Influence of inorganic mineral fluorocarbon composite coating on salt freezing resistance of concrete
-
摘要: 通过表面疏水性能试验、力学性能试验、界面粘结性能试验和混凝土盐冻试验,研究了无机矿物对水性氟碳涂料性能的影响,研究了盐冻环境下无机矿物氟碳复合涂料附着力变化,分析了其对混凝土单位面积剥落量的影响,结合微观形貌变化和孔结构变化,分析了混凝土抗盐冻性能提升机制。结果表明:单掺硅溶胶时,氟碳复合涂料水接触角较氟碳涂料增大了10.2%,其铅笔硬度高达3 H;三掺硅溶胶、海泡石粉和铁尾矿粉时,氟碳复合涂料铅笔硬度高达3 H,其附着力增大了44.2%;复掺硅溶胶和海泡石粉时,氟碳复合涂料性能介于两者之间。盐冻环境下单掺硅溶胶氟碳复合涂料残余附着力最大。无机矿物氟碳复合涂料能显著改善混凝土抗剥蚀性能,但改善效果较氟碳涂料不显著。盐冻环境下水性氟碳涂料产生部分微孔,孔结构粗化,而单掺硅溶胶氟碳复合涂料微观结构仍较致密,其最可几孔径略有增大,涂料仅略有损伤。单掺硅溶胶氟碳复合涂料防护下混凝土微观结构更致密,其单位面积剥落量较未防护时降低幅度高达81.2%。为寒冷地区盐冻环境下混凝土防护涂料的设计提供了试验和理论依据。Abstract: The influences of inorganic mineral on the properties of waterborne fluorocarbon coating were studied, and the variation in adhesion of fluorocarbon composite coatings under the salt freezing environment was studied, and the influence of fluorocarbon composite coatings on the amount of spalling per unit area of concrete was analyzed, by surface hydrophobic property test, mechanical property test, interface bonding property test and salt freezing test of concrete. The improvement mechanism of salt freezing resistance of concrete was analyzed, combining the changes of microscopic appearance and pore structure. The results show that the water contact angle of the fluorocarbon composite coating with single doped silica sol increases by 10.2%, compared with fluorocarbon coating, and the pencil hardness is up to 3 H. The pencil hardness of the fluorocarbon composite coating with triple adding of silica sol, sepiolite powder and iron tailing powder is up to 3 H, and the adhesion increases by 44.2%. The properties of the fluorocarbon composite coating with double adding of silica sol and sepiolite powder lie between both coatings. The residual adhesion of the fluorocarbon composite coating with single doped silica sol is the largest. Inorganic mineral fluorocarbon composite coatings can significantly improve the exfoliation resistance of concrete, but the improvement effect is not significant compared with fluorocarbon coating. Some micropores are generated in the waterborne fluorocarbon coating under the salt freezing environment, and the pore structure is coarsened. However, the microstructure of the fluorocarbon composite coating with single doped silica sol is still denser, and the most probable pore diameter increases slightly, and the coating is only slightly damaged. The microstructure of concrete under the protection of the fluorocarbon composite coating with single doped silica sol is denser, and the spalling amount per unit area decreases by 81.2%, compared with that without protection. Research results provide experimental and theoretical bases for the design of concrete protective coating under the salt freezing environment in cold areas.
-
Key words:
- salt freezing /
- fluorocarbon coating /
- inorganic mineral /
- concrete /
- amount of spalling /
- mechanism
-
表 1 铁尾矿粉的化学组成
Table 1. Chemical composition of iron tailing powder
wt% SiO2 Al2O3 CaO MgO Fe2O3 Na2O K2O TiO2 51.70 18.00 9.36 5.86 5.29 3.69 2.67 1.39 表 2 无机矿物氟碳复合涂料配方
Table 2. Inorganic mineral fluorocarbon composite coating formulas
Serial number Fluorocarbon coating Silica sol Nano-SiO2 content/wt% F00 1 0 0 F02 1 0.02 1 F04 1 0.04 2 F06 1 0.06 3 F08 1 0.08 4 F10 1 0.10 5 F15 1 0.15 7.4 F20 1 0.20 9.8 F25 1 0.25 12.3 F30 1 0.30 14.7 F35 1 0.35 17.2 F40 1 0.40 19.6 Notes: The formula refers to the mass ratios of various materials; Nano-SiO2 content refers to the mass fraction of nano-SiO2 accounting for fluorocarbon resin in the coating. 表 3 水泥和煤粉灰的化学组成
Table 3. Chemical composition of cement and fly ash
wt% Category CaO SiO2 Al2O3 MgO Fe2O3 K2O Na2O SO3 Cement 59.80 21.35 6.80 2.93 2.55 1.02 0.18 3.66 Fly ash 4.94 48.28 35.60 1.03 3.66 0.88 0.21 0.86 表 4 混凝土配合比
Table 4. Concrete mix ratio
kg·m−3 Cement Fly ash Coarse aggregate Fine aggregate Water reducer Water 290 80 1 081 752 8.1 170 表 5 不同无机矿物掺加方式的氟碳复合涂料配方
Table 5. Formulas of fluorocarbon composite coatings with different inorganic mineral adding ways
Serial number Fluorocarbon coating Silica sol Sepiolite powder Iron tailing powder F 1 — — — FS 1 0.250 — — FSS 1 0.125 0.1250 — FSSI 1 0.125 0.0625 0.0625 -
[1] 李中华, 巴恒静. 除冰盐环境下混凝土有机硅涂层防护性能研究[J]. 中国矿业大学学报, 2009, 38(1):41-45. doi: 10.3321/j.issn:1000-1964.2009.01.009LI Zhonghua, BA Hengjing. A study of the protection of concrete from freeze-deicing salt by an organo-silicone coating[J]. Journal of China University of Mining and Technology,2009,38(1):41-45(in Chinese). doi: 10.3321/j.issn:1000-1964.2009.01.009 [2] 郑焱. 水性氟碳涂料对混凝土防护作用的研究[D]. 北京: 北京工业大学, 2012.ZHENG Yan. Study on the protective function of water-borne fluorocarbon coating for concrete[D]. Beijing: Beijing University of Technology, 2012(in Chinese). [3] PAN X Y, SHI Z G, SHI C J, et al. A review on concrete surface treatment Part Ⅰ: Types and mechanisms[J]. Construction and Building Materials,2017,132:578-590. doi: 10.1016/j.conbuildmat.2016.12.025 [4] 房亚楠, 秦立光, 赵文杰, 等. 氟碳涂料在防腐领域的研发现状和发展趋势[J]. 中国腐蚀与防护学报, 2016, 36(2):97-106.FANG Yanan, QIN Liguang, ZHAO Wenjie, et al. Research progress and development trend on corrosion resistant fluorocarbon paint[J]. Journal of Chinese Society for Corrosion and Protection,2016,36(2):97-106(in Chinese). [5] SHCHUKIN D, MÖHWALD H. A coat of many functions[J]. Science,2013,341:1458-1459. doi: 10.1126/science.1242895 [6] 郑焱, 毛倩瑾, 王亚丽, 等. 水性氟碳涂料对混凝土防护作用的研究[J]. 化学工业与工程, 2012, 29(4):21-25. doi: 10.3969/j.issn.1004-9533.2012.04.005ZHENG Yan, MAO Qianjin, WANG Yali, et al. Concrete protective function of fluorine carbon resin coating water[J]. Chemical Industry and Engineering,2012,29(4):21-25(in Chinese). doi: 10.3969/j.issn.1004-9533.2012.04.005 [7] 吕太勇, 刘波, 罗源军, 等. 水溶性氟碳涂料的研究进展[J]. 化工新型材料, 2016, 44(9):45-46.LYU Taiyong, LIU Bo, LUO Yuanjun, et al. Concrete protective function of fluorine carbon resin coating water[J]. New Chemical Materials,2016,44(9):45-46(in Chinese). [8] 房亚楠, 刘栓, 赵文杰, 等. 石墨烯/氟碳涂层的制备及其耐蚀性能[J]. 表面技术, 2016, 45(11):67-75. doi: 10.16490/j.cnki.issn.1001-3660.2016.11.010FANG Yanan, LIU Shuan, ZHAO Wenjie, et al. Preparation and corrosion resistance of graphene/fluorocarbon coating[J]. Surface Technology,2016,45(11):67-75(in Chinese). doi: 10.16490/j.cnki.issn.1001-3660.2016.11.010 [9] 田惠文, 李伟华, 宗成中, 等. 海洋环境钢筋混凝土腐蚀机理和防腐涂料研究进展[J]. 涂料工业, 2008, 38(8):62-67. doi: 10.3969/j.issn.0253-4312.2008.08.019TIAN Huiwen, LI Weihua, ZONG Chengzhong, et al. Corrosion mechanism and research progress of anti-corrosion coatings for reinforced concrete used in marine environment[J]. Paint and Coatings Industry,2008,38(8):62-67(in Chinese). doi: 10.3969/j.issn.0253-4312.2008.08.019 [10] 詹耀. 海上风电钢结构防腐及氟碳涂料应用[J]. 涂料技术与文摘, 2012, 33(10):22-25. doi: 10.3969/j.issn.1672-2418.2012.10.006ZHAN Yao. Anticorrosion technology for steel structure of offshore wind power system and application of fluorocarbon coatings[J]. Coating Technology and Abstracts,2012,33(10):22-25(in Chinese). doi: 10.3969/j.issn.1672-2418.2012.10.006 [11] MONCAYO-RIASCOS I, HOYOS B A. Fluorocarbon versus hydrocarbon organosilicon surfactants for wettability alteration: A molecular dynamics approach[J]. Journal of Industrial and Engineering Chemistry,2020,88:224-232. doi: 10.1016/j.jiec.2020.04.017 [12] LUO S, PENG X X, ZHANG Y F, et al. Oil-repellent and antifog coatings based on poly(vinyl alcohol)/hydrolyzed poly(styrene-co-maleic anhydride)/fluorocarbon surfactant[J]. Progress in Organic Coatings,2020,141:105560. doi: 10.1016/j.porgcoat.2020.105560 [13] UZOMA P C, LIU F C, HAN E H. Multi-stimuli-triggered and self-repairable fluorocarbon organic coatings with urea-formaldehyde microcapsules filled with fluorosilane[J]. Journal of Materials Science and Technology,2020,45:70-83. doi: 10.1016/j.jmst.2019.11.022 [14] ZHU Z Y, ZHOU F, ZHAN S. Enhanced antifouling property of fluorocarbon resin coating (PEVE) by the modification of g-C3N4/Ag2WO4 composite step-scheme photocatalyst[J]. Applied Surface Science,2020,506:144934. doi: 10.1016/j.apsusc.2019.144934 [15] ZHENG H P, LIU L, MENG F D, et al. Multifunctional superhydrophobic coatings fabricated from basalt scales on a fluorocarbon coating base[J]. Journal of Materials Science and Technology,2021,84:86-96. doi: 10.1016/j.jmst.2020.12.022 [16] GAO Q, WU X M, SHI F Y. Novel superhydrophobic NIR reflective coatings based on montmorillonite/SiO2 compo-sites for energy-saving building[J]. Construction and Building Materials,2022,326:126998. doi: 10.1016/j.conbuildmat.2022.126998 [17] SU N, ZHOU F. Study of BiOI/BiOIO3 composite photocatalyst for improved sterilization performance of fluorocarbon resin coating (PEVE)[J]. Chemical Physics Letters,2021,766:138329. doi: 10.1016/j.cplett.2021.138329 [18] ZHANG Q, LI L, CAO L X, et al. Coalescence separation of oil-water emulsion on amphiphobic fluorocarbon polymer and silica nanoparticles coated fiber-bed coalescer[J]. Chinese Journal of Chemical Engineering,2021,36:29-37. doi: 10.1016/j.cjche.2020.07.034 [19] 胡涛. 水工混凝土表面氟碳纳米复合涂层的制备及防护耐久性研究[D]. 武汉: 长江科学院, 2017.HU Tao. Preparation and durability of fluorocarbon nanocomposite coating on hydraulic concrete surface[D]. Wuhan: Changjiang River Scientific Research Institute, 2017(in Chinese). [20] 杨景花. 纳米二氧化钛改性氟碳涂料及涂装工艺的研究[D]. 长沙: 湖南大学, 2006.YANG Jinghua. Research on nano-TiO2 modified fluorocarbon coating and painting process[D]. Changsha: Hunan University, 2006(in Chinese). [21] 高敬民, 聂小燕, 方冉, 等. 纳米SiO2改性核壳型氟碳乳液的合成及性能研究[J]. 涂料工业, 2003, 33(11):1-5. doi: 10.3969/j.issn.0253-4312.2003.11.001GAO Jingmin, NIE Xiaoyan, FANG Ran, et al. Research on synthesis and properties of core-shell fluorocarbon emulsion modified by nano-SiO2[J]. Paint and Coatings Industry,2003,33(11):1-5(in Chinese). doi: 10.3969/j.issn.0253-4312.2003.11.001 [22] 陈亮, 宋仁国, 郭燕清, 等. 改性纳米SiO2/三氟型FEVE复合氟碳涂料的制备及其性能[J]. 材料保护, 2014, 47(12):18-21.CHEN Liang, SONG Renguo, GUO Yanqing, et al. Preparation and properties of modified nano-SiO2/trifluoro FEVE composite fluorocarbon coating[J]. Materials Protection,2014,47(12):18-21(in Chinese). [23] 周志文. 硅溶胶改性环氧树脂复合乳液的制备及性能研究[D]. 南昌: 南昌航空大学, 2013.ZHOU Zhiwen. Preparation and properties of silica sol modified epoxy resin emulsion[D]. Nanchang: Nanchang Hangkong University, 2013(in Chinese). [24] 姜洪义, 栾聪梅. 改性海泡石粉体的孔结构与调湿性能[J]. 武汉理工大学学报, 2010, 32(5):9-11. doi: 10.3963/j.issn.1671-4431.2010.05.003JIANG Hongyi, LUAN Congmei. Pore structures and humidity controlling capabilities of activated sepiolite powder[J]. Journal of Wuhan University of Technology,2010,32(5):9-11(in Chinese). doi: 10.3963/j.issn.1671-4431.2010.05.003 [25] 孙凯利, 王彩辉, 孙国文, 等. 海泡石对砂浆抗氯离子和碳化侵蚀性能的影响[J]. 硅酸盐通报, 2019, 38(10):3111-3120.SUN Kaili, WANG Caihui, SUN Guowen, et al. Effect of sepiolite on resistance to chloride ion and carbonization erosion of Mortar[J]. Bulletin of the Chinese Ceramic Society,2019,38(10):3111-3120(in Chinese). [26] 丁德宝, 汤庆国, 王菲, 等. 偶联改性对海泡石粉体表面官能团结构及性能的影响[J]. 科学技术与工程, 2017, 17(20):17-22. doi: 10.3969/j.issn.1671-1815.2017.20.004DING Debao, TANG Qingguo, WANG Fei, et al. Effect of coupling modification on the surface functional group and properties of sepiolite powder[J]. Science Technology and Engineering,2017,17(20):17-22(in Chinese). doi: 10.3969/j.issn.1671-1815.2017.20.004 [27] 杨迎春, 毛宇光. 不同细度铁尾矿粉对水泥基材料性能的影响[J]. 西安建筑科技大学学报: 自然科学版, 2020, 52(2):241-247.YANG Yingchun, MAO Yuguang. Influence of iron tailing of different on properties of cement-based material[J]. Journal of Xi'an University of Architecture and Technology (Natural Science Edition),2020,52(2):241-247(in Chinese). [28] 张伟, 刘梁友, 李莉丽, 等. 铁尾矿粉-粉煤灰-矿渣粉复合掺合料对混凝土性能的影响[J]. 硅酸盐通报, 2016, 35(11):3826-3831.ZHANG Wei, LIU Liangyou, LI Lili, et al. Influence of iron tailings slag-fly ash-slag powder composite admixture on the properties of concrete[J]. Bulletin of the Chinese Ceramic Society,2016,35(11):3826-3831(in Chinese). [29] 侯云芬, 刘锦涛, 赵思儒, 等. 铁尾矿粉对水泥砂浆性能的影响及机理分析[J]. 应用基础与工程科学学报, 2019, 27(5):1149-1157.HOU Yunfen, LIU Jintao, ZHAO Siru, et al. Effect mecha-nism of iron tailing powder on cement mortar properties[J]. Journal of Basic Science and Engineering,2019,27(5):1149-1157(in Chinese). [30] 余茂林, 孙皓, 解亚, 等. 改性硅溶胶-苯丙乳液复合涂层的制备及性能[J]. 表面技术, 2021, 50(11):147-154.YU Maolin, SUN Hao, XIE Ya, et al. Preparation and properties of modified silica sol styrene acrylic emulsion compo-site coating[J]. Surface Technology,2021,50(11):147-154(in Chinese). [31] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 色漆和清漆 拉开法附着力试验: GB/T 5210—2006[S]. 北京: 中国标准出版社, 2006.General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Paints and varnishes—Pull-off test for adhesion: GB/T 5210—2006[S]. Beijing: Standards Press of China, 2006(in Chinese). [32] 国家技术监督局. 涂膜硬度铅笔测定法: GB/T 6739—1996[S]. 北京: 中国标准出版社, 1996.The State Bureau of Quality and Technical Supervision. Determination of film hardness by pencil test: GB/T 6739—1996[S]. Beijing: Standards Press of China, 1996(in Chinese). [33] 中华人民共和国住房和城乡建设部. 普通混凝土长期性能和耐久性能试验方法标准: GB/T 50082—2009[S]. 北京: 中国建筑工业出版社, 2009.Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test methods of long-term performance and durability of ordinary concrete: GB/T 50082—2009[S]. Beijing: China Building Industry Press, 2009(in Chinese). [34] 郭寅川, 申爱琴, 郑盼飞, 等. 高寒地区桥面板水泥混凝土抗盐冻性能研究[J]. 公路交通科技, 2019, 36(3):73-79.GUO Yinchuan, SHEN Aiqin, ZHENG Panfei, et al. Study on salt-freeze resistance of bridge deck concrete in alpine region[J]. Journal of Highway and Transportation Research,2019,36(3):73-79(in Chinese). [35] 金大铖. 新型含氟硅烷偶联剂的合成及其疏水涂层的构建[D]. 杭州: 浙江大学, 2019.JIN Dacheng. Synthesis of novel fluoride-containing silane coupling agents and their application in hydrophobic coating construction[D]. Hanzhou: Zhejiang University, 2019(in Chinese). [36] 潘帅锋, 冯杰. PET膜用氟碳溶胶涂层性能研究[J]. 涂料技术与文摘, 2014, 35(1):16-18. doi: 10.3969/j.issn.1672-2418.2014.01.004PAN Shuaifeng, FENG Jie. Research on property of fluorocarbon dispersion based layer for PET film[J]. Coating Technology and Abstracts,2014,35(1):16-18(in Chinese). doi: 10.3969/j.issn.1672-2418.2014.01.004 [37] 中华人民共和国工业和信息化部. 水性氟树脂涂料: HG/T 4104—2019[S]. 北京: 化学工业出版社, 2019.Ministry of Industry and Information Technology of the People's Republic of China. Water-based fluorocarbon resin coatings: HG/T 4104—2019[S]. Beijing: Chemical Industry Press, 2019(in Chinese). [38] 王过之. 纳米防腐涂料原理与实践[J]. 四川兵工学报, 2003, 24(3):10-12.WANG Guozhi. Principle and practice of nanometer anticorrosive coatings[J]. Journal of Sichuan Ordnance,2003,24(3):10-12(in Chinese). [39] WANG W S, GUO Y L, OTAIGBE J. The synthesis, characterization and biocompatibility of poly(ester urethane)/polyhedral oligomeric silesquioxane nanocomposites[J]. Polymer,2009,50(24):5749-5757. doi: 10.1016/j.polymer.2009.05.037 [40] 张鸿儒, 季韬, 刘福江, 等. 不同养护制度下掺铁尾矿粉超高性能混凝土力学性能[J]. 福州大学学报:自然科学版, 2020, 48(1):90-97.ZHANG Hongru, JI Tao, LIU Fujiang, et al. Mechanical properties of UHPC prepared with iron tail mineral powder cured under different conditions[J]. Journal of Fuzhou University (Natural Science Edition),2020,48(1):90-97(in Chinese). [41] KANG H J, SONG M S, KIM Y S. The effects of sepiolite on the properties of portland cement mortar[J]. Journal of the Korean Ceramic Society,2008,45(8):443-452. doi: 10.4191/KCERS.2008.45.8.443 [42] KAVAS T, SABAH E, ÇELIK M S. Structural properties of sepiolite-reinforced cement composite[J]. Cement and Concrete Research,2004,34(11):2135-2139. doi: 10.1016/j.cemconres.2004.03.015