留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

泡沫混凝土孔结构表征及其对力学性能的影响

袁志颖 陈波 陈家林 高志涵

袁志颖, 陈波, 陈家林, 等. 泡沫混凝土孔结构表征及其对力学性能的影响[J]. 复合材料学报, 2023, 40(7): 4117-4127. doi: 10.13801/j.cnki.fhclxb.20221014.001
引用本文: 袁志颖, 陈波, 陈家林, 等. 泡沫混凝土孔结构表征及其对力学性能的影响[J]. 复合材料学报, 2023, 40(7): 4117-4127. doi: 10.13801/j.cnki.fhclxb.20221014.001
YUAN Zhiying, CHEN Bo, CHEN Jialin, et al. Characterization of pore structure of foamed concrete and its influence on performance[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4117-4127. doi: 10.13801/j.cnki.fhclxb.20221014.001
Citation: YUAN Zhiying, CHEN Bo, CHEN Jialin, et al. Characterization of pore structure of foamed concrete and its influence on performance[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4117-4127. doi: 10.13801/j.cnki.fhclxb.20221014.001

泡沫混凝土孔结构表征及其对力学性能的影响

doi: 10.13801/j.cnki.fhclxb.20221014.001
基金项目: 国家自然科学基金面上项目(52079049);国家自然科学基金重点项目(51739003);国家重点实验室基本科研业务费(522012272)
详细信息
    通讯作者:

    陈波,博士,教授,博士生导师,研究方向为水工混凝土新材料 E-mail: chenbo@hhu.edu.cn

  • 中图分类号: TU528.44

Characterization of pore structure of foamed concrete and its influence on performance

Funds: The General Program of National Natural Science Foundation of China (52079049); The Key Program of National Natural Science Foundation of China (51739003); Basic Scientific Research Business Expenses of National Key Laboratories (522012272)
  • 摘要: 为研究泡沫混凝土孔结构及其对力学性能的影响,采用X 射线计算机层析成像技术 (X-CT) 测试了3种密度等级泡沫混凝土孔结构,实现了对孔隙率、孔径分布、孔隙形态等特征参数的定量表征,并基于灰关联理论分析了不同孔结构特征参数与其力学性能的关联程度。结果表明:泡沫混凝土孔径分布特征符合非标准的对数正态分布,孔隙球形度均呈单峰分布,且与孔体积、孔径之间存在明显负相关关系;不同密度泡沫混凝土在不同方向上的孔隙率分布存在明显差异;随泡沫混凝土密度的增加,孔隙分形维数、中值尺寸和中值面积逐渐下降,孔隙球形度整体逐渐增大;泡沫混凝土力学性能与孔结构之间联系紧密,其中孔隙率对泡沫混凝土强度的影响最为明显,灰关联度达到0.859;与泡沫混凝土强度联系最为紧密的孔隙孔径主要分布在100~200 μm、200~300 μm两个区间内,灰关联度分别为0.832和0.847;孔隙形状越接近球状,其抗压能力越强。

     

  • 图  1  2D切片的灰度分析及阈值分割

    Figure  1.  Grayscale analysis and threshold segmentation of 2D slices

    图  2  分水岭算法阈值分割过程

    Figure  2.  Watershed algorithm threshold segmentation process

    图  3  计算机断层扫描(CT)图像三维重构

    Figure  3.  3D reconstruction of computed tomography (CT) images

    图  4  不同密度泡沫混凝土平面孔隙率

    Figure  4.  Plane porosity of foamed concrete with different densities

    图  5  不同密度泡沫混凝土分形维数与孔隙特征参数的变化关系

    Figure  5.  Relationship between fractal dimension and pore characteristic parameters of foamed concrete with different densities

    图  6  不同密度泡沫混凝土孔径分布

    Figure  6.  Pore size distribution of foamed concrete with different densities

    图  7  不同密度泡沫混凝土孔隙形态

    Figure  7.  Pore morphologies of foamed concrete with different densities

    S/I—Flatness index; I/L—Elongation index

    图  8  不同密度泡沫混凝土孔隙球形度S

    Figure  8.  Pore sphericity S of foamed concrete with different densities

    图  9  不同密度泡沫混凝土荷载-位移曲线

    Figure  9.  Load-displacement curves of foamed concrete with different densities

    表  1  泡沫混凝土配合比设计

    Table  1.   Mix proportion of foamed concrete kg·m−3

    SampleDesign dry densityActual dry densityCementWaterFoaming agent
    F6006005784202100.57
    F8008007905402700.52
    F100010009856703350.48
    下载: 导出CSV

    表  2  不同密度泡沫混凝土分形维数及孔隙特征参数

    Table  2.   Fractal dimension and pore characteristic parameters of foamed concrete with different densities

    SamplePorosityFractal
    dimension (X)
    Fractal
    dimension (Y)
    Fractal
    dimension (Z)
    Average fractal
    dimension
    Volume fractal
    dimension
    Total surface
    area/mm2
    F6000.531.701.691.691.692.7491.82
    F8000.421.651.651.641.652.6840.35
    F10000.141.531.531.551.542.5419.36
    下载: 导出CSV

    表  3  不同密度泡沫混凝土孔隙特征参数

    Table  3.   Pore characteristic parameters of foamed concrete with different densities

    SamplePorosityd50 n/μmdmax/μmd50 a/μmA50 n/μm 2A50 a/μm 2
    F600 0.53 163.21 1365.23 199.43 84925.23 151189.31
    F800 0.42 87.19 525.62 98.04 23245.62 73288.87
    F1000 0.14 81.64 473.52 89.96 19950.10 56719.80
    Notes: dmax—Maximum pore diameters; d50 n—Median pore diameter in ascending order; d50 a—Median pore diameter with a cumulative ratio of 50%; A50 n—Median pore area in ascending order; A50 a—Median pore area with a cumulative ratio of 50%.
    下载: 导出CSV

    表  4  不同密度泡沫混凝土抗压强度测试结果

    Table  4.   Compressive strength test results of foamed concrete with different densities MPa

    Test timeF600F800F1000
    11.562.904.96
    21.812.474.75
    31.682.584.96
    Average value1.682.654.89
    下载: 导出CSV

    表  5  孔结构分布特征参数与泡沫混凝土抗压强度的灰关联度

    Table  5.   Grey correlation between characteristic parameters of pore structure distribution and compressive strength of foamed concrete

    $\varGamma ({x_0},{x_i})$Characteristic parameterPorosityd50 nd50 aA50 nA50 nAverage fractal dimensionVolume fractal dimension
    Compressive strength0.8590.7540.7330.7190.6270.7090.713
    下载: 导出CSV

    表  6  孔结构形态特征参数与泡沫混凝土抗压强度的灰关联度

    Table  6.   Grey correlation between pore structure morphological characteristic parameters and compressive strength of foamed concrete

    $ \varGamma ({x_0},{x_i}) $Characteristic parameterPore sphericity distribution/%
    0-0.30.3-0.40.4-0.50.5-0.60.6-0.70.7-0.80.8-1.0
    Compressive strength0.6060.6450.6770.7230.7580.7940.823
    下载: 导出CSV

    表  7  孔径分布与泡沫混凝土抗压强度的灰关联度

    Table  7.   Grey correlation between pore size distribution and compressive strength of foamed concrete

    $ \varGamma ({x_0},{x_i}) $Characteristic parameterPore size distribution/μm
    30-100100-200200-300300-400400-500500-600>600
    Compressive strength0.7340.8320.8470.7490.6770.6310.608
    下载: 导出CSV
  • [1] 李升涛, 陈徐东, 张锦华, 等. 不同密度等级泡沫混凝土的单轴压缩破坏特征[J]. 建筑材料学报, 2021, 24(6):1146-1153.

    LI Shengtao, CHEN Xudong, ZHANG Jinhua, et al. Uniaxial compression failure characteristics of foamed concrete with different density grades[J]. Journal of Building Materials,2021,24(6):1146-1153(in Chinese).
    [2] 杜红秀, 樊亚男. 基于X-CT的C60高性能混凝土高温细观结构损伤研究[J]. 建筑材料学报, 2020, 23(1):210-215. doi: 10.3969/j.issn.1007-9629.2020.01.031

    DU Hongxiu, FAN Ya'nan. Study on high temperature mesostructure damage of C60 high performance concrete based on X-CT[J]. Journal of Building Materials,2020,23(1):210-215(in Chinese). doi: 10.3969/j.issn.1007-9629.2020.01.031
    [3] CHUNG S Y, LEHMANN C, ELRAHMAN M A, et al. Pore characteristics and their effects on the material properties of foamed concrete evaluated using micro-CT images and numerical approaches[J]. Applied Sciences,2017,7(6):550. doi: 10.3390/app7060550
    [4] 朱兴一, 张启帆, 于越, 等. 基于离散元的EMAS泡沫混凝土贯入力学性能研究[J]. 建筑材料学报, 2023, 26(2): 122-128.

    ZHU Xingyi, ZHANG Qifan, YU Yue, et al. Research on mechanical properties of EMAS foam concrete penetration based on discrete element[J]. Journal of Building Materials, 2023, 26(2): 122-128(in Chinese).
    [5] 王小娟, 崔浩儒, 周宏元, 等. 玄武岩纤维增强泡沫混凝土的单轴拉伸及准静态压缩性能[J]. 复合材料学报, 2023, 40(3): 1569-1585.

    WANG Xiaojuan, CUI Haoru, ZHOU Hongyuan, et al. Uniaxial tensile and quasi-static compressive properties of basalt fiber reinforced foam concrete[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1569-1585(in Chinese).
    [6] 关蕾蕾, 陈永贵, 叶为民, 等. 泡沫混凝土收缩及其抑制方法研究进展[J]. 土木工程学报, 2023, 56(3): 32-43.

    GUAN Leilei, CHEN Yonggui, YE Weimin, et al. Research progress on shrinkage of foamed concrete and its inhibition methods[J]. China Civil Engineering Journal, 2023, 56(3): 32-43(in Chinese).
    [7] NGUYEN T T, BUI H H, NGO T D, et al. Experimental and numerical investigation of influence of air-voids on the compressive behavior of foamed concrete[J]. Materials & Design,2017,130:103-119.
    [8] 马衍轩, 徐亚茜, 于霞, 等. 泡沫混凝土的负泊松比设计与静载力学特性研究[J]. 材料导报, 2021, 35(24):24068-24074. doi: 10.11896/cldb.20070078

    MA Yanxuan, XU Yaqian, YU Xia, et al. Negative Poisson's ratio design and static load mechanical properties of foamed concrete[J]. Materials Review,2021,35(24):24068-24074(in Chinese). doi: 10.11896/cldb.20070078
    [9] 黄玉琴, 王瑞燕, 龙天艳, 等. 泡沫混凝土的力学性能优化研究[J]. 地下空间与工程学报, 2021, 17(S2):603-608.

    HUANG Yuqin, WANG Ruiyan, LONG Tianyan, et al. Optimization of mechanical properties of foamed concrete[J]. Chinese Journal of Underground Space and Engineering,2021,17(S2):603-608(in Chinese).
    [10] 黄海健, 宫能平, 穆朝民, 等. 泡沫混凝土动态力学性能及本构关系[J]. 建筑材料学报, 2020, 23(2):466-472. doi: 10.3969/j.issn.1007-9629.2020.02.033

    HUANG Haijian, GONG Nengping, MU Chaomin, et al. Dynamic mechanical properties and constitutive relation of foamed concrete[J]. Journal of Building Materials,2020,23(2):466-472(in Chinese). doi: 10.3969/j.issn.1007-9629.2020.02.033
    [11] 王小娟, 刘路, 贾昆程, 等. 陶粒泡沫混凝土的力学性能及吸能特性[J]. 建筑材料学报, 2021, 24(1):207-215. doi: 10.3969/j.issn.1007-9629.2021.01.027

    WANG Xiaojuan, LIU Lu, JIA Kuncheng, et al. Mechanical properties and energy absorption characteristics of ceramsite foamed concrete[J]. Journal of Building Materials,2021,24(1):207-215(in Chinese). doi: 10.3969/j.issn.1007-9629.2021.01.027
    [12] 胡艳丽, 郝晋高, 赵向敏, 等. 泡沫轻质混凝土性能与孔结构关系研究[J]. 南京理工大学学报, 2019, 43(3):363-366. doi: 10.14177/j.cnki.32-1397n.2019.43.03.017

    HU Yanli, HAO Jingao, ZHAO Xiangmin, et al. Study on the relationship between the properties and pore structure of foam lightweight concrete[J]. Journal of Nanjing University of Science and Technology,2019,43(3):363-366(in Chinese). doi: 10.14177/j.cnki.32-1397n.2019.43.03.017
    [13] 刘一飞, 李天成, 曾雪花, 等. 纤维增强泡沫混凝土的力学强度及吸水性能[J]. 土木与环境工程学报, 2019, 41(3):120-126.

    LIU Yifei, LI Tiancheng, ZENG Xuehua, et al. Mechanical strength and water absorption properties of fiber-reinforced foam concrete[J]. Chinese Journal of Civil and Environmental Engineering,2019,41(3):120-126(in Chinese).
    [14] 嵇鹰, 张军, 武艳文, 等. 粉煤灰对泡沫混凝土气孔结构及抗压强度的影响[J]. 硅酸盐通报, 2018, 37(11):3657-3662. doi: 10.16552/j.cnki.issn1001-1625.2018.11.049

    JI Ying, ZHANG Jun, WU Yanwen, et al. Effect of fly ash on pore structure and compressive strength of foamed concrete[J]. Bulletin of the Chinese Ceramic Society,2018,37(11):3657-3662(in Chinese). doi: 10.16552/j.cnki.issn1001-1625.2018.11.049
    [15] 田雨泽, 耿玲, 李娜. 基于正交设计的陶粒泡沫混凝土配合比试验研究[J]. 混凝土, 2017(12):169-172. doi: 10.3969/j.issn.1002-3550.2017.12.044

    TIAN Yuze, GENG Ling, LI Na. Experimental study on mix ratio of ceramsite foam concrete based on orthogonal design[J]. Concrete,2017(12):169-172(in Chinese). doi: 10.3969/j.issn.1002-3550.2017.12.044
    [16] ZOU C, LONG G, ZENG X, et al. Hydration and multiscale pore structure characterization of steam-cured cement paste investigated by X-ray CT[J]. Construction and Building Materials,2021,282(12):122629.
    [17] KHORMANI M, JAARI V, AGHAYAN I, et al. Compressive strength determination of concrete specimens using X-ray computed tomography and finite element method[J]. Construction and Building Materials,2020,256:119427. doi: 10.1016/j.conbuildmat.2020.119427
    [18] 张雄, 黄廷皓, 张永娟, 等. Image-Pro Plus混凝土孔结构图像分析方法[J]. 建筑材料学报, 2015, 18(1):177-182. doi: 10.3969/j.issn.1007-9629.2015.01.032

    ZHANG Xiong, HUANG Tinghao, ZHANG Yongjuan, et al. Image analysis method of concrete pore structure with Image-Pro Plus[J]. Journal of Building Materials,2015,18(1):177-182(in Chinese). doi: 10.3969/j.issn.1007-9629.2015.01.032
    [19] 中华人民共和国住房和城乡建设部. 泡沫混凝土: JG/T 266—2011[S]. 北京: 中国标准出版社, 2011.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Foamed concrete: JG/T 266—2011[S]. Beijing: Standards Press of China, 2011(in Chinese).
    [20] BABCSAN N, BEKE S, SZAMEL G, et al. Characterization of ALUHAB aluminium foams with micro-CT[J]. Procedia Materials Science, 2014, 4: 69-74.
    [21] 陈辉, 殷浩杰, 张军辉, 等. 寒区矿山边坡冻融岩石细观结构及分形维数研究[J]. 矿业研究与开发, 2022, 42(4):50-54.

    CHEN Hui, YIN Haojie, ZHANG Junhui, et al. Research on the mesoscopic structure and fractal dimension of frozen-thawed rock on mine slopes in cold regions[J]. Mining Research and Development,2022,42(4):50-54(in Chinese).
    [22] KUANG X, YING G, RANIERI V, et al. Examination of pervious pavement pore parameters with X-ray tomography[J]. Journal of Environmental Engineering,2015,141(10):04015021. doi: 10.1061/(ASCE)EE.1943-7870.0000826
    [23] WEI S, CHEN Y, ZHANG Y, et al. Characterization and simulation of microstructure and thermal properties of foamed concrete[J]. Construction and Building Materials,2013,47(10):1278-1291.
    [24] NAMBIAR E, RAMAMURTHY K. Air-void characterization of foam concrete[J]. Cement & Concrete Research,2007,37(2):221-230.
    [25] MAYKA S, MATTHIAS H, CORNELIA M, et al. Classification and quantification of pore shapes in sandstone reservoir rocks with 3-D X-ray micro-computed tomography[J]. Solid Earth Discussions,2016,7(1):3441-3479.
    [26] 郭玉柱, 陈徐东, 宁英杰, 等. 基于X-CT的蒸养大掺量矿物掺合料砂浆孔结构[J]. 建筑材料学报, 2022, 25(9): 885-892.

    GUO Yuzhu, CHEN Xudong, NING Yingjie, et al. Research on the pore structure of steam curing mortar with large amount of mineral admixture based on X-CT[J]. Journal of Building Materials, 2022, 25(9): 885-892(in Chinese).
    [27] 王琛艳. 结构物混凝土早期抗冻能力影响因素灰色关联分析[J]. 硅酸盐通报, 2015, 34(11):3405-3411.

    WANG Chenyan. Grey correlation analysis of factors affecting early frost resistance of structural concrete[J]. Bulletin of the Chinese Ceramic Society,2015,34(11):3405-3411(in Chinese).
  • 加载中
图(9) / 表(7)
计量
  • 文章访问数:  626
  • HTML全文浏览量:  165
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-25
  • 修回日期:  2022-09-20
  • 录用日期:  2022-09-30
  • 网络出版日期:  2022-10-14
  • 刊出日期:  2023-07-15

目录

    /

    返回文章
    返回