留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双DOPO悬垂型阻燃剂化学修饰水性聚氨酯的性能

刘超 陈雨鑫 尹付琳 梁旭阳 肖寒 宝冬梅 龙丽娟 周国永

刘超, 陈雨鑫, 尹付琳, 等. 双DOPO悬垂型阻燃剂化学修饰水性聚氨酯的性能[J]. 复合材料学报, 2023, 40(5): 2653-2669. doi: 10.13801/j.cnki.fhclxb.20220913.001
引用本文: 刘超, 陈雨鑫, 尹付琳, 等. 双DOPO悬垂型阻燃剂化学修饰水性聚氨酯的性能[J]. 复合材料学报, 2023, 40(5): 2653-2669. doi: 10.13801/j.cnki.fhclxb.20220913.001
LIU Chao, CHEN Yuxin, YIN Fulin, et al. Chemical modification of waterborne polyurethane with double DOPO pendant flame retardant[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2653-2669. doi: 10.13801/j.cnki.fhclxb.20220913.001
Citation: LIU Chao, CHEN Yuxin, YIN Fulin, et al. Chemical modification of waterborne polyurethane with double DOPO pendant flame retardant[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2653-2669. doi: 10.13801/j.cnki.fhclxb.20220913.001

双DOPO悬垂型阻燃剂化学修饰水性聚氨酯的性能

doi: 10.13801/j.cnki.fhclxb.20220913.001
基金项目: 国家自然科学基金(51863004);贵州省省级科技计划项目(黔科合基础-ZK[2022]一般216);贵州民族大学科研项目(GZMUZK[2021]YB09);贵州民族大学引进人才项目(0703001001018020)
详细信息
    通讯作者:

    周国永,博士,教授,硕士生导师,研究方向为功能高分子化学合成技术 E-mail: gyzhou@gzmu.edu.cn

  • 中图分类号: O633

Chemical modification of waterborne polyurethane with double DOPO pendant flame retardant

Funds: National Natural Science Foundation of China (51863004); Guizhou Provincial Science and Technology Projects (ZK[2022]216); Research Fund of Guizhou Minzu University (GZMUZK[2021]YB09); Scientific Research Fund for the Talents Introduction of Guizhou Minzu University (0703001001018020)
  • 摘要: 为提高普通水性聚氨酯(WPU)耐热性、阻燃性和力学性能等,本文以9, 10-二氢-9-氧-10-磷菲-10氧化物(DOPO)和2, 2′-二烯丙基双酚A(DABA)为原料,通过“一步法”化学合成了双DOPO悬垂型阻燃剂DDBA,采用红外光谱(FTIR)和核磁共振(NMR)表征了其化学结构,并用其化学修饰WPU制备新型水性聚氨酯(DDBA/WPU)。研究了DDBA对DDBA/WPU胶膜材料耐水性、耐热性、阻燃性及力学性能的影响。通过水接触角、吸水率、热失重(TG)、锥形量热(CONE)、电镜扫描(SEM)、氧指数(LOI)、垂直燃烧(UL-94)、万能试验机等评价胶膜的相关性能。研究结果表明:随着DDBA添加量的增大,胶膜的耐水性、耐热性、阻燃性及力学性能不断提升,当DDBA的添加质量比为20%时,水接触角可达134.56°,提高了106.06%,吸水率降低了33.29%。耐受温度提高了60℃,LOI值为35.9%,烟气释放总量(TSP)和平均有效燃烧热(AEHC)分别减小了85.42%和55.76%,最大热释放速率(pHRR)、总释放热(THR)、CO2的释放量分别下降了35.40%、51.20%、58.49%,点燃时间延长了15 s,CO释放量提高了163.46%,拉伸强度可达25.7 MPa,约为改性前WPU的9.51倍。

     

  • 图  1  新型水性聚氨酯(DDBA/WPU)乳液合成路线

    Figure  1.  New waterborne polyurethane (DDBA/WPU) emulsion synthesis route

    IPDI—Isophorone diisocyanate; PPG1000—Polypropylene glycol 1000; DBTDL—Dibutyltin dilaurate; BDO—1, 4-butanediol; DMPA—Dimethylolpropionic acid; DOPO—9, 10-dihydro-9-oxygen-10-phosphophene-10 oxide; DABA—2, 2'-diallyl bisphenol A

    图  2  ((a1), (a2), (a3)) DOPO的13C-NMR、 1H-NMR、31P-NMR;((b1), (b2)) DABA的13C-NMR、1H-NMR;(b3)主要原料的FTIR;((c1), (c2), (c3)) DDBA的13C-NMR、1H-NMR、31P-NMR

    Figure  2.  ((a1), (a2), (a3)) 13C-NMR, 1H-NMR, 31P-NMR of DOPO; ((b1), (b2)) 13C-NMR, 1H-NMR of DABA; (b3) FTIR of main raw material; ((c1), (c2), (c3)) 13C-NMR, 1H-NMR, 31P-NMR of DDBA

    图  3  DDBA/WPU的红外图谱

    Figure  3.  FTIR spectra of DDBA/WPU

    图  4  (a) DDBA/WPU胶膜的水接触角和表面能;(b) DDBA/WPU胶膜的吸水率

    Figure  4.  (a) Water contact angle and surface energy of DDBA/WPU films; (b) Water absorption of DDBA/WPU films

    图  5  (a) DDBA/WPU胶膜的TG曲线;(b) DDBA/WPU胶膜的DTG曲线;(c) 不同温度下DDBA/WPU胶膜的变化

    Figure  5.  (a) TG curves of DDBA/WPU film; (b) DTG curves of DDBA/WPU film; (c) Changes of DDBA/WPU adhesive films at different temperatures

    图  6  DDBA/WPU胶膜的DSC曲线

    Tg—Glass transition temperature

    Figure  6.  DSC curves of DDBA/WPU films

    图  7  DDBA/WPU胶膜的热释放速率(HRR) (a)、总释放热(THR) (b)和有效燃烧热(EHC) (c)

    Figure  7.  Heat release rate (HRR) (a), total heat release (THR) (b) and effective heat of combustion (EHC) (c) of the DDBA/WPU film

    图  8  DDBA/WPU胶膜的烟气释放总量(TSP) (a)、烟气释放速率(SPR) (b)和 CO (c)、CO2 (d)生成速率

    Figure  8.  Total amount of flue gas released (TSP) (a) and flue gas release rate (SPR) (b) of the DDBA/WPU film and CO (c), CO2 (d) generation rate

    图  9  DDBA/WPU锥形量热残留物的表面形貌和元素分布图

    Figure  9.  Surface morphologies and element distribution of DDBA/WPU conical calorimetric residues

    图  10  (a) DDBA/WPU锥形量热残留物的表面微观形貌;((b), (c)) DDBA/WPU锥形量热计残留物的正面和侧面宏观照片

    Figure  10.  (a) Surface micromorphologies of the residue from DDBA/WPU cone calorimetry; ((b), (c)) Macrophotographs of the residue from the DDBA/WPU cone calorimeter front and side

    图  11  DDBA/WPU LOI测试后图片

    Figure  11.  Picture after DDBA/WPU LOI test

    图  12  DDBA及DDBA/WPU燃烧过程的阻燃机制图

    Figure  12.  Diagram of the flame retardant mechanism of DDBA and DDBA/WPU combustion process

    图  13  DDBA/WPU拉伸性能曲线图

    Figure  13.  DDBA/WPU tensile properties curve

    图  14  (a) DDBA/WPU胶膜脆断SEM图像;(b) DDBA/WPU胶膜正常拉断SEM图像

    Figure  14.  (a) SEM images of DDBA/WPU films brittle fracture; (b) SEM images of normal DDBA/WPU films fracture

    表  1  DDBA含量对WPU乳液性能的影响

    Table  1.   Effect of DDBA content on the properties of WPU emulsion

    n(DDBA)/%Performance
    ExteriorParticle size/nmPDIViscosity/(MPa·s)Stability
    WPU Pan blue light 57.62 0.119 22.7 *
    2.5 Pan blue light 63.84 0.057 25.5 *
    5 Yellowish 74.00 0.097 26.8 *
    7.5 Yellowish 78.02 0.108 28.7 *
    10 Pale yellow 87.74 0.046 31.3 *
    12.5 Pale yellow 99.09 0.025 32.8 *
    15 Pale yellow 110.60 0.019 33.2 *
    17.5 Milky white 128.20 0.035 34.9 *
    20 Milky white 147.50 0.139 36.3 *
    Notes: * indicates stable (>6 months); n(DDBA)—Mass fraction based on the total mass of IPDI and PPG1000; PDI—Polymer dispersibility index.
    下载: 导出CSV

    表  2  WPU和DDBA/WPU热分解数据

    Table  2.   Thermal decomposition data of WPU and DDBA/WPU

    n(DDBA)/%T10%/℃TmaxI/℃TmaxII/℃TmaxIII/℃TmaxIV/℃Char yield/%
    WPU118.4110.0272.8317.3357.40.9
    5120.1115.7275.3343.6389.51.1
    10123.5113.5282.5345.7382.81.2
    15284.8168.4293.4342.5378.21.9
    20291.7196.2298.9350.0390.32.3
    Note: T10%(℃), TmaxI(℃), TmaxII(℃), TmaxIII(℃), TmaxIV(℃)—Temperature of 10% weight loss, the maximum weight loss temperature of the first, second, third and fourth stages.
    下载: 导出CSV

    表  3  DDBA/WPU胶膜的锥形量热数据

    Table  3.   Cone calorimetry data of the DDBA/WPU films

    n(DDBA)/%TTI/spHRR/(kW·m2)THR/(MJ·m2)ACOY/(kg·kg−1)ACO2Y/(kg·kg−1)CO/CO2AEHC/(MJ·kg−1)TSP/(m2·m−2)
    WPU91214.93134.410.0524.650.01135.531235.02
    5171190.58104.820.0543.130.01723.041204.53
    10201017.85104.530.0633.050.02120.36518.29
    1522792.0897.640.0872.700.03218.08425.63
    2024784.8765.060.1371.930.07115.72180.80
    Note: TTI, pHRR, THR, ACOY, ACO2Y, CO/CO2, AEHC, TSP—Ignition time, maximum heat release rate, total heat release, average CO generation, average CO2 generation, and ratio of CO to CO2 generation, the average effective heat of combustion, the total amount of flue gas released.
    下载: 导出CSV

    表  4  DDBA/WPU的氧指数(LOI)和垂直燃烧 (UL-94)等级

    Table  4.   Oxygen index (LOI) value and vertical combustion (UL-94) rating of DDBA/WPU

    n(DDBA)/%Vertical burning test
    After-flame time
    LOI/%${\bar {t_1}}/{\rm{s}} $${\bar {t_2}}/{\rm{s}} $UL-94 ratingDripping
    WPU 21.9 76.0 78.2 Unrated Yes
    5 26.8 11.3 10.7 V-1 No
    10 29.3 8.7 7.5 V-1 No
    15 32.4 4.9 5.4 V-1 No
    20 35.9 2.9 1.6 V-0 No
    Notes: The after-flame of specimen burned to the clamp in the first flame application; ${\bar {t_1}} $, ${\bar {t_2}} $—Reignition time; V-0 for each individual sample combustion duration ${\bar {t_1}} $ or ${\bar {t_2}} $≤10 s, burning particles or drips does not ignite skim cotton; V-1 for each individual sample combustion duration ${\bar {t_1}} $ or ${\bar {t_2}} $≤30 s, burning particles or drips does not ignite skim cotton.
    下载: 导出CSV
  • [1] DU W N, GE X G, HUANG H, et al. Fabrication of high transparent mechanical strong and flame retardant waterborne polyurethane composites by incorporating phosphorus-silicon functionalized cellulose nanocrystals[J]. Journal of Applied Polymer Science,2021,125(3):139-145.
    [2] LUO Y F, WANG H L, WANG H J, et al. Preparation and performance of waterborne polyurethane coatings based on the synergistic flame retardant of ferrocene phosphorus and nitrogen[J]. Journal of Applied Polymer Science,2021,138(45):138-147.
    [3] CUI M J, LI J, CHEN X D, et al. A halogen-free flame retardant waterborne polyurethane coating based on the synergistic effect of phosphorus and silicon[J]. Progress in Organic Coatings,2021,66(32):158-164.
    [4] CUI J G, LIU S J, LI Q X, et al. A novel intrinsic flame-retardant waterborne poly(urethane) copolymers containing phosphorus-nitrogen[J]. Fire and Materials,2021,123(2):246-257.
    [5] VELENCOSO M M, BATTIG A, MARKWART J C. Molecular fire fighting—How modern phosphorus chemistry can help solve the challenge of flame retardancy[J]. Angewandte Chemie International Edition,2018,33(11):57-63.
    [6] HUI W, SHUANG W, XIAO S D, et al. A novel DOPO-containing HTBN endowing waterborne polyurethane with excellent flame retardance and mechanical properties[J]. Journal of Applied Polymer Science,2020,44(6):137-144.
    [7] 吴景, 曾威, 邝美霞, 等. 细菌纤维素-ZnO/水性聚氨酯复合薄膜的制备与性能[J]. 复合材料学报, 2020, 37(12):3026-3034. doi: 10.13801/j.cnki.fhclxb.20200407.001

    WU Jing, ZENG Wei, KUANG Meixia, et al. Preparation and properties of bacterial cellulose-ZnO/waterborne polyurethane composite films[J]. Acta Materiae Compositae Sinica,2020,37(12):3026-3034(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200407.001
    [8] FU L A, ZHONG L A, YI L. A Synthesis of waterborne polyurethane by inserting polydimethylsiloxane and constructing dual crosslinking for obtaining the superior performance of waterborne coatings[J]. Composites Part B: Engi-neering,2022,72(18):242-251.
    [9] 中国国家技术监督局. 胶粘剂粘度的测定: GB/T 2794—1995[S]. 北京: 中华人民共和国化学工业部, 1995.

    China National Bureau of Technical Supervision. Determination of adhesive viscosity: GB/T 2794—1995[S]. Beijing: Ministry of Chemical Industry of the People's Republic of China, 1995(in Chinese).
    [10] 中国国家标准局. 涂料贮存稳定性试验方法: GB/T 6753.3—1986[S]. 北京: 中华人民共和国化学工业部, 1986.

    National Bureau of Standards of China. Test method for storage stability of coatings: GB/T 6753.3—1986[S]. Beijing: Ministry of Chemical Industry of the People's Republic of China, 1986(in Chinese).
    [11] ASTM. Test method for measuring the minimum oxygen concentration to support candle-like combustion of plastics: ASTM D2863-00[S]. Philadelphia: American Society of Testing Materials, 1997.
    [12] ASTM. Standard test method for measuring the compara-tive burning characteristics of solid plastics in a vertical position: ASTM D3801/UL-94[S]. Philadelphia: American Society of Testing Materials, 2001.
    [13] ZHAO L H, WANG X, WANG W. PEG/IPDI copolymerization modification to prepare new waterborne polyurethane materials[J]. Plastic Technology, 2021, 49(23): 66-70.
    [14] LI M, HAN L, GUO X, et al. Preparation and antifouling properties of silicone-modified waterborne polyurethane coatings[J]. Journal of Functional Polymers,2021,34(18):379-386.
    [15] SHUANG W, ZONG L D, XU C, et al. Synthesis of a phosphorus and nitrogen-containing flame retardant and evaluation of its application in waterborne polyurethane[J]. Journal of Applied Polymer Science,2018,16(3):135-142.
    [16] QIAN Y, DONG F, GUO L. Two-component waterborne polyurethane modified with terpene derivative-based polysiloxane for coatings via a thiolene click reaction[J]. Industrial Crops and Products,2021,171(45):113903.
    [17] DU X, WANG C, WU G, et al. The rapid and large-scale production of carbon quantum dots and their integration with polymers[J]. Angewandte Chemie International Edition,2021,60(19):8585-8595.
    [18] CHEN W, YUAN Y, CHEN Y. Visualized bond scission in mechano chemiluminescent polymethyl acrylate/cellulose nanocrystals composites[J]. ACS Macro Letters,2020,56(9):438-442.
    [19] ZHONG Y, LI P, WANG X, et al. Amoeba-inspired reengi-neering of polymer networks[J]. Green Chemistry,2021,23(7):2496-2506.
    [20] WEN Q, LIU B W, JI Y D. Study on the hydroxyl-terminated polydimethyl hydroxy silicone oil modified epoxy resins[J]. Thermosetting Resin,2020,35(13):25-28.
    [21] YURIY T, ROMAN V, OLEKSANDR M, et al. Regularities in the washing out of water soluble phosphorus-ammonium salts from the fire-protective coatings of timber through a polyurethane shell[J]. Eastern-European Journal of Enterprise Technologies,2021,62(2):10-17.
    [22] WANG C S, ZHANG J, WANG H, et al. Simultaneously improving the fracture toughness and flame retardancy of soybean oil-based waterborne polyurethane coatings by phosphorus-nitrogen chain extender[J]. Industrial Crops & Products,2021,163(95):187-194.
    [23] ZHU M H, MA Z W, LIU L, et al. Recent advances in fire-retardant rigid polyurethane foam[J]. Journal of Materials Science & Technology,2022,112:315-328. doi: 10.1016/j.jmst.2021.09.062
    [24] SHUANG W, XIAO S D, XI H F, et al. Highly effective flame-retarded polyester diol with synergistic effects for waterborne polyurethane application[J]. Journal of Applied Polymer Science,2020,135(10):37-45.
    [25] JUN Z, JIE L, WEN Y C, et al. Synthesis and application of a phosphorus-containing waterborne polyurethane based polymeric dye with excellent flame retardancy[J]. Progress in Organic Coatings,2020,72(16):140-146.
    [26] YOU T W, SHAO G W, JI H W, et al. Graphene oxide-loaded zinc phosphate as an anticorrosive reinforcement in waterborne polyurethane resin[J]. International Journal of Electrochemical Science,2019,66(6):14-25.
    [27] FARZANE T, MANOUCHEHR K, MORTEZA E, et al. Synthesis and comprehensive study on industrially relevant flame retardant waterborne polyurethanes based on phosphorus chemistry[J]. Progress in Organic Coatings,2019,131(75):371-379.
    [28] WANG H, WANG S, DU X, et al. A novel DOPO-containing HTBN endowing waterborne polyurethane with excellent flame retardance and mechanical properties[J]. Journal of Applied Polymer Science,2020,137(44):49368. doi: 10.1002/app.49368
    [29] ZHANG M, LUO Z Y, ZHANG J W, et al. Effects of a novel phosphorus-nitrogen flame retardant on rosin-based rigid polyurethane foams[J]. Polymer Degradation and Stability,2015,120(47):427-434.
    [30] LIU S M, CHEN J B, ZHAO J Q, et al. Phosphaphenanthrene-containing borate ester as a latent hardener and flame retardant for epoxy resin[J]. Polymer International,2015,64(9):1182-1190. doi: 10.1002/pi.4890
    [31] 郑春森, 赵海平, 姚伯龙, 等. 功能石墨烯改性水性聚氨酯及其性能[J]. 复合材料学报, 2017, 34(12):2643-2652. doi: 10.13801/j.cnki.fhclxb.20170327.003

    ZHENG Chunsen, ZHAO Haiping, YAO Bolong, et al. Functional graphene-modified waterborne polyurethane and its properties[J]. Acta Materiae Compositae Sinica,2017,34(12):2643-2652(in Chinese). doi: 10.13801/j.cnki.fhclxb.20170327.003
    [32] JIN Y X, HUANG G B, HAN D M, et al. Functionalizing graphene decorated with phosphorus-nitrogen containing dendrimer for high-performance polymer nanocompo-sites[J]. Composites Part A: Applied Science and Manufacturing,2016,86:9-18. doi: 10.1016/j.compositesa.2016.03.030
    [33] LIU B W, ZHAO H B, WANG Y Z. Advanced flame-retardant methods for polymeric materials[J]. Advanced Materials,2021,27(7):682-691.
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  799
  • HTML全文浏览量:  405
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-25
  • 修回日期:  2022-08-23
  • 录用日期:  2022-09-02
  • 网络出版日期:  2022-09-14
  • 刊出日期:  2023-05-15

目录

    /

    返回文章
    返回