留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多元合金-碳化物粘结相对金刚石复合材料组织的影响

邱天旭 张伟 刘咏

邱天旭, 张伟, 刘咏. 多元合金-碳化物粘结相对金刚石复合材料组织的影响[J]. 复合材料学报, 2023, 40(7): 4173-4183. doi: 10.13801/j.cnki.fhclxb.20221014.006
引用本文: 邱天旭, 张伟, 刘咏. 多元合金-碳化物粘结相对金刚石复合材料组织的影响[J]. 复合材料学报, 2023, 40(7): 4173-4183. doi: 10.13801/j.cnki.fhclxb.20221014.006
QIU Tianxu, ZHANG Wei, LIU Yong. Effect of multi-element alloy-carbide bonding phase on the microstructure of diamond composites[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4173-4183. doi: 10.13801/j.cnki.fhclxb.20221014.006
Citation: QIU Tianxu, ZHANG Wei, LIU Yong. Effect of multi-element alloy-carbide bonding phase on the microstructure of diamond composites[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4173-4183. doi: 10.13801/j.cnki.fhclxb.20221014.006

多元合金-碳化物粘结相对金刚石复合材料组织的影响

doi: 10.13801/j.cnki.fhclxb.20221014.006
基金项目: 国家重点研发计划重点专项(2021 YFB3701800);国家自然科学基金区域创新发展联合基金(U20 A20236)
详细信息
    通讯作者:

    刘咏,博士,教授,博士生导师,研究方向为硬质合金、高熵合金、金刚石超硬材料等设计与制备 E-mail: yonliu@csu.edu.cn

  • 中图分类号: TB333

Effect of multi-element alloy-carbide bonding phase on the microstructure of diamond composites

Funds: National Key Research and Development Program of China (2021 YFB3701800); Regional Innovation and Development Joint Fund of National Natural Science of China (U20 A20236)
  • 摘要: 金刚石复合材料在加工、钻探等领域应用广泛,提高材料中金刚石骨架的结合强度是重要研究方向。以Co50Ni40Fe10多元合金-碳化物替代纯Co作为粘结相,在高温高压条件下制备了金刚石复合材料,结合热力学计算研究了多元合金和碳化物对材料组织的影响。结果表明:相比于Co,Co50Ni40Fe10多元合金具有更强的促进C原子迁移和扩散的能力,能加快金刚石骨架的形成。高温高压条件下,WC中C含量轻微增加,对金刚石骨架的形成影响不大;TiC轻微失C,能在一定程度上促进金刚石骨架的形成;Cr3C2分解产生的C能促进金刚石骨架的形成。

     

  • 图  1  高温高压法制备金刚石复合材料示意图

    Figure  1.  Schematic of diamond composites manufactured by high temperature and high pressure method

    图  2  Co50Ni40Fe10-5vol%MC-75vol%Dia.复合材料的微观组织和元素分布(MC代表碳化物):((a)~(c)) WC-Comp.;((d)~(f)) Cr3C2-Comp.;((g)~(i)) TiC-Comp.

    Figure  2.  Microstructures and elemental distribution of Co50Ni40Fe10-5vol%MC-75vol%Dia. composites (MC is carbide): ((a)-(c)) WC-Comp.; ((d)-(f)) Cr3C2-Comp.; ((g)-(i)) TiC-Comp.

    图  3  Co50Ni40Fe10-5vol%MC-75vol%Dia.复合材料的XRD图谱(a)和拉曼光谱(b)

    Figure  3.  XRD patterns (a) and Raman spectra (b) of Co50Ni40Fe10-5vol%MC-75vol%Dia. composites

    FCC—Face centered cubic; HCP—Hexagonal close packed

    图  4  Co50Ni40Fe10-5vol%MC-75vol%Dia.复合材料的力学性能:(a) 硬度(HRA);(b) 横向断裂强度(TRS)

    Figure  4.  Mechanical properties of Co50Ni40Fe10-5vol%MC-75vol%Dia. composites: (a) Hardness (HRA); (b) Transverse rupture strength (TRS)

    图  5  复合材料金刚石骨架的断口形貌:((a), (c)) CoNiFe-Comp.;((b), (d)) Co-Comp.

    Figure  5.  Fracture morphologies of diamond skeleton of composites: ((a), (c)) CoNiFe-Comp.; ((b), (d)) Co-Comp.

    图  6  Co50Ni40Fe10-5vol%MC-75vol%Dia.复合材料金刚石骨架的断口形貌:((a), (d)) WC-Comp.;((b), (e)) Cr3C2-Comp.;((c), (f)) TiC-Comp.

    Figure  6.  Fracture morphologies of diamond skeleton of Co50Ni40Fe10-5vol%MC-75vol%Dia. composites: ((a), (d)) WC-Comp.; ((b), (e)) Cr3C2-Comp.; ((c), (f)) TiC-Comp.

    图  7  碳化物分解反应的吉布斯自由能ΔG:(a) WC = W + Dia.和TiC = Ti + Dia.;(b) Cr3C2 + Liquid1 = 2Dia. + Liquid2

    Figure  7.  Gibbs free energy ΔG for the reaction of carbide decomposition: (a) WC = W + Dia. and TiC = Ti + Dia.; (b) Cr3C2 + Liquid1 = 2Dia. + Liquid2

    表  1  金刚石复合材料的命名及成分组成

    Table  1.   Nomenclature and compositions of diamond composites

    NameComposition
    WC-Comp.(Co50Ni40Fe10)-5vol%WC-75vol%Dia.
    Cr3C2-Comp.(Co50Ni40Fe10)-5vol%Cr3C2-75vol%Dia.
    TiC-Comp.(Co50Ni40Fe10)-5vol%TiC-75vol%Dia.
    CoNiFe-Comp.(Co50Ni40Fe10)-75vol%Dia.
    Co-Comp.Co-75vol%Dia.
    Notes: Comp.—Composites; Dia.—Diamond.
    下载: 导出CSV

    表  2  图2中不同物相的成分分析结果

    Table  2.   Elements analysis of different phases in Fig.2 at%

    SpotPhaseCoNiFeW/Cr/TiC
    1 Diamond 100.00
    2 Alloy in WC-Comp. 46.30±1.62 36.04±1.39 9.47±0.74 0.96±0.76(W) 7.23±2.27
    3 WC 3.63±0.77 3.17±0.85 1.26±0.47 38.68±3.79(W) 53.25±7.74
    4 Cr-rich phase 29.95±2.05 9.05±1.97 6.92±1.06 35.31±1.75(Cr) 18.77±2.97
    5 Ni-rich phase 42.10±4.68 38.72±3.87 8.14±1.46 4.30±0.67(Cr) 6.64±1.65
    6 TiC 1.00±1.46 0.78±1.12 0.33±0.59 62.13±4.58(Ti) 35.78±6.99
    7 Alloy in TiC-Comp. 44.38±7.55 32.39±4.24 9.22±1.48 0.65±0.44(Ti) 13.35±10.32
    下载: 导出CSV

    表  3  式(3)、(4)和(10)中涉及物质的物理性质参数

    Table  3.   Physical parameters of the substances involved in the reaction (3), (4) and (10)

    SubstanceVolume expansion coefficient γ/K−1$ {B}_{0} $/GPa${B'}_{0}$
    Diamond[27]−2.013×10−6+2.4×10−8T−9.219×10−12T2+
    1.237×10−15T3
    443.04.0
    W[28-29](1+4.40×10−6)3−1309.26.6
    WC[30-31](1+6.25×10−6)3−1389.64.3
    Cr(1+6.20×10−6)3−1161.54.26
    Cr3C2[32](1+10.3×10−6)3−1329.04.0
    Ti(1+10.1×10−6)3−1 96.53.65
    TiC[28](1+7.7×10−6)3−1253.04.1
    Notes: B0—Bulk modulus; $ {B'}_{0} $—Derivative of B0; $ {B}_{0} $ and $ {B'}_{0} $ of Cr and Ti are obtained by the author through first-principles calculations.
    下载: 导出CSV

    表  4  Akira Takeuchi和Akihisa Inoue计算的组元ij的二元混合焓($ {\Delta H}_{i,j}^{\mathrm{m}\mathrm{i}\mathrm{x}} $)的值 [34]

    Table  4.   Values of binary mixing enthalpy of components i, j ($ {\Delta H}_{i,j}^{\mathrm{m}\mathrm{i}\mathrm{x}} $) calculated by Akira Takeuchi and Akihisa Inoue [34]

    $ {\Delta H}_{i,j}^{\mathrm{m}\mathrm{i}\mathrm{x}} $/(kJ·mol)NiFeCr
    Co0−1−4
    Ni−2−7
    Fe−1
    下载: 导出CSV
  • [1] KUNUKU S, SANKARAN K J, TSAI C Y, et al. Investigations on diamond nanostructuring of different morphologies by the reactive-ion etching process and their potential applications[J]. ACS Applied Materials & Interfaces,2013,5(15):7439-7449. doi: 10.1021/am401753h
    [2] FURBERG A, FRANSSON K, ZACKRISSON M, et al. Environmental and resource aspects of substituting cemented carbide with polycrystalline diamond: The case of machining tools[J]. Journal of Cleaner Production,2020,277:123577. doi: 10.1016/j.jclepro.2020.123577
    [3] GAO K, LI M, DONG B, et al. Bionic coupling polycrystalline diamond composite bit[J]. Petroleum Exploration and Development,2014,41(4):533-537. doi: 10.1016/S1876-3804(14)60063-X
    [4] TANG H, YUAN X H, CHENG Y, et al. Synthesis of paracrystalline diamond[J]. Nature,2021,599:605-610. doi: 10.1038/s41586-021-04122-w
    [5] ZENG Z D, YANG L X, ZENG Q S, et al. Synthesis of quenchable amorphous diamond[J]. Nature Communications,2017,8(1):1-7. doi: 10.1038/s41467-016-0009-6
    [6] EGGERT J H, HICKS D G, CELLIERS P M, et al. Melting temperature of diamond at ultrahigh pressure[J]. Nature Physics,2010,6(1):40-43. doi: 10.1038/nphys1438
    [7] TANIGAKI K, OGI H, SUMIYA H, et al. Observation of higher stiffness in nanopolycrystal diamond than monocrystal diamond[J]. Nature Communications,2013,4(1):1-7.
    [8] XIAO J W, WEN B, XU B, et al. Intersectional nanotwinned diamond-the hardest polycrystalline diamond by design[J]. npj Computational Materials,2020,6(1):1-7. doi: 10.1038/s41524-019-0267-z
    [9] HUANG Q, YU D L, BO X, et al. Nanotwinned diamond with unprecedented hardness and stability[J]. Nature,2014,510(7504):250-253. doi: 10.1038/nature13381
    [10] LI Q, ZHAN G D, LI D, et al. Ultrastrong catalyst-free polycrystalline diamond[J]. Scientific Reports, 2020, 10(1): 1-10.
    [11] ZHAO B, ZHANG S Y, DUAN S, et al. Enhanced strength of nano-polycrystalline diamond by introducing boron carbide interlayers at the grain boundaries[J]. Nanoscale Advances,2020,2(2):691-698. doi: 10.1039/C9NA00699K
    [12] 邓福铭, 赵国刚, 王振廷, 等. 聚晶金刚石复合体超高压液相烧结理论研究[J]. 高压物理学报, 2004, 18(3):252-260. doi: 10.3969/j.issn.1000-5773.2004.03.010

    DENG Fuming, ZHAO Guogang, WANG Zhenting, et al. Theoretical study on high pressure liquid sintering of polycrystalline diamond compact[J]. Chinese Journal of High Pressure Physics,2004,18(3):252-260(in Chinese). doi: 10.3969/j.issn.1000-5773.2004.03.010
    [13] MALLIKA K, DEVRIES R C, KOMANDURI R. On the low pressure transformation of graphite to diamond in the presence of a 'catalyst-solvent'[J]. Thin Solid Films,1999,339(1-2):19-33. doi: 10.1016/S0040-6090(98)00978-X
    [14] CHEN N, MA H G, FANG C, et al. Synthesis and characterization of IIa-type S-doped diamond in FeNi catalyst under high pressure and high temperature conditions[J]. International Journal of Refractory Metals and Hard Materials,2017,66:122-126. doi: 10.1016/j.ijrmhm.2017.03.006
    [15] 胡强, 贾晓鹏, 李尚升, 等. 高压熔渗生长法制备金刚石聚晶中碳的转化机制研究[J]. 物理学报, 2016, 65(6):068101. doi: 10.7498/aps.65.068101

    HU Qiang, JIA Xiaopeng, LI Shangsheng, et al. Research on mechanism of carbon transformation in the preparation of polycrystalline diamond by melt infiltration and growth method under high pressures[J]. Acta Physica Sinica,2016,65(6):068101(in Chinese). doi: 10.7498/aps.65.068101
    [16] MASHHADIKARIMI M, MEDEIROS R B D, BARRETO L P P, et al. Development of a novel triple-layer polycrystalline diamond compact[J]. Diamond and Related Materials,2021,111:108182. doi: 10.1016/j.diamond.2020.108182
    [17] GUO Z H, DENG F M, ZHANG L, et al. The novel and facile electrolysis method for removing the cobalt binder phase from large diameter polycrystalline diamond compacts[J]. Ceramics International,2022,48(3):3125-3132. doi: 10.1016/j.ceramint.2021.10.086
    [18] CHEN F, XU G, MA C D, et al. Thermal residual stress of polycrystalline diamond compacts[J]. Transactions of Nonferrous Metals Society of China,2010,20(2):227-232. doi: 10.1016/S1003-6326(09)60126-6
    [19] JIA H S, JIA X P, MA H A, et al. Synthesis of growth-type polycrystalline diamond compact (PDC) using the solvent Fe55Ni29Co16 alloy under HPHT[J]. Science China: Physics, Mechanics & Astronomy,2012,55(8):1394-1398.
    [20] LI C, TENG J W, YANG B B, et al. Correlation between microstructure and mechanical properties of novel Co-Ni-based powder metallurgy superalloy[J]. Materials Characterization,2021,181:111480. doi: 10.1016/j.matchar.2021.111480
    [21] 刘咏, 曹远奎, 吴文倩, 等. 粉末冶金高熵合金研究进展[J]. 中国有色金属学报, 2019, 29(9):2155-2184. doi: 10.19476/j.ysxb.1004.0609.2019.09.16

    LIU Yong, CAO Yuankui, WU Wenqian, et al. Progress of powder metallurgical high entropy alloys[J]. The Chinese Journal of Nonferrous Metals,2019,29(9):2155-2184(in Chinese). doi: 10.19476/j.ysxb.1004.0609.2019.09.16
    [22] FERRARI A C, BASKO D M. Raman spectroscopy as a versatile tool for studying the properties of graphene[J]. Nature Nanotechnology,2013,8(4):235-246. doi: 10.1038/nnano.2013.46
    [23] 朱瑞华, 刘金龙, 陈良贤, 等. 金刚石自支撑膜拉曼光谱1420 cm−1特征峰研究[J]. 人工晶体学报, 2015, 44(4):867-871. doi: 10.3969/j.issn.1000-985X.2015.04.003

    ZHU Ruihua, LIU Jinlong, CHEN Liangxian, et al. Research on 1420 cm−1 characteristic peak of free-standing diamond films in raman spectrum[J]. Journal of Synthetic Crystals,2015,44(4):867-871(in Chinese). doi: 10.3969/j.issn.1000-985X.2015.04.003
    [24] BERMAN R, SIMON F. On the graphite-diamond equilibrium[J]. Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie,1955,59(5):333-338. doi: 10.1002/bbpc.19550590503
    [25] KENNEDY C S, KENNEDY G C. The equilibrium boundary between graphite and diamond[J]. Journal of Geophysical Research,1976,81(14):2467-2470. doi: 10.1029/JB081i014p02467
    [26] 叶大伦, 胡建华. 实用无机热力学数据手册[M]. 北京: 冶金工业出版社, 2002: 1-5.

    YE Dalun, HU Jianhua. The thermodynamic data manual of practical inorganic materials[M]. Beijing: Metallurgical Industry Press, 2002: 1-5(in Chinese).
    [27] MOUNET N, MARZARI N. High-accuracy fist-principles determination of the structural, vibrational and thermodynamical properties of diamond, graphite, and derivatives[J]. Physical Review B,2005,71(20):1-17. doi: 10.1103/PhysRevB.71.205214
    [28] CONNÉTABLE D. First-principles study of transition metal carbides[J]. Materials Research Express,2016,3(12):126502. doi: 10.1088/2053-1591/3/12/126502
    [29] JIANG D, ZHONG S, XIAO W, et al. Structural, mechanical, electronic, and thermodynamic properties of pure tungsten metal under different pressures: A first-principles study[J]. International Journal of Quantum Chemistry,2020,120(13):e26231. doi: 10.1002/qua.26231
    [30] GOLOVCHAN V T. On the thermal residual micro-stresses in WC-Co hard metals[J]. International Journal of Refractory Metals and Hard Materials,2007,25(4):341-344. doi: 10.1016/j.ijrmhm.2006.08.002
    [31] LI X, ZHANG X, QIN J, et al. First-principles calculations of structural stability and mechanical properties of tungsten carbide under high pressure[J]. Journal of Physics & Chemistry of Solids,2014,75(11):1234-1239. doi: 10.1016/j.jpcs.2014.06.011
    [32] JIANG C. First-principles study of structural, elastic, and electronic properties of chromium carbides[J]. Applied Physics Letters,2008,92(4):041909. doi: 10.1063/1.2838345
    [33] TAKEUCHI A, INOUE A. Calculations of mixing enthalpy and mismatch entropy for ternary amorphous alloys[J]. Materials Transactions,2000,41(11):1372-1378. doi: 10.2320/matertrans1989.41.1372
    [34] TAKEUCHI A, INOUE A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element[J]. Materials Transactions,2005,46(12):2817-2829. doi: 10.2320/matertrans.46.2817
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  436
  • HTML全文浏览量:  175
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-14
  • 修回日期:  2022-09-15
  • 录用日期:  2022-10-02
  • 网络出版日期:  2022-10-17
  • 刊出日期:  2023-07-15

目录

    /

    返回文章
    返回