Higuchi equation 3 $ {M}_{t}=17.06298{t}^{1/2}+7.7254 $ 0.94187 4 $ {M}_{t}=15.65142{t}^{1/2}+4.82808 $ 0.95413 5 $ {M}_{t}=12.11531{t}^{1/2}+0.47913 $ 0.96950 6 $ {M}_{t}=10.18583{t}^{1/2}- $1.66637 0.98314 Ritger-Peppas
equation3 $ {M}_{t}=27.76727{t}^{0.362} $ 0.96908 4 $ {M}_{t}=22.52151{t}^{0.39476} $ 0.96985 5 $ {M}_{t}=13.24582{t}^{0.47103} $ 0.97085 6 $ {M}_{t}=8.74408{t}^{0.53971} $ 0.98314 Notes: Mt—Cumulative release rate of t; t—Release time; R2—Coefficient of determination. -
[1] ZHAO Y, ZHOU S, XIA X, et al. High-performance carboxymethyl cellulose-based hydrogel film for food packaging and preservation system[J]. International Journal of Biological Macromolecules,2022,223:1126-1137. doi: 10.1016/j.ijbiomac.2022.11.102 [2] 陈旭, 王硕, 汤相宇, 等. 纤维素甲基丙烯酸酯水凝胶的制备及重金属离子吸附性能研究[J]. 森林工程, 2023, 39(1):82-91. doi: 10.3969/j.issn.1006-8023.2023.01.010CHEN Xu, WANG Shuo, TANG Xiangyu, et al. Study on preparation of cellulose methacrylate hydrogel and their adsorption performance of heavy metal ions[J]. Forest Engineering,2023,39(1):82-91(in Chinese). doi: 10.3969/j.issn.1006-8023.2023.01.010 [3] NEZAMDOOST-SANI N, KHALEDABAD M A, AMIRI S, et al. Alginate and derivatives hydrogels in encapsulation of probiotic bacteria: An updated review[J]. Food Bioscience,2023,52:102433. doi: 10.1016/j.fbio.2023.102433 [4] BATISTA R A, ESPITIA P J P, QUINTANS J D S S, et al. Hydrogel as an alternative structure for food packaging systems[J]. Carbohydrate Polymers,2019,205:106-116. doi: 10.1016/j.carbpol.2018.10.006 [5] MOJALLY M, SHARMIN E, OBAID N A, et al. Polyvinyl alcohol/corn starch/castor oil hydrogel films, loaded with silver nanoparticles biosynthesized in Mentha piperita leaves' extract[J]. Journal of King Saud University—Science,2022,34(4):101879. doi: 10.1016/j.jksus.2022.101879 [6] 刘玉鹏, 况培培, 陈莹, 等. 生物质基刺激响应型水凝胶研究进展[J]. 林产化学与工业, 2022, 42(3):126-134. doi: 10.3969/j.issn.0253-2417.2022.03.017LIU Yupeng, KUANG Peipei, CHEN Ying, et al. Research progress on biomass-based stimulus-responsive hydrogels[J]. Chemistry and Industry of Forest Products,2022,42(3):126-134(in Chinese). doi: 10.3969/j.issn.0253-2417.2022.03.017 [7] CONSTANTIN M, BUCATARIU S M, DOROFTEI F, et al. Smart composite materials based on chitosan microspheres embedded in thermosensitive hydrogel for controlled delivery of drugs[J]. Carbohydrate Polymers,2017,157:493-502. doi: 10.1016/j.carbpol.2016.10.022 [8] SHAGHALEH H, ALHAJ HAMOUD Y, XU X, et al. A pH-responsive/sustained release nitrogen fertilizer hydrogel based on aminated cellulose nanofiber/cationic copolymer for application in irrigated neutral soils[J]. Journal of Cleaner Production,2022,368:133098. doi: 10.1016/j.jclepro.2022.133098 [9] LEYVA-JIMÉNEZ F J, OLIVER-SIMANCAS R, CASTANGIA I, et al. Comprehensive review of natural based hydrogels as an upcoming trend for food packing[J]. Food Hydrocolloids,2023,135:108124. doi: 10.1016/j.foodhyd.2022.108124 [10] MAROUFI L Y, TABIBIAZAR M, GHORBANI M, et al. Fabrication and characterization of novel antibacterial chitosan/dialdehyde guar gum hydrogels containing pomegranate peel extract for active food packaging application[J]. International Journal of Biological Macromolecules,2021,187:179-188. doi: 10.1016/j.ijbiomac.2021.07.126 [11] XIONG S, LI R, YE S, et al. Vanillin enhances the antibacterial and antioxidant properties of polyvinyl alcohol-chitosan hydrogel dressings[J]. International Journal of Biological Macromolecules,2022,220:109-116. doi: 10.1016/j.ijbiomac.2022.08.052 [12] JIANG K, ZHOU X, HE T. The synthesis of bacterial cellulose-chitosan zwitterionic hydrogels with pH responsiveness for drug release mechanism of the naproxen[J]. International Journal of Biological Macromolecules,2022,209:814-824. doi: 10.1016/j.ijbiomac.2022.03.216 [13] 都津铭, 张萍, 高德. 丁香精油与茶多酚复合抗菌液的抑菌活性协同作用及抗氧化活性[J]. 现代食品科技, 2021, 37(10):87-95. doi: 10.13982/j.mfst.1673-9078.2021.10.0098DU Jinming, ZHANG Ping, GAO De. Synergistic antibacterial effect and antioxidant activity of the compound liquid with clove essential oil and tea polyphenol[J]. Modern Food Science and Technology,2021,37(10):87-95(in Chinese). doi: 10.13982/j.mfst.1673-9078.2021.10.0098 [14] WU Y, LI C. A smart film incorporating anthocyanins and tea polyphenols into sodium carboxymethyl cellulose/polyvinyl alcohol for application in mirror carp[J]. International Journal of Biological Macromolecules,2022,223:404-417. doi: 10.1016/j.ijbiomac.2022.10.282 [15] HAMEED T A, MOHAMED F, TURKY G, et al. Carboxymethylcellulose/polyvinylpyrrolidone filled with Al-doped ZnO nanoparticles as a promising film for optoelectronic applications[J]. Optical Materials,2022,134:113097. doi: 10.1016/j.optmat.2022.113097 [16] ZHOU X, LIU X, LIAO W, et al. Chitosan/bacterial cellulose films incorporated with tea polyphenol nanoliposomes for silver carp preservation[J]. Carbohydrate Polymers,2022,297:120048. doi: 10.1016/j.carbpol.2022.120048 [17] BANDYOPADHYAY S, SAHA N, BRODNJAK U V, et al. Bacterial cellulose and guar gum based modified PVP-CMC hydrogel films: Characterized for packaging fresh berries[J]. Food Packaging and Shelf Life,2019,22:100402. doi: 10.1016/j.fpsl.2019.100402 [18] MIRSHARIFI S M, SAMI M, JAZAERI M, et al. Production, characterization, and antimicrobial activity of almond gum/polyvinyl alcohol/chitosan composite films containing thyme essential oil nanoemulsion for extending the shelf-life of chicken breast fillets[J]. International Journal of Biological Macromolecules,2023,227:405-415. doi: 10.1016/j.ijbiomac.2022.12.183 [19] ASTM. Standard test method for water vapor permeability of organic coated films: ASTM D1653—2003[S]. West Conshohocken: ASTM, 2003. [20] 中华人民共和国国家质量监督检验检疫总局. 塑料 拉伸性能的测定: GB/T 1040.3—2006[S]. 北京: 中国标准出版社, 2006.General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Determination of tensile properties of plastics: GB/T 1040.3—2006[S]. Beijing: Standards Press of China, 2006(in Chinese). [21] TIAN B, WANG J, LIU Q, et al. Formation chitosan-based hydrogel film containing silicon for hops β-acids release as potential food packaging material[J]. International Jour-nal of Biological Macromolecules,2021,191:288-298. doi: 10.1016/j.ijbiomac.2021.09.086 [22] SONG J, LI D, LIU C, et al. Optimized microwave-assisted extraction of total phenolics (TP) from Ipomoea batatas leaves and its antioxidant activity[J]. Innovative Food Science & Emerging Technologies,2011,12(3):282-287. [23] 蓝鸿雁. 茶多酚缓释抗氧化膜的制备及其缓释性能研究[D]. 南宁: 广西大学, 2017.LAN Hongyan. Study on preparation and sustained release performance of tea polyphenol antioxidant film[D]. Nanning: Guangxi University, 2017(in Chinese). [24] BIAO Y, CAO Y X, QI T, et al. Enhanced performance and functionality of active edible films by incorporating tea polyphenols into thin calcium alginate hydrogels[J]. Food Hydrocolloids,2019,97:105197. doi: 10.1016/j.foodhyd.2019.105197 [25] 蔡月, 王梦军, 年琳玉, 等. 茶多酚@沸石咪唑酯骨架材料/壳聚糖/海藻酸钠活性包装膜的制备及表征[J]. 食品科学, 2022, 43(17):272-281. doi: 10.7506/spkx1002-6630-20220217-123CAI Yue, WANG Mengjun, NIAN Linyu, et al. Preparation and characterization of tea polyphenol@zeolite imidazolate ester framework-8/chitosan/sodium alginate active packaging film[J]. Food Science,2022,43(17):272-281(in Chinese). doi: 10.7506/spkx1002-6630-20220217-123 [26] DOUSTDAR F, OLAD A, GHORBANI M. Effect of glutaraldehyde and calcium chloride as different crosslinking agents on the characteristics of chitosan/cellulose nanocrystals scaffold[J]. International Journal of Biological Macromolecules,2022,208:912-924. doi: 10.1016/j.ijbiomac.2022.03.193 [27] 梁杰, 赵晓旭, 刘涛, 等. 茶多酚-壳聚糖复合膜的制备及保鲜效果研究[J]. 热带作物学报, 2022, 43(6):1267-1279. doi: 10.3969/j.issn.1000-2561.2022.06.020LIANG Jie, ZHAO Xiaoxu, LIU Tao, et al. Preparation and fresh-keeping effect of tea polyphenol-chitosan composite film[J]. Chinese Journal of Tropical Crops,2022,43(6):1267-1279(in Chinese). doi: 10.3969/j.issn.1000-2561.2022.06.020 [28] 缪志锟. 基于多孔淀粉的活性包装膜的制备与性能研究[D]. 泰安: 山东农业大学, 2022.MIAO Zhikun. Study on preparation and properties of active packaging films based on porous starch[D]. Tai'an: Shandong Agricultural University, 2022(in Chinese). [29] 霍若冰, 李洋, 徐曈晖, 等. 鱼腥草提取液-壳聚糖抗菌复合膜对低温贮藏蓝莓的保鲜作用[J]. 现代食品科技, 2022, 38(8):153-162. doi: 10.13982/j.mfst.1673-9078.2022.8.1057HUO Ruobing, LI Yang, XU Tonghui, et al. The fresh-keeping effect of antibacterial houttuynia cordata extract-chitosan antibacterial composite film on blueberries stored at a low-temperature[J]. Modern Food Science and Technology,2022,38(8):153-162(in Chinese). doi: 10.13982/j.mfst.1673-9078.2022.8.1057 [30] LEI Y, WU H, JIAO C, et al. Investigation of the structural and physical properties, antioxidant and antimicrobial activity of pectin-konjac glucomannan composite edible films incorporated with tea polyphenol[J]. Food Hydrocolloids,2019,94:128-135. doi: 10.1016/j.foodhyd.2019.03.011 [31] 郑燕, 王笑, 代楚涓, 等. 壳聚糖/羧甲基纤维素/茶多酚抗氧化复合膜的制备及性能研究[J]. 塑料工业, 2021, 49(S1):59-65. doi: 10.3969/j.issn.1005-5770.2021.Z1.011ZHENG Yan, WANG Xiao, DAI Chujuan, et al. Preparation and properties of chitosan/carboxymethylcellulose/tea polyphenol antioxidant composite membrane[J]. China Plastics Industry,2021,49(S1):59-65(in Chinese). doi: 10.3969/j.issn.1005-5770.2021.Z1.011 [32] RAZA M A, GULL N, LEE S W, et al. Development of stimuli-responsive chitosan based hydrogels with anticancer efficacy, enhanced antibacterial characteristics, and applications for controlled release of benzocaine[J]. Journal of Industrial and Engineering Chemistry,2022,109:210-220. doi: 10.1016/j.jiec.2022.02.004