留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海泡石增强的炭泡沫相变储能材料及其光-热-电转化性能

卓祖优 宋生南 沈永康 陈燕丹

卓祖优, 宋生南, 沈永康, 等. 海泡石增强的炭泡沫相变储能材料及其光-热-电转化性能[J]. 复合材料学报, 2023, 40(7): 4164-4172. doi: 10.13801/j.cnki.fhclxb.20220916.001
引用本文: 卓祖优, 宋生南, 沈永康, 等. 海泡石增强的炭泡沫相变储能材料及其光-热-电转化性能[J]. 复合材料学报, 2023, 40(7): 4164-4172. doi: 10.13801/j.cnki.fhclxb.20220916.001
ZHUO Zuyou, SONG Shengnan, SHEN Yongkang, et al. Sepiolite reinforced carbon foam composite toward phase change energy storage material and its light-thermal-electric conversion performance[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4164-4172. doi: 10.13801/j.cnki.fhclxb.20220916.001
Citation: ZHUO Zuyou, SONG Shengnan, SHEN Yongkang, et al. Sepiolite reinforced carbon foam composite toward phase change energy storage material and its light-thermal-electric conversion performance[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4164-4172. doi: 10.13801/j.cnki.fhclxb.20220916.001

海泡石增强的炭泡沫相变储能材料及其光-热-电转化性能

doi: 10.13801/j.cnki.fhclxb.20220916.001
基金项目: 国家自然科学基金 (31870561;32171726)
详细信息
    通讯作者:

    陈燕丹,博士,教授,博士生导师,研究方向为生物质资源高效转化利用 E-mail: fjaucyd@163.com

  • 中图分类号: TB332

Sepiolite reinforced carbon foam composite toward phase change energy storage material and its light-thermal-electric conversion performance

Funds: National Natural Science Foundation of China (31870561; 32171726)
  • 摘要: 聚乙二醇(PEG)具有高相变焓、可生物降解、无毒、耐腐蚀等优点,是一种优异的相变材料。但容易泄露和导热性差这两大缺点阻碍了它的大规模应用。为此,本文以小麦面粉作为基体,海泡石纤维为增强体,利用酵母发酵产气的微生物发泡技术和高温炭化工艺,制得海泡石增强的生物质炭泡沫复合材料SCF-X-Y (X 表示海泡石的添加量,Y 表示炭化温度) 作为PEG相变材料载体。实验结果显示,SCF-10-800的抗压强度可达5.42 MPa。负载PEG后制得的SCF-5-1000@PEG,导热系数达到0.39 W/(m·K),熔化焓和凝固焓分别为123.4 J·g−1和106.6 J·g−1,并具备优异的抗泄露能力。基于SCF-5-1000@PEG为光吸收源,所组装的光驱动热电转换系统具有63.2%光热转化效率,且可以实现大于400 s的稳定电流输出,彰显其在光-热能-电能转换系统的应用潜能。

     

  • 图  1  采用真空浸渍法制备海泡石/炭泡沫复合材料(SCF-X-Y)@聚乙二醇(PEG)的流程图

    Figure  1.  Flow chart of sepiolite/carbon foam composite (SCF-X-Y)@polyethylene glycol (PEG) prepared by vacuum impregnation method

    图  2  SCF-X-800的孔隙率、开孔率和PEG负载量对比图

    Figure  2.  Comparison diagram of porosity, opening porosity and PEG load of SCF-X-800

    图  3  海泡石对酵母发酵泡孔结构形成的影响示意图

    Figure  3.  Diagram of the effect of sepiolite on the formation of bubble structure in yeast fermentation

    图  4  SCF-X-800的抗压强度(a)和热导率对比图 (b)

    Figure  4.  Compressive strength (a) and thermal conductivity comparison diagram (b) of SCF-X-800

    图  5  SCF-5-Y的孔隙率、开孔率和PEG负载量对比图

    Figure  5.  Comparison diagram of porosity, opening porosity and PEG load of SCF-5-Y

    图  6  (a) SCF-5-Y的抗压强度;(b) SCF-5-Y、SCF-5-Y@PEG和PEG的热导率

    Figure  6.  (a) Compressive strength of SCF-5-Y; (b) Thermal conductivity of SCF-5-Y, SCF-5-Y@PEG and PEG

    图  7  海泡石(a)、SCF-5-1000 ((b)、(c))、SCF-5-1000@PEG (d)的SEM图像

    Figure  7.  SEM images of sepiolite (a), SCF-5-1000 ((b), (c)) and SCF-5-1000@PEG (d)

    图  8  (a) PEG和SCF-5-Y@PEG的DSC 曲线;(b) SCF-5-Y@PEG的实际熔化焓ΔHM与理论熔化焓ΔHTM;(c) SCF-5-Y@PEG的实际凝固焓ΔHF与理论凝固焓ΔHTF

    Figure  8.  (a) DSC curves of PEG and SCF-5-Y@PEG; (b) Melting enthalpy (ΔHM) and theoretical melting enthalpy (ΔHTM) of SCF-5-Y@PEG; (c) Solidification enthalpy (ΔHF) and theoretical solidification enthalpy (ΔHTF) of SCF-5-Y@PEG

    图  9  PEG和SCF-5-Y@PEG样品加热到 80℃的数码照片

    Figure  9.  Digital photos of PEG and SCF-5-Y@PEG samples heated to 80℃

    图  10  PEG和SCF-5-1000@PEG复合相变材料在光照和冷却过程中的热响应

    Figure  10.  Thermal response of PEG and SCF-5-1000@PEG phase change composite materials during illumination and cooling

    图  11  (a) 光驱动热电转换系统装置;(b) 基于SCF-5-1000@PEG的太阳能热电装置示意图;在300 mW·cm−2模拟太阳光照射下:(c) SCF-5-1000@PEG的电流/温度-时间曲线;(d) SCF-5-1000@PEG和PEG的温度-时间曲线

    Figure  11.  (a) Light-driven thermoelectric conversion device; (b) Schematic diagram of SCF-5-1000@PEG-based solar thermoelectric device; (c) Current/temperature-time curves of SCF-5-1000@PEG; (d) Temperature-time curves of SCF-5-1000@PEG and PEG under simulated sunlight irradiation of 300 mW·cm−2

    表  1  样品命名

    Table  1.   Sample naming

    SCF-X-YX/gY/℃
    SCF-0-800 0 800
    SCF-2.5-800 2.5 800
    SCF-5-800 5 800
    SCF-7.5-800 7.5 800
    SCF-10-800 10 800
    SCF-5-400 5 400
    SCF-5-600 5 600
    SCF-5-1000 5 1000
    Notes: SCF—Sepiolite/carbon foam; X—Amount of sepiolite added; Y—Carbonized temperature.
    下载: 导出CSV

    表  2  SCF-5-1000@PEG同近几年报道的不同相变储能材料的热学性能对比

    Table  2.   Thermal properties of SCF-5-1000@PEG comparison with different phase change energy storage materials reported in recent years

    SamplePCMΔHM/(J·g−1)ΔHF/(J·g−1)Ref.
    PGI-PEG 50 PEG 6000 86.93 83.65 [19]
    PGI/PEG PEG 6000 86.9 70.1 [20]
    PEG/BC-2 PEG 6000 71.17 68.43 [21]
    PCM PEG 6000 97.2 92.3 [22]
    Fe3O4-GNS/PCM-4 PEG 6000 101.5 55.7 [23]
    PCM-6000 PEG 6000 76.37 80.46 [24]
    SCF-5-1000@PEG PEG 6000 123.4 106.6 This work
    Notes: PCM—Phase change materials; PGI—Poly(glycerol-itaconic acid); BC—Bone char; GNS—Functionalised graphene nanosheets.
    下载: 导出CSV
  • [1] WU S F, YAN T, KUAI Z H, et al. Experimental and numerical study of modified expanded graphite/hydrated salt phase change material for solar energy storage[J]. Solar Energy,2020,205:474-486. doi: 10.1016/j.solener.2020.05.052
    [2] WANG C J, LIANG W D, YANG Y Y, et al. Biomass carbon aerogels based shape-stable phase change composites with high light-to-thermal efficiency for energy storage[J]. Renewable Energy,2020,153:182-192. doi: 10.1016/j.renene.2020.02.008
    [3] 宋佳音. 丝瓜基相变复合材料的制备及其在纺织品热防护中的应用研究[D]. 无锡: 江南大学, 2021.

    SONG Jiayin. Preparation of towel gourd-based phase change composite material and its application in textile thermal protection [D]. Wuxi: Jiangnan University, 2021(in Chinese).
    [4] SU X L, JIA S K, LV G W, et al. A unique strategy for polyethylene glycol/hybrid carbon foam phase change materials: Morphologies, thermal properties, and energy storage behavior[J]. Materials,2018,11(10):2011. doi: 10.3390/ma11102011
    [5] BAO Z J, BING N C, YAO H R, et al. Three-dimensional interpenetrating network phase-change composites with high photothermal conversion and rapid heat storage and release[J]. ACS Applied Energy Materials,2021,4(8):7710-7720. doi: 10.1021/acsaem.1c01061
    [6] 吴丽梅, 刘庆欣, 王晓龙, 等. 相变储能材料研究进展[J]. 材料导报, 2021, 35(S1):501-506.

    WU Limei, LIU Qingxin, WANG Xiaolong, et al. Review on phase change energy storage materials[J]. Materials Reports,2021,35(S1):501-506(in Chinese).
    [7] XU B W, LI Z J. Paraffin/diatomite composite phase change material incorporated cement-based composite for thermal energy storage[J]. Applied Energy,2013,105:229-237. doi: 10.1016/j.apenergy.2013.01.005
    [8] LUO Y, XIONG S Y, HUANG J T, et al. Preparation, characterization and performance of paraffin/sepiolite composites as novel shape-stabilized phase change materials for thermal energy storage[J]. Solar Energy Materials and Solar Cells,2021,231:111300. doi: 10.1016/j.solmat.2021.111300
    [9] DENG Y, LI J H, NIAN H G. Polyethylene glycol-enwrapped silicon carbide nanowires network/expanded vermiculite composite phase change materials: Form-stabilization, thermal energy storage behavior and thermal conductivity enhancement[J]. Solar Energy Materials and Solar Cells,2018,174:283-291. doi: 10.1016/j.solmat.2017.09.013
    [10] 王长远, 王功勋, 陶涛, 等. 海泡石功能化绿色建材研究进展与应用现状[J]. 硅酸盐通报, 2017, 36(10):3285-3291. doi: 10.16552/j.cnki.issn1001-1625.2017.10.012

    WANG Changyuan, WANG Gongxun, TAO Tao, et al. Research progress and application status of sepiolite functional green building materials[J]. Bulletin of the Chinese Ceramic Society,2017,36(10):3285-3291(in Chinese). doi: 10.16552/j.cnki.issn1001-1625.2017.10.012
    [11] LI C C, XIE B S, CHEN J, et al. Emerging mineral-coupled composite phase change materials for thermal energy storage[J]. Energy Conversion and Management,2019,183:633-644. doi: 10.1016/j.enconman.2019.01.021
    [12] OLA O, CHEN Y, ZHU Y Q. Three-dimensional carbon foam nanocomposites for thermal energy storage[J]. Solar Energy Materials and Solar Cells,2019,191:297-305. doi: 10.1016/j.solmat.2018.11.037
    [13] INAGAKI M, QIU J S, GUO Q G. Carbon foam: Preparation and application[J]. Carbon,2015,87:128-152. doi: 10.1016/j.carbon.2015.02.021
    [14] SHI T T, ZHANG X G, QIAO J X, et al. Preparation and characterization of composite phase change materials based on paraffin and carbon foams derived from starch[J]. Polymer,2021,212:123143. doi: 10.1016/j.polymer.2020.123143
    [15] SONG J Y, CAI Y B, DU M Y, et al. 3D lamellar structure of biomass-based porous carbon derived from towel gourd toward phase change composites with thermal management and protection[J]. ACS Applied Bio Materials,2020,3(12):8923-8932. doi: 10.1021/acsabm.0c01196
    [16] ZHANG Y J, ZHAO M Y, WANG H, et al. Damaged starch derived carbon foam-supported heteropolyacid for catalytic conversion of cellulose: Improved catalytic performance and efficient reusability[J]. Bioresource Technology,2019,288:121532. doi: 10.1016/j.biortech.2019.121532
    [17] QI F Q, WANG L, ZHANG Y L, et al. Robust Ti3C2Tx MXene/starch derived carbon foam composites for superior EMI shielding and thermal insulation[J]. Materials Today Physics,2021,21:100512. doi: 10.1016/j.mtphys.2021.100512
    [18] 张磊. 聚乙二醇基复合储热材料的制备、性能及其相变传热过程研究[D]. 武汉: 武汉理工大学, 2012.

    ZHANG Lei. Study on preparation, properties and phase change heat transfer process of polyethylene glycol-based composite thermal energy storage materials[D]. Wuhan: Wuhan University of Technology, 2012(in Chinese).
    [19] YIN G Z, PALENCIA J L D, WANG D Y. Fully bio-based poly(glycerol-itaconic acid) as supporter for PEG based form stable phase change materials[J]. Composites Communications,2021,27:100893. doi: 10.1016/j.coco.2021.100893
    [20] YIN G Z, YANG X M, HOBSON J, et al. Bio-based poly(glycerol-itaconic acid)/PEG/APP as form stable and flame-retardant phase change materials[J]. Composites Communications,2022,30:101057. doi: 10.1016/j.coco.2022.101057
    [21] WEN R L, JIA P Q, HUANG Z H, et al. Thermal energy storage properties and thermal reliability of PEG/bone char composite as a form-stable phase change material[J]. Journal of Thermal Analysis and Calorimetry,2018,132(3):1753-1761. doi: 10.1007/s10973-017-6934-8
    [22] WANG R, XIAO Y, LEI J X. A solid-solid phase change material based on dynamic ion cross-linking with reprocessability at room temperature[J]. Chemical Engineering Journal,2020,390:124586. doi: 10.1016/j.cej.2020.124586
    [23] WANG W T, UMAIR M M, QIU J J, et al. Electromagnetic and solar energy conversion and storage based on Fe3O4-functionalised graphene/phase change material nanocomposites[J]. Energy Conversion and Management,2019,196:1299-1305. doi: 10.1016/j.enconman.2019.06.084
    [24] YANG Y Y, KONG W B, CAI X F. Solvent-free preparation and performance of novel xylitol based solid-solid phase change materials for thermal energy storage[J]. Energy and Buildings,2018,158:37-42. doi: 10.1016/j.enbuild.2017.09.096
    [25] YANG H Y, LIU Y S, LI J, et al. Full-wood photoluminescent and photothermic materials for thermal energy storage[J]. Chemical Engineering Journal,2021,403:126406. doi: 10.1016/j.cej.2020.126406
    [26] YU C, YANG S H, PAK S Y, et al. Graphene embedded form stable phase change materials for drawing the thermo-electric energy harvesting[J]. Energy Conversion and Management,2018,169:88-96. doi: 10.1016/j.enconman.2018.05.001
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  692
  • HTML全文浏览量:  386
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-18
  • 修回日期:  2022-08-25
  • 录用日期:  2022-09-02
  • 网络出版日期:  2022-09-17
  • 刊出日期:  2023-07-15

目录

    /

    返回文章
    返回