留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CuxO用于调控全无机碳基CsPbI2Br钙钛矿太阳能电池的界面性能

孙北 郑申申 迟文晖 陈康来 张翔 徐坤宇 陈华梅 谢亚红

孙北, 郑申申, 迟文晖, 等. CuxO用于调控全无机碳基CsPbI2Br钙钛矿太阳能电池的界面性能[J]. 复合材料学报, 2023, 40(5): 2818-2826. doi: 10.13801/j.cnki.fhclxb.20221213.002
引用本文: 孙北, 郑申申, 迟文晖, 等. CuxO用于调控全无机碳基CsPbI2Br钙钛矿太阳能电池的界面性能[J]. 复合材料学报, 2023, 40(5): 2818-2826. doi: 10.13801/j.cnki.fhclxb.20221213.002
SUN Bei, ZHENG Shenshen, CHI Wenhui, et al. Improved interface performance of all inorganic carbon based CsPbI2Br perovskite solar cells using CuxO[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2818-2826. doi: 10.13801/j.cnki.fhclxb.20221213.002
Citation: SUN Bei, ZHENG Shenshen, CHI Wenhui, et al. Improved interface performance of all inorganic carbon based CsPbI2Br perovskite solar cells using CuxO[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2818-2826. doi: 10.13801/j.cnki.fhclxb.20221213.002

CuxO用于调控全无机碳基CsPbI2Br钙钛矿太阳能电池的界面性能

doi: 10.13801/j.cnki.fhclxb.20221213.002
基金项目: 新疆大学2021年自治区级大学生创新训练计划项目(20191003209);国家自然科学基金(52162035)
详细信息
    通讯作者:

    谢亚红,博士,教授,硕士生/博士生导师,研究方向为光电转化与储存材料的设计合成与综合利用 E-mail: xyh0707@xju.edu.cn

  • 孙北、郑申申为共同第一作者,对本文具有同等效力
  • 中图分类号: TB332

Improved interface performance of all inorganic carbon based CsPbI2Br perovskite solar cells using CuxO

Funds: Xinjiang University's 2021 Autonomous Region Level Innovation Training Program for College Students (20191003209); National Natural Science Foundation of China (52162035)
  • 摘要: 基于CsPbI2Br的全无机碳基钙钛矿太阳能电池由于碳电极与钙钛矿层间接触性能较差和能带不匹配等问题,导致其光电转化效率较低。本文采用简单的葡萄糖还原法结合煅烧技术制备了两种不同形貌和结构的规则八面体构型CuxO,将之作为无机空穴传输材料,制备了结构为导电玻璃(FTO)/SnO2/CsPbI2Br/CuxO/C的碳基钙钛矿太阳能电池,研究了CuO和Cu2O的形貌、结构对光电性能的影响机制。结果显示:CuO和Cu2O皆具有良好的化学稳定性和p型载流子传输特性,可有效增强CsPbI2Br钙钛矿层与碳电极层之间的界面接触,改善载流子传输性能,减少电荷复合,延长光电子寿命。基于Cu2O和CuO的CsPbI2Br基碳基钙钛矿太阳能电池(C-PSC)器件的光电转换效率最高分别为11.62%和13.22%,分别比空白对照器件的光电转化效率提高了19.5%和36.0%。此外,通过添加Cu2O和CuO,器件在空气中的长期稳定性也得到明显改善,该工作为提高碳基CsPbI2Br钙钛矿太阳能电池的光电性能提供了一种简单有效的方法。

     

    1)  孙北、郑申申为共同第一作者,对本文具有同等效力
  • 图  1  CuxO在煅烧前((a), (b))和煅烧后((c), (d))的 SEM图像

    Figure  1.  SEM images of CuxO before ((a), (b)) and after ((c), (d)) calcination

    图  2  Cu2O和CuO的XRD图谱(a)和Raman图谱(b) ;Cu2p (c)和O1s (d)的XPS图谱

    Figure  2.  XRD patterns (a) and Raman spectra (b) of Cu2O and CuO; XPS spectra of Cu2p (c) and O1s (d)

    图  3  (a) CsPbI2Br薄膜的XRD图谱;Pb4f (b)、I3d (c)、Cs3d (d)的XPS图谱

    Figure  3.  (a) XRD patterns of CsPbI2Br film; XPS spectra of Pb4f (b), I3d (c), Cs3d (d)

    图  4  分散在异丙醇(IPA)中不同浓度的Cu2O和CuO作为空穴传输层(HTL)的太阳能电池光电转换效率

    Figure  4.  Power conversation efficiency of solar cells with Cu2O and CuO as hole transport layer (HTL) at different concentrations in isopropyl alcohol (IPA)

    图  5  (a)莫特-肖特基图(电容(C−2)-电压)曲线;(b) 开路电压衰减(OCVD)曲线;(c)正反扫光电流密度-电压 (J-V)曲线;(d)暗态下的光电流密度-电压 (J-V)曲线;(e) 电化学阻抗谱(EIS)曲线和电路模拟图;(f)基于FTO/C和FTO/CuxO/C结构的导电率

    Voc—Open circuit voltage; Rs—Series resistance; Rrec—Charge recombination resistance; C—Capacitance; FTO—Conducting glass

    Figure  5.  (a) Mott-Schottky plot (Capacitance (C−2)-voltage); (b) Open circuit voltage decay (OCVD) curves; (c) Forward and reverse photocurrent density voltage (J-V) measurement; (d) Photocurrent density-voltage (J-V) curves under dark condition; (e) Electrochemical impedance spectroscopy (EIS) curves and circuit simulation diagram; (f) Conductivity based on FTO/C and FTO/CuxO/C structure

    图  6  (a)光电流密度(Jph)曲线;(b) CsPbI2Br PSC的Jph/Jsat曲线;(c)器件的稳态电流密度输出; (d)稳态 PCE 输出曲线

    Figure  6.  (a) Photocurrent density Jph curves; (b) Jph/Jsat plots of CsPbI2Br PSC; (c) Current density of steady-state output; (d) Steady-state PCE output

    Veff—Voltage effective value; Jph—Photocurrent density; Jsat—Dark saturation current density

    图  7  ((a)~(c))缺陷密度曲线;(d)器件的稳定性测试

    Figure  7.  ((a)-(c)) Defect density curves; (d) Stability test of devices

    VTFL—Trap filling limit voltages

    表  1  CsPbI2Br钙钛矿太阳能电池(PSCs)的光电性能参数

    Table  1.   Photovoltaic parameters of CsPbI2Br perovskite solar cells (PSCs)

    Voc/VJsc/(mA·cm−2)FFPCE/%HI
    Control RS 1.21 13.60 0.59 9.72 0.34
    FS 1.18 12.68 0.50 7.50
    Cu2O RS 1.22 14.95 0.64 11.62 0.16
    FS 1.16 14.90 0.57 9.80
    CuO RS 1.21 15.55 0.70 13.22 0.15
    FS 1.19 15.41 0.61 11.21
    Notes: RS—Reverse scan; FS—Forward scan; Voc—Open-circuit voltage; Jsc—Short-circuit current density; FF—Fill factor; PCE—Power conversation efficiency; HI—Hysteresis index.
    下载: 导出CSV
  • [1] SUTTON R J, EPERON G E, MIRANDA L, et al. Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells[J]. Advanced Energy Materials,2016,6(8):1502458. doi: 10.1002/aenm.201502458
    [2] CHEN G, LI P, XUE T, et al. Design of low landgap CsPb1-xSnxI2Br perovskite solar cells with excellent phase stability[J]. Small,2021,17(30):2101380. doi: 10.1002/smll.202101380
    [3] WANG Y, QUINTANA X, KIM J, et al. Phase segregation in inorganic mixed-halide perovskites: From phenomena to mechanisms[J]. Photonics Research,2020,8(11):402411.
    [4] NOH J H, IM S H, HEO J H, et al. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells[J]. Nano Letters,2013,13(4):1764-1769. doi: 10.1021/nl400349b
    [5] ZHOU Y, ZHANG X, LU X, et al. Promoting the hole extraction with Co3O4 nanomaterials for efficient carbon-based CsPbI2Br perovskite solar cells[J]. Solar RRL,2019,3(4):1800315. doi: 10.1002/solr.201800315
    [6] BAI D, ZHANG J, JIN Z, et al. Interstitial Mn2+-driven high-aspect-ratio grain growth for low-trap-density microcrystalline films for record efficiency CsPbI2Br solar cells[J]. ACS Energy Letters, 2018, 3(4): 970-978.
    [7] ZHAO Y, XU H, WANG Y, et al. 10.34%-efficient integrated CsPbBr3/bulk-heterojunction solar cells[J]. Journal of Power Sources,2019,440:227151. doi: 10.1016/j.jpowsour.2019.227151
    [8] STOUMPOS C C, KANATZIDIS M G, The renaissance of halide perovskites and their evolution as emerging semiconductors[J]. Accounts of Chemical Research, 2015, 48(10): 2791-2802.
    [9] CHUNG I, SONG J, IM J, et al. CsSnI3: Semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitions[J]. Journal of the American Chemical Society,2012,134(20):8579-8587. doi: 10.1021/ja301539s
    [10] DASTIDAR S, EGGER D A, TAN L A, et al. High chloride doping levels stabilize the perovskite phase of cesium lead iodide[J]. Nano Letters,2016,16(6):3563-3570. doi: 10.1021/acs.nanolett.6b00635
    [11] KUAN C, SHEN H, LIN C. Low photoactive phase temperature all-inorganic[J]. RSC Advances,2021,11:3264-3271.
    [12] DU Y, TIAN Q, CHANG X J, et al. Ionic liquid treatment for highest-efficiency ambient printed stable all-inorganic CsPbI3 perovskite solar cells[J]. Advanced Materials,2022,34(10):2106705.
    [13] ZENG Q, ZHANG X, FENG X, et al. Polymer-passivated inorganic cesium lead mixed-halide perovskites for stable and efficient solar cells with high open-circuit voltage over 1.3 V[J]. Advanced Materials,2018,30(9):1705393. doi: 10.1002/adma.201705393
    [14] FU S, ZHANG W, LI X, et al. Dual-protection strategy for high-efficiency and stable CsPbI2Br inorganic perovskite solar cells[J]. ACS Energy Letters,2020,5(2):676-684. doi: 10.1021/acsenergylett.9b02716
    [15] YANG S, ZHAO H, HAN Y, et al. Europium and acetate co-doping strategy for developing stable and efficient CsPbI2Br perovskite solar cells[J]. Small,2019,15(46):1904387. doi: 10.1002/smll.201904387
    [16] QIU J, YANG S. Material and interface engineering for high-performance perovskite solar cells: A personal journey and perspective[J]. The Chemical Record, 2020, 20(3): 209-229.
    [17] SALIBA M, CORREA-BAENA J P, WOLFF C M, et al. How to make over 20% efficient perovskite solar cells in regular (n-i-p) and inverted (p-i-n) architectures[J]. Chemistry of Materials,2018,30(13):4193-4201.
    [18] PATTANASATTAYAVONG P, NDJAWA G O N, ZHAO K, et al. Electric field-induced hole transport in copper(I) thiocyanate (CuSCN) thin-films processed from solution at room temperature[J]. Chemical Communications,2013,49(39):4154-4156. doi: 10.1039/C2CC37065D
    [19] BYRANVAND M M, KIM T, SONG S, et al. p-type CuI islands on TiO2 electron transport layer for a highly efficient planar-perovskite solar cell with negligible hysteresis[J]. Advanced Energy Materials,2018,8(5):1702235. doi: 10.1002/aenm.201702235
    [20] KIM J H, LIANG P W, WILLIAMS S T, et al. High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer[J]. Advanced Materials,2015,27(4):695-701. doi: 10.1002/adma.201404189
    [21] ZUO C, DING L. Solution-processed Cu2O and CuO as hole transport materials for efficient perovskite solar cells[J]. Small,2015,11(41):5528-5532. doi: 10.1002/smll.201501330
    [22] LI Q, WANG F, SUN L, et al. Design and synthesis of Cu@CuS yolk-shell structures with enhanced photocatalytic activity[J]. Nano-Micro Letters,2017,9(3):35. doi: 10.1007/s40820-017-0135-7
    [23] UMA B, ANANTHARAJU K S, RENUKA L, et al. Controlled synthesis of (CuO-Cu2O)Cu/ZnO multi oxide nanocomposites by facile combustion route: A potential photocatalytic, antimicrobial and anticancer activity[J]. Ceramics International,2021,47(10):14829-14844. doi: 10.1016/j.ceramint.2020.09.223
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  829
  • HTML全文浏览量:  434
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-19
  • 修回日期:  2022-11-10
  • 录用日期:  2022-12-01
  • 网络出版日期:  2022-12-14
  • 刊出日期:  2023-05-15

目录

    /

    返回文章
    返回