留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

四[β-(3, 5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯对汉麻秆粉/聚乳酸木塑复合材料力学及热稳定性能的影响

李勇刚 吴华伟 王春红 王妮

李勇刚, 吴华伟, 王春红, 等. 四[β-(3, 5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯对汉麻秆粉/聚乳酸木塑复合材料力学及热稳定性能的影响[J]. 复合材料学报, 2023, 40(7): 4139-4148. doi: 10.13801/j.cnki.fhclxb.20221013.001
引用本文: 李勇刚, 吴华伟, 王春红, 等. 四[β-(3, 5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯对汉麻秆粉/聚乳酸木塑复合材料力学及热稳定性能的影响[J]. 复合材料学报, 2023, 40(7): 4139-4148. doi: 10.13801/j.cnki.fhclxb.20221013.001
LI Yonggang, WU Huawei, WANG Chunhong, et al. Effect of pentaerythritol tetrakis[3-(3, 5-di-tert-butyl-4-hydroxyphenyl)propionate] on mechanical properties and thermal stability of hemp straw powder/polylactic acid wood-plastic composite[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4139-4148. doi: 10.13801/j.cnki.fhclxb.20221013.001
Citation: LI Yonggang, WU Huawei, WANG Chunhong, et al. Effect of pentaerythritol tetrakis[3-(3, 5-di-tert-butyl-4-hydroxyphenyl)propionate] on mechanical properties and thermal stability of hemp straw powder/polylactic acid wood-plastic composite[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4139-4148. doi: 10.13801/j.cnki.fhclxb.20221013.001

四[β-(3, 5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯对汉麻秆粉/聚乳酸木塑复合材料力学及热稳定性能的影响

doi: 10.13801/j.cnki.fhclxb.20221013.001
基金项目: 国家自然科学基金(11802205)
详细信息
    通讯作者:

    吴华伟,硕士,教授,硕士生导师,研究方向为植物纤维增强复合材料 E-mail: leo.wu@slfibre.com

    王春红,博士,教授,博士生导师,研究方向为植物纤维绿色复合材料研究与工程应用 E-mail: wangchunhong@tiangong.edu.cn

  • 中图分类号: TB332

Effect of pentaerythritol tetrakis[3-(3, 5-di-tert-butyl-4-hydroxyphenyl)propionate] on mechanical properties and thermal stability of hemp straw powder/polylactic acid wood-plastic composite

Funds: National Natural Science Foundation of China (11802205)
  • 摘要: 为解决汉麻秆粉/聚乳酸木塑复合材料(Hemp straw powder reinforced polylactic acid composite,HPRPC)力学性能以及热稳定性较差的问题,采用四[β-(3, 5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯(Pentaerythritol tetrakis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate],PTP)对HPRPC进行改性处理,并制备不同PTP添加量下的HPRPC,通过FTIR、力学性能测试、SEM、TG、吸水与缺陷分析探究PTP对HPRPC的改性机制。结果表明,PTP改性处理增强了HPRPC中汉麻秆粉(HP)与聚乳酸(PLA)的界面相容性;PTP的添加量为0.6wt%时,复合材料的力学性能、热稳定性和缺陷情况最优:与未处理的复合材料相比,改性HPRPC的拉伸强度和弯曲强度分别提高了38.08%和45.24%,力学性能显著提高;初始分解温度和最大失重速率温度分别提高了12.9℃和16.8℃,热稳定性得到改善;吸水率与吸水厚度膨胀率均达到最优,吸水率保持为未改性复合材料的50%左右,吸水厚度膨胀速率显著减缓,96 h时吸水厚度膨胀率仅为2.11%,缺陷情况得到明显改善。

     

  • 图  1  四[β-(3, 5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯(PTP)及PTP改性处理前后汉麻秆粉/聚乳酸木塑复合材料(HPRPC)的FTIR图谱

    Figure  1.  FTIR spectra of pentaerythritol tetrakis[3-(3, 5-di-tert-butyl-4-hydroxyphenyl)propionate] (PTP) and hemp straw powderreinforced polylactic acid composite (HPRPC) before and after modified by PTP

    图  2  聚乳酸(PLA)热分解机制

    Figure  2.  Thermal decomposition mechanism of polylactic acid (PLA)

    k1-k4—Primary intramolecular transesterification, polymerization of lactic acid oligomers, polymerization of lactides, thorough intramolecular transesterification

    图  3  PLA与不同PTP添加量HPRPC的拉伸性能 (a) 和弯曲性能 (b)

    Figure  3.  Tensile properties (a) and flexural properties (b) of PLA and HPRPC with different mass fraction of PTP

    图  4  不同PTP添加量HPRPC的SEM图像:(a) 0wt%;(b) 0.3wt%;(c) 0.6wt%;(d) 0.9wt%

    Figure  4.  SEM images of HPRPC with different mass fraction of PTP:(a) 0wt%; (b) 0.3wt%; (c) 0.6wt%; (d) 0.9wt%

    图  5  PLA、汉麻秆粉(HP)、不同PTP添加量HPRPC的热稳定性

    Figure  5.  Thermostability of PLA , hemp straw powder (HP), HPRPC with different mass fraction of PTP

    图  6  不同PTP添加量HPRPC的吸水性能

    Figure  6.  Moisture absorption properties of HPRPC with different mass fraction of PTP

    图  7  HPRPC吸水机制

    Figure  7.  Mechanism of water absorption of HPRPC

    表  1  PLA、HP、不同PTP添加量HPRPC的热重分析数据

    Table  1.   Thermogravinmetric analysis data of PLA, HP, HPRPC with different mass fractions of PTP

    SampleT0wt%/℃T0.25wt%/℃T0.5wt%/℃Tp/℃R550/%
    PLA340.6349.2360.6362.72.7
    HP285.3311.2347.2339.830.5
    0wt%PTP-HPRPC293.3307.2321.9314.717.7
    0.3wt%PTP-HPRPC295.2309.0323.1318.714.7
    0.6wt%PTP-HPRPC306.2318.1331.6331.510.5
    0.9wt%PTP-HPRPC303.8316.8330.0327.913.9
    Notes: Tswt%—Temperature corresponding to weight loss swt% of material; Tp—Temperature corresponding to maximum thermal degradation rate; R550—Residue at 550℃.
    下载: 导出CSV
  • [1] AKTER M, UDDIN M H, TANIA I S. Biocomposites based on natural fibers and polymers: A review on properties and potential applications[J]. Journal of Reinforced Plastics and Composites, 2022, 41(17-18): 705-742.
    [2] LV L, GUO Z, WANG H. Tensile strength of wood polylactic acid composite: A meta-analysis[J]. Journal of Ceramic Processing Research,2020,21(5):586-591.
    [3] 姜良朋, 何春霞, 王磊, 等. 四种植物纤维/高密度聚乙烯木塑复合材料耐海水腐蚀性能比较[J]. 复合材料学报, 2019, 36(7):1625-1632. doi: 10.13801/j.cnki.fhclxb.20181023.001

    JIANG Liangpeng, HE Chunxia, WANG Lei, et al. Comparison of seawater corrosion resistance of four types of plant fibers/high-density polyethylene composites[J]. Acta Materiae Compositae Sinica,2019,36(7):1625-1632(in Chinese). doi: 10.13801/j.cnki.fhclxb.20181023.001
    [4] MUTHURAJ R, LACOSTE C, LACROIX P, et al. Sustainable thermal insulation biocomposites from rice husk, wheat husk, wood fibers and textile waste fibers: Elaboration and performances evaluation[J]. Industrial Crops and Products,2019,135:238-245. doi: 10.1016/j.indcrop.2019.04.053
    [5] PALUMBO M, LACASTA A M, NAVARRO A, et al. Improvement of fire reaction and mould growth resistance of a new bio-based thermal insulation material[J]. Construction and Building Materials,2017,139:531-539. doi: 10.1016/j.conbuildmat.2016.11.020
    [6] 王春红, 王利剑, 左恒峰, 等. 汽车用汉麻秆粉/聚乳酸复合材料的制备、成型工艺及性能[J]. 汽车安全与节能学报, 2019, 10(4):511-517. doi: 10.3969/j.issn.1674-8484.2019.04.013

    WANG Chunhong, WANG Lijian, ZUO Hengfeng, et al. Preparation, processing and properties of hemp stalk powder/polylactic acid composites for automobiles[J]. Journal of Automotive Safety and Energy,2019,10(4):511-517(in Chinese). doi: 10.3969/j.issn.1674-8484.2019.04.013
    [7] ARUFE S, DE MENIBUS A H, LEBLANC N, et al. Effect of retting on hemp shiv physicochemical properties[J]. Industrial Crops and Products,2021,171:113911. doi: 10.1016/j.indcrop.2021.113911
    [8] 王金武, 唐汉, 王金峰. 东北地区作物秸秆资源综合利用现状与发展分析[J]. 农业机械学报, 2017, 48(5):1-21. doi: 10.6041/j.issn.1000-1298.2017.05.001

    WANG Jinwu, TANG Han, WANG Jinfeng. Comprehensive utilization status and development analysis of crop straw resource in Northeast China[J]. Transactions of the Chinese Society for Agricultural Machinery,2017,48(5):1-21(in Chinese). doi: 10.6041/j.issn.1000-1298.2017.05.001
    [9] GHAFFAR S H, MADYAN O A, FAN M, et al. The influence of additives on the interfacial bonding mechanisms between natural fibre and biopolymer composites[J]. Macromolecular Research,2018,26(10):851-863. doi: 10.1007/s13233-018-6119-8
    [10] MAZZANTI V, DE LUNA M S, PARIANTE R, et al. Natural fiber-induced degradation in PLA-hemp biocomposites in the molten state[J]. Composites Part A: Applied Science and Manufacturing,2020,137:105990. doi: 10.1016/j.compositesa.2020.105990
    [11] 张薇, 路琴, 刘思思, 等. PLA木塑复合材料性能研究及界面处理分析[J]. 工程塑料应用, 2020, 48(2):39-43. doi: 10.3969/j.issn.1001-3539.2020.02.008

    ZHANG Wei, LU Qin, LIU Sisi, et al. Performance research and interface treatment analysis of PLA wood-plastic composites[J]. Engineering Plastics Application,2020,48(2):39-43(in Chinese). doi: 10.3969/j.issn.1001-3539.2020.02.008
    [12] 张小青, 高泰彦, 张腾, 等. 不同分子量聚乙二醇对聚乳酸基木塑复合材料性能的影响[J]. 工程塑料应用, 2021, 49(6):27-30, 47. doi: 10.3969/j.issn.1001-3539.2021.06.005

    ZHANG Xiaoqing, GAO Taiyan, ZHANG Teng, et al. Effect of poly(ethylene glycol) with different molecular weight on properties of poly(lactic acid) based wood plastic composites[J]. Engineering Plastics Application,2021,49(6):27-30, 47(in Chinese). doi: 10.3969/j.issn.1001-3539.2021.06.005
    [13] ZHANG X, DUAN J, ZHUO G, et al. Nano silicon carbide-treated wheat straw fiber reinforced high-density polyethylene composites[J]. Industrial Crops and Products,2022,182:114834. doi: 10.1016/j.indcrop.2022.114834
    [14] XIAO L, LIU W, HUANG J, et al. Study on the antioxidant activity of lignin and its application performance in SBS elastomer[J]. Industrial & Engineering Chemistry Research,2020,60(1):790-797.
    [15] 谭玉林, 王翠翠, 李明鹏, 等. 抗氧剂1010对3D打印用聚乳酸氧化降解性能的影响[J]. 中国塑料, 2021, 35(1):84-90.

    TAN Yulin, WANG Cuicui, LI Mingpeng, et al. Effect of antioxidant 1010 on oxidative degradation of poly(lactic acid) for 3D printing[J]. China Plastics,2021,35(1):84-90(in Chinese).
    [16] ASTM International. Standard test methods for tensile properties of plastic: ASTM D638—14[S]. West Conshohocken: ASTM International, 2014.
    [17] ASTM International. Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials: ASTM D790—17[S]. West Conshohocken: ASTM International, 2017.
    [18] ASTM International. Water absorption of plastics: ASTM D570—18[S]. West Conshohocken: ASTM International, 2018.
    [19] 佘亚楠, 付烨, 朱钦睿, 等. 纸浆纤维/聚乳酸复合材料的力学和热学性能[J]. 复合材料学报, 2022, 39(10):4856-4867.

    SHE Yanan, FU Ye, ZHU Qinrui, et al. Mechanical and thermal properties of pulp fiber/polylactic acid composite[J]. Acta Materiae Compositae Sinica,2022,39(10):4856-4867(in Chinese).
    [20] 张株瑞, 杨青华, 童星, 等. 基于FT-IR和GC-MS分析市售PLA吸管中挥发性物质[J]. 食品科学, 2022, 43(24): 258-265.

    ZHANG Zhurui, YANG Qinghua, TONG Xing, et al. Analysis of volatiles incommercially available PLA straws based on FT-IR and GC-MS[J]. Food Science, 2022, 43(24): 258-265(in Chinese).
    [21] DAMODARAN S, SCHUSTER T, RODE K, et al. Monitoring the effect of chlorine on the ageing of polypropylene pipes by infrared microscopy[J]. Polymer Degradation and Stability,2015,111:7-19. doi: 10.1016/j.polymdegradstab.2014.10.006
    [22] 冯舒勤, 张乃文, 任杰. 聚乳酸的热降解与稳定性[J]. 塑料, 2011, 40(1):59-62.

    FENG Shuqin, ZHANG Naiwen, REN Jie. Thermal degradation and stability of poly(lactic acid)[J]. Plastics,2011,40(1):59-62(in Chinese).
    [23] 陆园, 战力英, 宫青海, 等. 抗氧剂的分类、作用机理及研究进展[J]. 塑料助剂, 2016(2):43-50. doi: 10.3969/j.issn.1672-6294.2016.02.012

    LU Yuan, ZHAN Liying, GONG Qinghai, et al. Classification, mechanism of action and research progress of antioxidant[J]. Plastics Additives,2016(2):43-50(in Chinese). doi: 10.3969/j.issn.1672-6294.2016.02.012
    [24] 徐俊杰, 郝笑龙, 周海洋, 等. 超高填充聚丙烯基木塑复合材料高低温性能[J]. 复合材料学报, 2021, 38(12):4106-4122. doi: 10.13801/j.cnki.fhclxb.20210317.002

    XU Junjie, HAO Xiaolong, ZHOU Haiyang, et al. High- and low-temperature performance of ultra-highly filled polypropylene-based wood plastic composite[J]. Acta Materiae Compositae Sinica,2021,38(12):4106-4122(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210317.002
    [25] 张洪康, 王春红, 左祺, 等. 羧基化多壁碳纳米管改性洋麻纤维对其环氧树脂复合材料界面性能的影响[J]. 复合材料学报, 2022, 39(5):2153-2160.

    ZHANG Hongkang, WANG Chunhong, ZUO Qi, et al. Effect of carboxylated multi-walled carbon nanotubes modified kenaf fiber on interfacial properties of epoxy resin composites[J]. Acta Materiae Compositae Sinica,2022,39(5):2153-2160(in Chinese).
    [26] GRAUPNER N, ROESSLER J, ZIEGMANN G, et al. Fibre/matrix adhesion of cellulose fibres in PLA, PP and MAPP: A critical review of pull-out test, microbond test and single fibre fragmentation test results[J]. Composites Part A: Applied Science and Manufacturing,2014,63:133-148. doi: 10.1016/j.compositesa.2014.04.011
    [27] BENIN S R, KANNAN S, BRIGHT R J, et al. A review on mechanical characterization of polymer matrix composites & its effects reinforced with various natural fibres[J]. Materials Today: Proceedings,2020,33:798-805. doi: 10.1016/j.matpr.2020.06.259
    [28] 何业茂, 焦亚男, 周庆, 等. 弹道防护用超高分子量聚乙烯纤维增强热塑性树脂基复合材料的拉伸力学行为[J]. 复合材料学报, 2023, 40(1):119-130.

    HE Yemao, JIAO Yanan, ZHOU Qing, et al. Tensile mechanical behavior of ultra-high molecular weight polyethylene fiber reinforced thermoplastic resin matrix composites for ballistic application[J]. Acta Materiae Compositae Sinica,2023,40(1):119-130(in Chinese).
    [29] 詹茂盛, 方义, 范勇峥, 等. 聚碳酸酯的吸水规律及其吸水试样表面缺陷分析[J]. 复合材料学报, 2001, 18(1):25-29. doi: 10.3321/j.issn:1000-3851.2001.01.006

    ZHAN Maosheng, FANG Yi, FAN Yongzheng, et al. Analyses on law of water absorption and surface defect of water absorption sample of polycarbonate[J]. Acta Materiae Compositae Sinica,2001,18(1):25-29(in Chinese). doi: 10.3321/j.issn:1000-3851.2001.01.006
    [30] 王春红, 鹿超, 贾瑞婷, 等. 洋麻纤维-棉纤维混纺织物/环氧树脂复合材料力学及吸湿性能[J]. 复合材料学报, 2020, 37(7):1581-1589. doi: 10.13801/j.cnki.fhclxb.20191226.002

    WANG Chunhong, LU Chao, JIA Ruiting, et al. Moisture absorption and mechanical properties of kenaf-cotton blended fabric reinforced epoxy composite[J]. Acta Materiae Compositae Sinica,2020,37(7):1581-1589(in Chinese). doi: 10.13801/j.cnki.fhclxb.20191226.002
    [31] 徐文静, 龙丽娟, 徐国敏, 等. DOPO衍生物/聚乳酸复合材料的热降解、阻燃及力学性能[J]. 复合材料学报, 2021, 38(9):2841-2854. doi: 10.13801/j.cnki.fhclxb.20201124.003

    XU Wenjing, LONG Lijuan, XU Guomin, et al. Thermal degradation, flame retardancy and mechanical properties of DOPO derivatives/poly(lactic acid) composites[J]. Acta Materiae Compositae Sinica,2021,38(9):2841-2854(in Chinese). doi: 10.13801/j.cnki.fhclxb.20201124.003
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  480
  • HTML全文浏览量:  267
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-29
  • 修回日期:  2022-09-04
  • 录用日期:  2022-09-25
  • 网络出版日期:  2022-10-14
  • 刊出日期:  2023-07-15

目录

    /

    返回文章
    返回