留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

BaSO4/TPU纳米复合材料的制备及其性能研究

孔旭光 龚静华 范冰 马敬红

孔旭光, 龚静华, 范冰, 等. BaSO4/TPU纳米复合材料的制备及其性能研究[J]. 复合材料学报, 2023, 40(7): 3892-3899. doi: 10.13801/j.cnki.fhclxb.20221012.002
引用本文: 孔旭光, 龚静华, 范冰, 等. BaSO4/TPU纳米复合材料的制备及其性能研究[J]. 复合材料学报, 2023, 40(7): 3892-3899. doi: 10.13801/j.cnki.fhclxb.20221012.002
KONG Xuguang, GONG Jinghua, FAN Bing, et al. Preparation and properties of BaSO4/TPU nanocomposites[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3892-3899. doi: 10.13801/j.cnki.fhclxb.20221012.002
Citation: KONG Xuguang, GONG Jinghua, FAN Bing, et al. Preparation and properties of BaSO4/TPU nanocomposites[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3892-3899. doi: 10.13801/j.cnki.fhclxb.20221012.002

BaSO4/TPU纳米复合材料的制备及其性能研究

doi: 10.13801/j.cnki.fhclxb.20221012.002
详细信息
    通讯作者:

    马敬红,博士,教授,博士生导师,研究方向为纳米复合材料 E-mail: mjh68@dhu.edu.cn

  • 中图分类号: TB332

Preparation and properties of BaSO4/TPU nanocomposites

  • 摘要: 食品行业用输送带在运转过程中,可能会出现面层塑料颗粒脱落黏附在食品上,造成食品质量不合格,对人体健康产生负面影响。因此,开展可X射线探测的面层材料改性研究十分重要。本文通过熔融共混法制备了BaSO4/热塑性聚氨酯弹性体(TPU)纳米复合材料。通过扫描电子显微镜(SEM)、傅里叶变换红外光谱(FTIR)、热失重分析(TGA)、硬度和拉伸试验等系统地进行BaSO4/TPU纳米复合材料的结构、热稳定性能和力学性能的表征。特别地,通过X射线透视测试表征复合材料的X射线显影性能。SEM表明BaSO4以纳米尺寸均匀分散在TPU基体中。力学性能测试结果表明,BaSO4对TPU有增强作用,BaSO4添加量为10wt%时,BaSO4/TPU纳米复合材料的综合力学性能最佳,拉伸强度、断裂伸长率和断裂功较未改性TPU提高了10.19%、30.09%和31.92%。TGA测试结果表明BaSO4/TPU复合材料的高温热稳定性有所提高。此外,通过添加纳米BaSO4,复合材料的X射线显影性能也得到了改善,从而实现在输送带面层中的应用。

     

  • 图  1  (a) BaSO4粒径分布;BaSO4/热塑性聚氨酯弹性体(TPU)复合材料断面的SEM图像:(b) BaSO4;(c) TPU;(d) BaSO4/TPU-5;(e) BaSO4/TPU-10;(f) BaSO4/TPU-12.5;(g) BaSO4/TPU-15;(h) BaSO4/TPU-20

    Figure  1.  (a) BaSO4 particle size distribution; SEM images of the cross section for BaSO4/thermoplastic polyurethane (TPU) composites: (b) BaSO4; (c) TPU; (d) BaSO4/TPU-5; (e) BaSO4/TPU-10; (f) BaSO4/TPU-12.5; (g) BaSO4/TPU-15; (h) BaSO4/TPU-20

    图  2  BaSO4、TPU和BaSO4/TPU-12.5的FTIR图谱

    Figure  2.  FTIR spectra of BaSO4, TPU and BaSO4/TPU-12.5

    图  3  BaSO4/TPU 纳米复合材料的力学性能与BaSO4质量分数的关系曲线:(a) 应力-应变曲线;(b) 拉伸强度和断裂伸长率;(c) 断裂功

    Figure  3.  Relationship between the mechanical properties of BaSO4/TPU nanocomposites and the mass fraction of BaSO4: (a) Stress-strain curves; (b) Tensile strength and elongation at break; (c) Work of fracture

    图  4  纳米复合材料的邵氏硬度与BaSO4质量分数的关系

    Figure  4.  Shore A hardness of nanocomposites as function of nano-BaSO4 content

    图  5  TPU和不同BaSO4添加量纳米复合材料的TGA (a)和DTG曲线 (b)

    Figure  5.  TGA (a) and DTG (b) curves of TPU and nanocomposites with different nano-BaSO4 contents

    图  6  TPU与BaSO4/TPU纳米复合材料试样的X射线显影照片:(a) TPU;(b) BaSO4/TPU-5;(c) BaSO4/TPU-10;(d) BaSO4/TPU-12.5;(e) BaSO4/TPU-15;(f) BaSO4/TPU-20

    Figure  6.  X ray photographs of TPU and BaSO4/TPU nanocomposites: (a) TPU; (b) BaSO4/TPU-5; (c) BaSO4/TPU-10; (d) BaSO4/TPU-12.5; (e) BaSO4/TPU-15; (f) BaSO4/TPU-20

    表  1  BaSO4/热塑性聚氨酯弹性体 (TPU)纳米复合材料的组成

    Table  1.   Composition of BaSO4/thermoplastic polyurethane (TPU) nanocomposites

    SampleMass percentage of each component in nanocomposites/wt%
    TPUBaSO4KH-570
    TPU 100.0 0 0.0
    BaSO4/TPU-5 94.6 5 0.4
    BaSO4/TPU-10 89.2 10 0.8
    BaSO4/TPU-12.5 86.5 12.5 1.0
    BaSO4/TPU-15 83.8 15 1.2
    BaSO4/TPU-20 78.4 20 1.6
    下载: 导出CSV

    表  2  TPU与BaSO4/TPU纳米复合材料的热失重数据

    Table  2.   Date from TG and DTG curves of TPU and BaSO4/TPU nanocomposites

    SampleTonset/℃T50%/℃T1 max/℃T2 max/℃C.R.600℃/%
    TPU302.5361.6348.5407.72.91
    BaSO4/TPU-5283.7362.6332.6414.17.04
    BaSO4/TPU-10279.5375.4340.0414.812.02
    BaSO4/TPU-12.5271.4378.5340.0414.714.33
    BaSO4/TPU-15272.7391.8342.8415.917.72
    BaSO4/TPU-20266.2398.6340.2416.221.14
    Notes: Tonset—Onset degradation temperature (temperature at 5.0% mass loss); T50%—Temperature at 50.0% mass loss; T1 max and T2 max—Maximum decomposition temperature in the first and second stage; C.R.600℃—Yield of char residue at 600℃.
    下载: 导出CSV

    表  3  TPU与BaSO4/TPU纳米复合材料的灰度值数据

    Table  3.   Date of grayscale value of TPU and BaSO4/TPU nanocomposites

    Sample Grayscale value
    TPU 31.57
    BaSO4/TPU-5 28.35
    BaSO4/TPU-10 23.16
    BaSO4/TPU-12.5 19.23
    BaSO4/TPU-15 15.97
    BaSO4/TPU-20 11.77
    下载: 导出CSV
  • [1] KANBUR Y, TAYFUN U. Investigating mechanical, thermal, and flammability properties of thermoplastic polyurethane/carbon nanotube composites[J]. Journal of Thermoplastic Composite Materials,2018,31(12):1661-1675. doi: 10.1177/0892705717743292
    [2] WANG W, LIAO X, HE Y, et al. Thermoplastic polyurethane/polytetrafluoroethylene composite foams with enhanced mechanical properties and anti-shrinkage capability fabricated with supercritical carbon dioxide[J]. The Journal of Supercritical Fluids,2020,163:104861. doi: 10.1016/j.supflu.2020.104861
    [3] KAUSAR A. Polyurethane composite foams in high-performance applications: A review[J]. Polymer-Plastics Technology and Engineering,2018,57(4):346-369. doi: 10.1080/03602559.2017.1329433
    [4] BASHIR A, MAQBOOL M, LV R, et al. Surface modified boron nitride towards enhanced thermal and mechanical performance of thermoplastic polyurethane composite[J]. Composites Part B: Engineering,2021,218:108871. doi: 10.1016/j.compositesb.2021.108871
    [5] HUANG A, PENG X, TURNG L S. In-situ fibrillated polytetrafluoroethylene (PTFE) in thermoplastic polyurethane (TPU) via melt blending: Effect on rheological behavior, mechanical properties, and microcellular foamability[J]. Polymer,2018,134:263-274. doi: 10.1016/j.polymer.2017.11.053
    [6] JUN Y, HABIBPOUR S, HAMIDINEJAD M, et al. Enhanced electrical and mechanical properties of graphene nano-ribbon/thermoplastic polyurethane composites[J]. Carbon,2021,174:305-316. doi: 10.1016/j.carbon.2020.12.023
    [7] BALA H, FU W, GUO Y, et al. In situ preparation and surface modification of barium sulfate nanoparticles[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 274(1-3): 71-76.
    [8] 颜志勇, 袁孟红, 黄素萍, 等. X光显影纤维的研究[J]. 合成纤维工业, 2002(2):32-34. doi: 10.3969/j.issn.1001-0041.2002.02.010

    YAN Zhiyong, YUAN Menghong, HUANG Suping, et al. Study on X-ray developing fiber[J]. China Synthetic Fiber Industry,2002(2):32-34(in Chinese). doi: 10.3969/j.issn.1001-0041.2002.02.010
    [9] LUO C, CHEN G, ZHU K, et al. Preparation of X-ray developable LDPE/SA-BaSO4 composites and their thermal and mechanical properties[J]. Polymer Composites,2016,37(5):1396-1406. doi: 10.1002/pc.23308
    [10] ROMERO-IBARRA I C, BONILLA-BLANCAS E, SÁNCHEZ-SOLÍS A, et al. Influence of X-ray opaque BaSO4 nanoparticles on the mechanical, thermal and rheological pro-perties of polyoxymethylene nanocomposites[J]. Journal of Polymer Engineering, 2012, 32(4-5): 319-326.
    [11] WANG K, WU J, ZENG H. Microstructure and fracture behavior of polypropylene/barium sulfate composites[J]. Journal of Applied Polymer Science,2006,99(3):1207-1213. doi: 10.1002/app.22596
    [12] GAO W, ZHOU B, MA X, et al. Preparation and characterization of BaSO4/poly(ethylene terephthalate) nanocomposites[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2011,385(1-3):181-187.
    [13] CAO X, ZHANG H, CHEN M, et al. Preparation, characterization, and properties of modified barium sulfate nanoparticles/polyethylene nanocomposites as T-shaped copper intrauterine devices[J]. Journal of Applied Polymer Science,2014,131(12):1-7.
    [14] 中国国家标准化管理委员会. 塑料 拉伸性能的测定 第2部分: 模塑和挤塑塑料的试验条件: GB/T 1040.2—2006[S]. 北京: 中国标准出版社, 2006.

    Standardization Administration of the People's Republic of China. Plastics—Determination of tensile properties—Part 2: Test conditions for moulding and extrusion plastics: GB/T 1040.2—2006[S]. Beijing: China Standards Press, 2006(in Chinese).
    [15] 中国国家标准化管理委员会. 硫化橡胶或热塑性橡胶 压入硬度试验方法 第1部分: 邵氏硬度计法(邵尔硬度): GB/T 531.1—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People's Republic of China. Rubber, vulcanized or thermmoplastic—Determination of indentation hardness—Part 1: Duromerer method (Shore hardness): GB/T 531.1—2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [16] CHEN X, WANG L, SHI J, et al. Effect of barium sulfate nanoparticles on mechanical properties and crystallization behaviour of HDPE[J]. Polymers and Polymer Composites,2010,18(3):145-152. doi: 10.1177/096739111001800304
    [17] TANG Q, GAO K. Structure analysis of polyether-based thermoplastic polyurethane elastomers by FTIR, 1H NMR and 13C NMR[J]. International Journal of Polymer Analysis and Characterization,2017,22(7):569-574. doi: 10.1080/1023666X.2017.1312754
    [18] NAGARAJA B M, ABIMANYU H, JUNG K D, et al. Preparation of mesostructured barium sulfate with high surface area by dispersion method and its characterization[J]. Journal of Colloid and Interface Science,2007,316(2):645-651. doi: 10.1016/j.jcis.2007.09.004
    [19] ZUIDERDUIN W C J, WESTZAAN C, HUÉTINK J, et al. Toughening of polypropylene with calcium carbonate particles[J]. Polymer,2003,44(1):261-275. doi: 10.1016/S0032-3861(02)00769-3
    [20] YANG J, XU Y, NIE S, et al. Morphological structure, impact toughness, thermal property and kinetic analysis on the cold crystallization of poly(lactic acid) biocomposites toughened by precipitated barium sulfate[J]. Polymer Degradation and Stability,2018,158:176-189. doi: 10.1016/j.polymdegradstab.2018.11.008
    [21] SHAHZAMANI M, REZAEIAN I, LOGHMANI M S, et al. Effects of BaSO4, CaCO3, kaolin and quartz fillers on mechanical, chemical and morphological properties of cast polyurethane[J]. Plastics, Rubber and Composites,2012,41(6):263-269. doi: 10.1179/1743289811Y.0000000035
    [22] YANG J, WANG C, SHAO K, et al. Morphologies, mechanical properties and thermal stability of poly(lactic acid) toughened by precipitated barium sulfate[J]. Russian Journal of Physical Chemistry A,2015,89(11):2092-2096. doi: 10.1134/S0036024415110242
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  430
  • HTML全文浏览量:  167
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-18
  • 修回日期:  2022-09-19
  • 录用日期:  2022-09-27
  • 网络出版日期:  2022-10-12
  • 刊出日期:  2023-07-15

目录

    /

    返回文章
    返回