Research progress of high-efficiency double-junction perovskite tandem solar cells
-
摘要: 以钙钛矿电池为顶电池的叠层太阳电池发展迅速,成为太阳能光伏领域的研究热点之一。随着电池结构和制备工艺的优化,叠层电池的光电转换效率快速提升,单片钙钛矿/晶硅叠层电池的效率已达到31.3%。本综述对近年来以宽带隙钙钛矿电池作为顶子电池、晶体硅电池及其他新型中窄带隙电池(钙钛矿电池、有机电池、铜铟镓硒(CIGS)电池)作为底子电池的叠层电池的研究进展进行了系统梳理,总结了叠层电池的顶电池、中间互联层和底电池的材料、结构及光电性能等方面的关键技术及难点,希望能够为进一步提升叠层电池效率提供一些思路。并对未来低成本高效叠层太阳能电池的光学和电学优化需求做出了分析与展望。Abstract: Perovskite tandem solar cells have developed rapidly and become one of the hotspots in the field of solar photovoltaic research. With the optimization of the structure and preparation process, the power conversion efficiency (PCE) of tandem device has been improved greatly. The perovskite/silicon tandem solar cell has been greatly improved and the efficiency has reached 31.3% for monolithic tandems. We sorts out the development of the tandem solar cell with wide bandgap perovskite as the top sub-cell and crystalline silicon cells and other novel medium-narrow bandgap cells (perovskite cells, organic cells, copper indium gallium selenide (CIGS) cells) as the bottom sub-cells in recent years and systematically summarized the key point and challenge in materials, structures, and optoelectronic properties of top cell, intermediate interconnection layers and bottom cells in this review with the hope that provide some ideas for further improving the PCE of tandem cells. The optical and electrical optimization requirements for low-cost and high-efficiency tandem solar cells in the future are also highlighted.
-
Key words:
- tandem solar cell /
- perovskite cell /
- c-Si cell /
- organic cells /
- CIGS cells /
- photo-electric conversion efficiency
-
图 2 有效面积为1 cm2的钙钛矿/晶硅叠层电池:(a) 结构示意图;(b) 横截面SEM图像;(c) 最优电池的光照和暗态电流密度-光电压(J-V)曲线和最大功率点(MPP)追踪(插图);(d) 最优电池的外量子效率(EQE)曲线[13]
PDMS—Polydimethylsiloxane; PFN-Br—Poly(9, 9-bis(3′-(N, N-dimethyl)-N-ethylammonium-propyl-2, 7-fluorene)-alt-2, 7-(9, 9-dioctylfluorene)) dibromide
Figure 2. Schematic stack of 1 cm2 two-terminal perovskite/Si tandems: (a) Schematic of the two-terminal monolithic tandem structure; (b) Cross-sectional SEM image; (c) Light and dark current density-optical voltage (J-V) curves and Maximum power point (MPP) tracking (inset) of the champion tandem; (d) External quantum efficiency (EQE) spectra of the champion tandem[13]
图 3 钙钛矿电池各组分能级排列 (a) 和含有不同HTL的钙钛矿电池的J-V曲线 (b)[14];(c) 叠层电池结构示意图;钙钛矿膜层沉积在不同衬底上时的准费米能级裂分值 (d) 和认证的J-V曲线(包括MPP效率和电性能参数) (e)[8]
GO—Graphene oxide; AZO—Aluminium-doped zinc oxide; IZO—Indium zinc oxide; Me-2PACz—[2-(3, 6-dimethyl-9H-carbazol-9-yl)butyl]phosphonic acid; PEDOT : PSS—Poly(3, 4-vinyl dioxyethiophene) : Polystyrene sulfonic acid; ISE—Institute of solar energy
Figure 3. Relative energy levels (a) and J-V curves of the various device components (b) in the perovskite solar cells [14]; (c) Schematic stack of the monolithic perovskite/silicon tandem solar cell; Quasi–Fermi level splitting values of perovskite films on different substrates (d) and certified J-V curve (Including the MPP value and the device parameters) (e)[8]
图 4 (a) 仿真的钙钛矿/HJT叠层电池结构示意图;(b) 电池材料折射率对比图;(c) 1.1 cm2最优电池的电流-电压(I-V)曲线[16]
ARC—Anti-reflective coating; HTL—Hole transport layer; ETL—Electron transport layer; n@800nm—Refractive index of 800 nm wavelength; ${n_{{\rm{Si}}{{\rm{O}}_x}}} $—Refractive index of SiOx; nPerovskite—Refractive index of perovskite; ${t_{{\rm{Si}}{{\rm{O}}_x}}} $—Thickness of SiOx; λB/C—Wavelength range; nSi—Refractive index of Si; η—Photoelectric conversion efficiency
Figure 4. (a) Schematic structure of the simulated monolithic perovskite/heterojunction tandem cell; (b) Comparison of refractive index of cell stack; (c) Current-voltage (I-V) curve (1.1 cm2)[16]
图 5 钙钛矿/异质结叠层太阳能电池:(a)结构示意图;(b)二次电子SEM图像;(c) J-V曲线(插图为器件照片)[17];(d)正弦纳米结构互联面的SEM图像[21]
Figure 5. Perovskite/heterojunction tandem solar cell: (a) Schematic view; (b) Secondary electron SEM images; (c) J-V data ( Inset is photo of the device)[17]; (d) SEM images of sinusoidally nanostructured interconnection layer[21]
图 10 (a) 钙钛矿/有机叠层电池结构示意图;(b) BPA钝化NiOx/钙钛矿界面缺陷示意图;最优叠层电池的J-V曲线 (c) 和EQE曲线及吸收光谱 (d)[37]
Figure 10. (a) Schematic structure of the tandem solar cell; (b) Schematic diagrams show the BPA passivation of NiOx HTLs; J-V curves (c) and EQE and the total absorbance for the champion tandem solar cell (d)[37]
表 1 高效率钙钛矿/晶硅叠层电池性能
Table 1. Performance of high efficiency perovskite/c-Si solar cells
Research institute Structure PSCs ICLs c-Si cell Area
/cm2PCE
/%Jsc
/(mA·cm−2)Voc
/VFF
/%Ref. ANU n-i-p TiO2/Cs0.07Rb0.03FA0.765MA0.135Pb-(I0.85Br0.15)3(1.62 eV)/Spiro-OMeTAD ITO n-PERC 1.000 22.50 17.60 1.750 73.80 [15] EPFL p-i-n Spiro-TTB/CsxFA1-xPb(I, Br)3/C60/SnO2 n+/p+nc-
Si:HHJT − 25.24 19.50 1.786 69.10 [17] EPFL n-i-p C60/Cs0.19FA0.81Pb-(I0.78Br0.22)3/
Spiro-OMeTADn+/p+nc-
Si:Hn-
HJT0.250 22.00 16.80 1.751 77.10 [22] UNL p-i-n PTAA/Cs0.15(FA0.83MA0.17)0.85Pb
(I0.7Br0.3)3(1.64 eV)/C60/SnO2ITO n-
HJT– 25.40 17.80 1.800 19.40 [12] UNIST p-i-n PTAA/(FAMAPbI3)0.8(MAPbBr3)0.2/
PCBMITO p-Al BSF 0.270 21.02 16.13 1.645 79.23 [14] HZB/
Oxfordp-i-n F4-TCNQ doped PolyTPD/NPD/Cs0.05(FA0.83MA0.17)0.95
Pb(I1-xBrx)3(1.63 eV)/PC61BMITO n-
HJT1.088 25.20 19.02 1.793 74.30 [16] HZB p-i-n Me-4 PACz(SAM)/Cs0.05(FA0.77MA0.23)0.95
Pb(I0.77Br0.23)3/(1.68 eV)/C60ITO HJT 1.064 29.15 19.26 1.900 79.52 [8] UNC p-i-n PTAA/Cs0.1MA0.9Pb(I0.9Br0.1)3/C60/SnO2 ITO n-
HJT– 26.00 19.20 1.820 74.40 [19] HZB p-i-n MePACz/Triple-cation
perovskite/C60ITO HJT 1.016 29.80 − 1.884 77.30 [20] EPFL/
CSEM– – – – 1.167 31.30 − 1.913 79.80 [9] Notes: ANU—Australian National University; EPFL—Ecole Polytechnique Fédérale de Lausanne; UNL—University of Nebraska-Lincoln; UNIST—Ulsan National Institute of Science and Technology; HZB—Helmholtz-Zentrum Berlin; Oxford—Oxford University; UNC—University of North Carolina; CSEM—Centre Suissed' Electronique et de Microtechnique; PSCs—Perovskite solar cells; ICLs—Interface connection layers; PCE—Power conversion efficiency; Jsc—Short circuit current density; Voc—Volts open circuit; FF—Fill factor; ITO—Indium tin oxide; spiro-OMeTAD—2, 2', 7, 7'-tetrakis[N, N-di(4-methoxyphenyl)amino]-9, 9'-spirobifluorene; Spiro-TTB—2, 2', 7, 7'-tetra(N, N-di-tolyl)amino-spiro-bifluor; FA—Formamidine; MA—Methylamine; PTAA—Poly[bis(4-phenyl)(2, 4, 6-trimethylphenyl)amine]; PCBM/PC61BM—[6, 6]-phenyl-C61-butyric acid methyl ester; HJT—Heterojunction; n-PERC—n-type passivated emitter and rear cell; P-Al BSF—p-type Al back surface field cell; F4-TCNQ—2, 3, 5, 6-tetrafluoro-7, 7, 8, 8-tetracyanoquinodimethane; PolyTPD—Doped poly(4-butyl-phenyl-diphenylamine; NPD—N, N′-di(1-naphthyl)-N, N′-diphenyl-(1, 1′-biphenyl)-4, 4′-diamine; Me-4PACz—[4-(3, 6-dimethyl-9H-carbazol-9-yl)butyl]phosphonicacid; SAM—Self assembled monolayer. 表 2 高效率钙钛矿/中窄带隙叠层电池性能
Table 2. Performance of high efficiency perovskite/medium-narrow band gap solar cells
Bottom
cellResearch
instituteStructure Device structure Area/
cm2PCE/
%Jsc/
(mA·cm–2)Voc/
VFF/
%Ref. PSC UV n-i-p ITO/TiO2/Cs0.15FA0.85Pb(I0.3Br0.7)3/TaTm/TaTm:F6-/TCNNQ/C60:Phlm/C60/MAPbI3/TaTm/TaTm:F6-TCNNQ/Au – 14.80 9.60 2.132 72.20 [26] UT p-i-n ITO/PTAA/FA0.8Cs0.2Pb(I0.7Br0.3)3(1.75 eV)/C60/BCP/
Ag/MoOx/ITO/PEDOT:PSS/(FASnI3)0.6(MAPbI3)0.4:Cl
(1.25 eV)/C60/BCP/Ag0.105 21.00 14.00 1.922 78.10 [27] UNC p-i-n ITO/PTAA/Cs0.4FA0.6PbI1.95Br1.05(1.78 eV)/C60/
SnO2-x/Cs0.05MA0.45FA0.5Pb0.5Sn0.5I3(1.21 eV)/C60/
BCP/Ag5.900 24.30 15.20 2.030 78.80 [29] NU p-i-n Glass/ITO/VNPB/Cs0.2FA0.8Pb(I0.6Br0.4)3(1.77 eV)/C60/
SnO2/Au/PEDOT:PSS/FA0.7MA0.3Pb0.5Sn0.5I3(1.22 eV)/
C60/BCP/Ag0.049 24.90 15.60 2.000 79.90 [31] NU p-i-n ITO/NiO/VNPB/FA0.8Cs0.2Pb(I0.62Br0.38)3/C60/SnO2/Au/
PEDOT:PSS/FA0.7MA0.3Pb0.5Sn0.5I3/C60/BCP/Cu0.049 26.70 16.50 2.030 79.90 [30] NU p-i-n Glass/ITO/PTAA/Cs0.2FA0.8Pb(I0.6Br0.4)3(1.77 eV)/C60/
SnO2/Au/PEDOT:PSS/FA0.7MA0.3Pb0.5Sn0.5I3(1.22 eV)/
C60/BCP/Ag0.073 24.50 14.90 2.013 81.60 [32] OPV HKU p-i-n ITO/NiOx/BPA/Cs0.25FA0.75Pb(I0.6Br0.4)3(1.79 eV)/C60/
BCP/CRL/MoOx/OPV(1.36 eV)/PNDIT-F3N/Ag0.080 23.60 14.83 2.060 77.20 [37] SCUT p-i-n ITO/Poly-TPD/MA1.06PbI2Br(SCN)0.12/PCMB/BCP/Au/MoO3/
PM6:Y6/PFN-Br/Ag– 20.03 13.13 1.940 78.50 [40] CityU n-i-p ITO/SnO2/CsPbI2.1Br0.9(1.79 eV)/PBDBT/MoO3/Ag/ZnO/
PM6:Y6/MoO3/Ag– 18.06 12.77 1.890 74.81 [42] CIGS IBM T. J. p-i-n Glass/Si3N4/Mo/CIGS/CdS/ITO/PEDOT:PSS/Perovskite/
PCBM/Al0.400 10.98 12.70 1.450 56.60 [43] HZB Glass/Mo/CIGS/CdS/ZnO/SAM/Cs0.05(MA0.23FA0.77)
Pb1.1(I0.77Br0.23)3(1.68 eV)/C60/SnO2/IZO/LiF/Ag1.040 24.20 18.80 1.770 71.20 [11] UCLA Glass/Mo/CIGS/CdS/i-ZnO/BZO/ITO/PTAA/Cs0.09FA0.77MA0.14Pb(I0.86Br0.14)3/
PCBM/ZnONPs/ITO/MgF– 22.43 17.30 1.774 73.10 [35] HZB Glass/Mo/CIGS/CdS/ZnONiOX/PTAA/Cs0.05(MA0.17
FA0.83)Pb1.1(I0.83Br0.17)/C60/SnO2/IZO/LiF0.778 21.60 18.00 1.590 75.00 [46] Notes: UV—Universidad de Valencia; UT—University of Toledo; NU—Nanjing University; HKU—University of Hong Kong; SCUT—South China University of Technology; City U—City University of Hong Kong; IBM—IBM T. J. Watson Research Center; UCLA—University of California–Los Angeles; PSC—Perovskite solar cell; OPV—Organic photovoltaic solar cell; CIGS—Copper indium gallium selenide cell; TaTm—N4, N4, N4″, N4″-tetra([1,1′-biphenyl]-4-yl)-[1,1′:4′,1″-terphenyl]-4,4″-diamine F6-TCNNQ—2,2′-(perfluoronaphthalene-2,6-diylidene) dimalononitrile; Phlm—N1,N4-bis(tri-p-tolylphosphoranylidene) benzene-1,4-diamine; BCP—Bathocuproine; VNPB—N4, N4 ′-di(naphthalen-1-yl)-N4,N4′-bis(4-vinylphenyl) biphenyl-4,4′-diamine; PNDIT-F3N—Poly[[2,7-bis(2-ethylhexyl)-1,2,3,6,7,8-hexahydro-1,3,6,8-tetraoxobenzo[lmn][3,8]phenanthroline-4,9-diyl]-2,5-thiophenediyl[9,9-bis[3-(dimethylamino)propyl]-9H-fluorene-2,7-diyl]-2,5-thiophenediyl]; PM6—Poly[(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro)thiophen-2-yl)-benzo[1,2-b:4,5-b′]dithiop′hene))-alt-(5,5-(1′,3′-di-2-thenyl-5′,7′-bis(2-ethylhexyl)benzo[1′,2-c:4′,5′-c′dithiophene-4,5-dione]))]; Y6—2,2′-[[12,13-Bis(2-ethylhexyl)-o[2′,3′:4,5] pyrrolo[3,2-e:2′,3′-g][2,1,3]benzothiadiazole-2,10-diyl]bis[methylidyne(5,6-difluoro-3-oxo-1H-indene-2,1(3H)-diylidene)]]]bis[propanedinitrile]; BZO—Boron-doped ZnO. -
[1] 王青, 孙頔, 张海霞, 等. 中国光伏行业2021年回顾与2022年展望[J]. 电气时代, 2022(5):20-28.WANG Qing, SUN Di, ZHANG Haixia, et al. Review of China's PV industry in 2021 and outlook for 2022[J]. Electric Age,2022(5):20-28(in Chinese). [2] GU W B, MA T, LI M, et al. A coupled optical-electrical-thermal model of the bifacial photovoltaic module[J]. Applied Energy,2020,258:114075. doi: 10.1016/j.apenergy.2019.114075 [3] MEIER J, FLÜCKIGER R, KEPPNER H, et al. Complete microcrystalline p-i-n solar cell-crystalline or amorphous cell behavior?[J]. Applied Physics Letters,1994,65(7):860-862. doi: 10.1063/1.112183 [4] EPERON G E, HORANTNER M T, SNAITH H J. Metal halide perovskite tandem and multiple-junction photovoltaics[J]. Nature Reviews Chemistry, 2017, 1: 95. [5] GREEN M A, DUNLOP E D, HOHL-EBINGER J, et al. Solar cell efficiency tables (version 59)[J]. Progress in Photovoltaics: Research and Applications, 2022, 30(1): 3-12. [6] ANAYA M, LOZANO G, CALVO M E, et al. ABX3 perovskites for tandem solar cells[J]. Joule,2017,1(4):769-793. doi: 10.1016/j.joule.2017.09.017 [7] LV S S, GAO W Y, LIU Y H, et al. Stability of Sn-Pb mixed organic-inorganic halide perovskite solar cells: Progress, challenges, and perspectives[J]. Journal of Energy Che-mistry,2022,65:371-404. doi: 10.1016/j.jechem.2021.06.011 [8] AL-ASHOURI A, KÖHNEN E, LI B, et al. Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction[J]. Science,2020,370(6522):1300-1309. doi: 10.1126/science.abd4016 [9] NREL Transforming Energy. Best research-cell efficiency chart: Photovoltaic research[EB/OL]. https://www.nrel.gov/pv/cell-efficiency.html. [10] BRINKMANN K O, BECKER T, ZIMMERMANN F, et al. Perovskite-organic tandem solar cells with indium oxide interconnect[J]. Nature,2022,604(7905):280-286. doi: 10.1038/s41586-022-04455-0 [11] JOŠT M, KÖHNEN E, AL-ASHOURI A, et al. Perovskite/CIGS tandem solar cells: From certified 24.2% toward 30% and beyond[J]. ACS Energy Letters,2022,7(4):1298-1307. doi: 10.1021/acsenergylett.2c00274 [12] CHEN B, YU Z S, LIU K, et al. Grain engineering for perovskite/silicon monolithic tandem solar cells with efficiency of 25.4%[J]. Joule,2019,3(1):177-190. doi: 10.1016/j.joule.2018.10.003 [13] XU J, BOYD C C, YU Z J, et al. Triple-halide wide-band gap perovskites with suppressed phase segregation for efficient tandems[J]. Science,2020,367(6482):1097-1104. doi: 10.1126/science.aaz5074 [14] KIM C U, YU J C, JUNG E D, et al. Optimization of device design for low cost and high efficiency planar monolithic perovskite/silicon tandem solar cells[J]. Nano Energy,2019,60:213-221. doi: 10.1016/j.nanoen.2019.03.056 [15] WU Y L, YAN D, PENG J, et al. Monolithic perovskite/silicon-homojunction tandem solar cell with over 22% efficiency[J]. Energy & Environmental Science,2017,10(11):2472-2479. [16] MAZZARELLA L, LIN Y H, KIRNER S, et al. Infrared light management using a nanocrystalline silicon oxide interlayer in monolithic perovskite/silicon heterojunction tandem solar cells with efficiency above 25%[J]. Advanced Energy Materials,2019,9(14):1803241. doi: 10.1002/aenm.201803241 [17] SAHLI F, WERNER J, KAMINO B A, et al. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency[J]. Nature Materials,2018,17(9):820-826. doi: 10.1038/s41563-018-0115-4 [18] LIU M, JOHNSTON M B, SNAITH H J. Efficient planar heterojunction perovskite solar cells by vapour deposition[J]. Nature,2013,501(7467):395-398. doi: 10.1038/nature12509 [19] CHEN B, YU Z S, MANZOOR S, et al. Blade-coated perovskites on textured silicon for 26%-efficient monolithic perovskite/silicon tandem solar cells[J]. Joule,2020,4(4):850-864. doi: 10.1016/j.joule.2020.01.008 [20] SUTTER J, EISENHAUER D, WAGNER P, et al. Tailored nanostructures for light management in silicon heterojunction solar cells[J]. Solar RRL, 2020, 4(12): 2000484-2000491. [21] SUTTER J, TOCKHORN P, WAGNER P, et al. Periodically nanostructured perovskite/silicon tandem solar cells with power conversion efficiency exceeding 26%[C]//2021 IEEE 48th Photovoltaic Specialists Conference (PVSC). IEEE, 2021: 1034-1036. [22] SAHLI F, KAMINO B A, WERNER J, et al. Improved optics in monolithic perovskite/silicon tandem solar cells with a nanocrystalline silicon recombination junction[J]. Advanced Energy Materials,2018,8(6):1701609. doi: 10.1002/aenm.201701609 [23] CHEN C W, HSIAO S Y, CHEN C Y, et al. Optical properties of organometal halide perovskite thin films and general device structure design rules for perovskite single and tandem solar cells[J]. Journal of Materials Chemistry A,2015,3(17):9152-9159. doi: 10.1039/C4TA05237D [24] HEO J H, IM S H. CH3NH3PbBr3-CH3NH3PbI3 perovskite-perovskite tandem solar cells with exceeding 2.2 V open circuit voltage[J]. Advanced Materials,2016,28(25):5121-5125. doi: 10.1002/adma.201501629 [25] JIANG F Y, LIU T F, LUO B W, et al. A two-terminal perovskite/perovskite tandem solar cell[J]. Journal of Materials Chemistry A,2016,4(4):1208-1213. doi: 10.1039/C5TA08744A [26] FORGÁCS D, GIL-ESCRIG L, PÉREZ-DEL-REY D, et al. Efficient monolithic perovskite/perovskite tandem solar cells[J]. Advanced Energy Materials,2017,7(8):1602121. doi: 10.1002/aenm.201602121 [27] ZHAO D W, CHEN C, WANG C L, et al. Efficient two-terminal all-perovskite tandem solar cells enabled by high-quality low-bandgap absorber layers[J]. Nature Energy,2018,3(12):1093-1100. doi: 10.1038/s41560-018-0278-x [28] TONG J H, SONG Z N, KIM D H, et al. Carrier lifetimes of >1 μs in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells[J]. Science,2019,364(6439):475-479. doi: 10.1126/science.aav7911 [29] YU Z H, YANG Z B, NI Z Y, et al. Simplified interconnection structure based on C60/SnO2-x for all-perovskite tandem solar cells[J]. Nature Energy,2020,5(9):657-665. doi: 10.1038/s41560-020-0657-y [30] LIN R X, XU J, WEI M Y, et al. All-perovskite tandem solar cells with improved grain surface passivation[J]. Nature, 2022, 603: 73-78. [31] WANG Y R, GU S, LIU G L, et al. Cross-linked hole transport layers for high-efficiency perovskite tandem solar cells[J]. Science China Chemistry,2021,64(11):2025-2034. doi: 10.1007/s11426-021-1059-1 [32] LIN R, XIAO K, QIN Z, et al. Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(II) oxidation in precursor ink[J]. Nature Energy,2019,4(10):864-873. doi: 10.1038/s41560-019-0466-3 [33] MENG L, ZHANG Y, WAN X, et al. Organic and solution-processed tandem solar cells with 17.3% efficiency[J]. Science,2018,361(6407):1094-1098. doi: 10.1126/science.aat2612 [34] AL-ASHOURI A, MAGOMEDOV A, ROSS M, et al. Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells[J]. Energy & Environmental Science,2019,12(11):3356-3369. [35] HAN Q, HSIEH Y T, MENG L, et al. High-performance perovskite/Cu(In, Ga)Se2 monolithic tandem solar cells[J]. Science,2018,361(6405):904-908. doi: 10.1126/science.aat5055 [36] ZUO L, SHI X L, FU W F, et al. Highly efficient semitransparent solar cells with selective absorption and tandem architecture[J]. Advanced Materials,2019,31(36):1901683. doi: 10.1002/adma.201901683 [37] CHEN W, ZHU Y D, XIU J W, et al. Monolithic perovskite/organic tandem solar cells with 23.6% efficiency enabled by reduced voltage losses and optimized interconnecting layer[J]. Nature Energy,2022,7(3):229-237. doi: 10.1038/s41560-021-00966-8 [38] PEÑA-CAMARGO F, CAPRIOGLIO P, ZU F. Halide segregation versus interfacial recombination in bromide-rich wide-gap perovskite solar cells[J]. ACS Energy Letters,2020,5(8):2728-2736. doi: 10.1021/acsenergylett.0c01104 [39] MAHESH S, BALL J M, OLIVER R D J, et al. Revealing the origin of voltage loss in mixed-halide perovskite solar cells[J]. Energy & Environmental Science,2020,13(1):258-267. [40] XIE Y M, NIU T, YAO Q, et al. Understanding the role of interconnecting layer on determining monolithic perovskite/organic tandem device carrier recombination properties[J]. Journal of Energy Chemistry,2022,71:12-19. doi: 10.1016/j.jechem.2022.03.019 [41] KO Y, PARK H J, LEE C, et al. Recent progress in interconnection layer for hybrid photovoltaic tandems[J]. Adanced Materials,2020,32(51):2002196. doi: 10.1002/adma.202002196 [42] WU X, LIU Y Z, QI F, et al. Improved stability and efficiency of perovskite/organic tandem solar cells with an all-inorganic perovskite layer[J]. Journal of Materials Che-mistry A,2021,9(35):19778-19787. doi: 10.1039/D0TA12286F [43] TODOROV T K, GERSHON T S, GUNAWAN O, et al. Monolithic perovskite-CIGS tandem solar cells via in situ band gap engineering[J]. Advanced Energy Materials,2015,5(23):1500799. doi: 10.1002/aenm.201500799 [44] HSU C H, HO W H, WEI S Y, et al. Over 14% efficiency of directly sputtered Cu(In, Ga)Se2 absorbers without postselenization by post-treatment of alkali metals[J]. Advanced Energy Materials,2017,7(13):1602571. doi: 10.1002/aenm.201602571 [45] ISHIZUKA S, NISHINAGA J, IIOKA M, et al. Si-doped Cu(In, Ga)Se2 photovoltaic devices with energy conversion efficiencies exceeding 165% without a buffer layer[J]. Advanced Energy Materials,2018,8(11):1702391. [46] JOŠT M, BERTRAM T, KOUSHIK D, et al. 216%-efficient monolithic perovskite/Cu(In, Ga)Se2 tandem solar cells with thin conformal hole transport layers for integration on rough bottom cell surfaces[J]. ACS Energy Letters,2019,4(2):583-590. [47] JANG Y H, LEE J M, SEO J W, et al. Monolithic tandem solar cells comprising electrodeposited CuInSe2 and perovskite solar cells with a nanoparticulate ZnO buffer layer[J]. Journal of Materials Chemistry A,2017,5(36):19439-19446. doi: 10.1039/C7TA06163C [48] UHL A R, RAJAGOPAL A, CLARK J A, et al. Solution-processed low-bandgap CuIn(S, Se)2 absorbers for high-efficiency single-junction and monolithic chalcopyrite-perovskite tandem solar cells[J]. Advanced Energy Materials,2018,8(27):1801254. doi: 10.1002/aenm.201801254