无机矿物氟碳复合涂料对混凝土抗盐冻性能的影响

肖阳, 张亮, 张宿峰, 张平, 张盼盼, 刘亚州

肖阳, 张亮, 张宿峰, 等. 无机矿物氟碳复合涂料对混凝土抗盐冻性能的影响[J]. 复合材料学报, 2023, 40(5): 2988-3001. DOI: 10.13801/j.cnki.fhclxb.20220809.005
引用本文: 肖阳, 张亮, 张宿峰, 等. 无机矿物氟碳复合涂料对混凝土抗盐冻性能的影响[J]. 复合材料学报, 2023, 40(5): 2988-3001. DOI: 10.13801/j.cnki.fhclxb.20220809.005
XIAO Yang, ZHANG Liang, ZHANG Sufeng, et al. Influence of inorganic mineral fluorocarbon composite coating on salt freezing resistance of concrete[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2988-3001. DOI: 10.13801/j.cnki.fhclxb.20220809.005
Citation: XIAO Yang, ZHANG Liang, ZHANG Sufeng, et al. Influence of inorganic mineral fluorocarbon composite coating on salt freezing resistance of concrete[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2988-3001. DOI: 10.13801/j.cnki.fhclxb.20220809.005

无机矿物氟碳复合涂料对混凝土抗盐冻性能的影响

详细信息
    通讯作者:

    刘亚州,博士,讲师,研究方向为新型材料与结构  Email: 1217387758@qq.com

  • 中图分类号: TU528.32;TB332

Influence of inorganic mineral fluorocarbon composite coating on salt freezing resistance of concrete

  • 摘要: 通过表面疏水性能试验、力学性能试验、界面粘结性能试验和混凝土盐冻试验,研究了无机矿物对水性氟碳涂料性能的影响,研究了盐冻环境下无机矿物氟碳复合涂料附着力变化,分析了其对混凝土单位面积剥落量的影响,结合微观形貌变化和孔结构变化,分析了混凝土抗盐冻性能提升机制。结果表明:单掺硅溶胶时,氟碳复合涂料水接触角较氟碳涂料增大了10.2%,其铅笔硬度高达3 H;三掺硅溶胶、海泡石粉和铁尾矿粉时,氟碳复合涂料铅笔硬度高达3 H,其附着力增大了44.2%;复掺硅溶胶和海泡石粉时,氟碳复合涂料性能介于两者之间。盐冻环境下单掺硅溶胶氟碳复合涂料残余附着力最大。无机矿物氟碳复合涂料能显著改善混凝土抗剥蚀性能,但改善效果较氟碳涂料不显著。盐冻环境下水性氟碳涂料产生部分微孔,孔结构粗化,而单掺硅溶胶氟碳复合涂料微观结构仍较致密,其最可几孔径略有增大,涂料仅略有损伤。单掺硅溶胶氟碳复合涂料防护下混凝土微观结构更致密,其单位面积剥落量较未防护时降低幅度高达81.2%。为寒冷地区盐冻环境下混凝土防护涂料的设计提供了试验和理论依据。
    Abstract: The influences of inorganic mineral on the properties of waterborne fluorocarbon coating were studied, and the variation in adhesion of fluorocarbon composite coatings under the salt freezing environment was studied, and the influence of fluorocarbon composite coatings on the amount of spalling per unit area of concrete was analyzed, by surface hydrophobic property test, mechanical property test, interface bonding property test and salt freezing test of concrete. The improvement mechanism of salt freezing resistance of concrete was analyzed, combining the changes of microscopic appearance and pore structure. The results show that the water contact angle of the fluorocarbon composite coating with single doped silica sol increases by 10.2%, compared with fluorocarbon coating, and the pencil hardness is up to 3 H. The pencil hardness of the fluorocarbon composite coating with triple adding of silica sol, sepiolite powder and iron tailing powder is up to 3 H, and the adhesion increases by 44.2%. The properties of the fluorocarbon composite coating with double adding of silica sol and sepiolite powder lie between both coatings. The residual adhesion of the fluorocarbon composite coating with single doped silica sol is the largest. Inorganic mineral fluorocarbon composite coatings can significantly improve the exfoliation resistance of concrete, but the improvement effect is not significant compared with fluorocarbon coating. Some micropores are generated in the waterborne fluorocarbon coating under the salt freezing environment, and the pore structure is coarsened. However, the microstructure of the fluorocarbon composite coating with single doped silica sol is still denser, and the most probable pore diameter increases slightly, and the coating is only slightly damaged. The microstructure of concrete under the protection of the fluorocarbon composite coating with single doped silica sol is denser, and the spalling amount per unit area decreases by 81.2%, compared with that without protection. Research results provide experimental and theoretical bases for the design of concrete protective coating under the salt freezing environment in cold areas.
  • 随着我国桥梁建设的快速发展,交通量的增加,桥梁结构遭遇火灾情况也时有发生[1-4],2007年10月广东广深高速虎门大桥,油罐车爆炸引发大火,拉索和桥墩都被大火湮灭;2014年,湖南郴州在建赤石特大桥在主跨合拢前6号桥墩左幅塔顶突发大火,事故导致6号桥墩左幅9根斜拉索断裂,这些火灾事故对缆索的受力性能构成了极大的考验。文献[5-8]对钢丝缆索的高温力学性能进行研究,在火灾高温下钢丝力学性能会明显下降,导致缆索的承载能力急剧下降。

    采用轻质、高强、耐腐蚀、抗疲劳的碳纤维增强树脂复合材料(Carbon fiber reinforced polymer,CFRP)用于桥梁缆索,可提高桥梁跨径,从根本上解决钢质拉索的腐蚀及疲劳问题。但CFRP索内的CFRP筋遇到火灾后环氧树脂会燃烧分解,影响其极限承载性能,对桥梁结构的安全造成影响。文献[9-12]通过试验研究发现,高温下CFRP筋的力学性能下降十分明显。付成龙等[11]研究了温度对CFRP筋弯曲强度和压缩强度的影响,研究显示温度对试样弯曲强度和压缩强度的影响较大,CFRP筋的强度保留率随温度升高而降低。方志等[12]对较高玻璃化转变温度Tg(Tg >200℃)的CFRP筋高温后力学性能进行研究,处理温度为100℃时,筋材静力性能与常温试件相比未发生明显变化,筋材经历200℃和300℃温升作用后,其抗拉强度、弹性模量和极限拉应变均有所下降。

    文献[13-15]对桥梁缆索的阻燃防火措施做了一些研究。李艳等[13]在索体外表面设置一种导热系数很低的耐高温防火涂层,从而降低火源热辐射传给索体的温度。张凯等[14]研究了带砂浆包覆层CFRP筋的高温力学性能,在砂浆包覆层保持完好未爆裂的情况下,包覆层为CFRP筋提供了较好的隔氧环境,CFRP筋在长时间高温作用后具有较高的残余强度。徐玉林等[15]对外包陶瓷纤维防火层的CFRP索的耐火性进行了火灾试验研究,对CFRP 缆索外包陶瓷纤维防火层可大幅提高缆索的临界安全耐火时长。

    综上所述,目前已有一些缆索的阻燃防火措施,如外包砂浆或陶瓷纤维防火层,但这些措施会大幅度增大索体直径,严重影响索体外表面的空气动力学特性。本文针对桥梁缆索用CFRP筋在高温下的力学性能及CFRP索的阻燃防火措施进行系统研究,研制开发具有阻燃防火特性的CFRP索,避免火灾带来的风险,保障应用安全,有助于CFRP索的推广应用。

    CFRP筋采用拉挤成型工艺制备,为了便于锚固,筋材表面带有螺旋肋,筋材底径7 mm,纤维体积分数为72vol%,密度为1.52 g/cm3,玻璃化转变温度Tg为120℃。

    图1为CFRP筋高温拉伸试验。可见,筋材两端采用粘结型锚固方式,筋材锚固后穿过试验台架,在筋材中间自由段部位外套金属铝筒,金属铝筒外缠绕加热带对筒内空气进行加热,采用热电偶监测空气温度,采用温度继电器控制温度,使金属铝筒内温度保持设定温度,采用千斤顶加载,加载速度不超过300 MPa/min。筋材拉伸强度为筋材破断时压力传感器载荷读数除以筋材承载面积。

    图  1  碳纤维增强树脂复合材料(CFRP)筋高温拉伸试验
    Figure  1.  High temperature tensile test of carbon fiber reinforced polymer (CFRP) tendon

    对筋材中间自由段部位进行加热,加热至指定温度,保温2 h后进行破断拉伸试验,获得筋材在高温下的拉伸强度。

    图2为不同温度下保温 2 h后的CFRP筋材抗拉强度。可以看出,随着试验温度的升高,筋材拉伸强度呈线性下降趋势,270℃加热2 h,筋材强度降为2000 MPa左右,210℃加热2 h,筋材强度最低为2245.8 MPa,比初始强度下降26.13%。图3为保温2 h后筋材高温拉伸破断照片。可以看出,筋材发生了散丝状断裂。

    图  2  不同温度下保温 2 h后的CFRP筋材抗拉强度
    Figure  2.  Tensile strength of CFRP tendons at different temperatures with heat preservation 2 h
    图  3  CFRP筋材高温拉伸破断状态
    Figure  3.  Tensile fracture state of CFRP tendons at high temperature

    对筋材中间自由段部位进行加热,加热至210℃,分别保温1、2、3 h后进行破断拉伸试验,获得筋材在高温下的拉伸强度。图4为210℃不同保温时间下的CFRP筋材抗拉强度。

    图  4  210℃不同保温时间下的CFRP筋材抗拉强度
    Figure  4.  Tensile strength of CFRP tendons with different holding time at 210℃

    可以看出,筋材高温拉伸强度仅与试验温度有关,当筋材芯部温度达到保温温度时,筋材的高温拉伸强度与保温时间无关,210℃的高温3 h内,筋材剩余拉伸强度均能达到2245.8 MPa以上。

    对筋材中间自由段部位进行加热,加热至指定温度,保温2 h,待筋材充分冷却至室温后进行破断拉伸试验,获得筋材经历高温冷却后的拉伸强度,如图5所示。可以看出,筋材高温加热冷却后继续进行拉伸试验,拉伸强度会存在一定的可逆性恢复,且恢复后的剩余强度均能达到2800 MPa以上,但最终剩余拉伸强度较原始强度呈略微下降趋势,且加热温度越高,剩余拉伸强度越低,最大下降幅度为6.13%。

    图  5  经历不同温度加热2 h冷却后CFRP筋材抗拉强度
    Figure  5.  Tensile strength of CFRP tendons after heating at different temperatures for 2 h and cooling

    分别采用石棉布、陶瓷纤维布及阻燃防火涂层材料来研究对CFRP筋/索的阻燃防火效果。

    对在持荷状态下的7 mm直径CFRP筋试验件中间部位用火焰温度1000℃的高温火焰枪进行灼烧,如图6所示,其中图6(a)中筋材无保护,图6(b)中筋材包裹陶瓷纤维布,观测不同时间筋材的受力状态及筋材表面的温度变化,灼烧2 h后,进行破断拉伸试验,获得剩余强度。

    表1为不同防护措施下筋材温度及持荷性能。可以看出,在无任何防护条件下,对拉伸应力水平1170 MPa条件下的CFRP筋用火焰温度1000℃的高温火焰枪进行灼烧,25 min后,筋材灼烧部位树脂热解,筋材断裂;采用45 mm厚度陶瓷纤维布与石棉包裹筋材,施加1170 MPa拉伸应力,经过1000℃火焰灼烧2 h,筋材表面温度最高分别为562℃与635℃,筋材高温部位树脂发生热解,没有发生断裂(图7),剩余强度分别为1646 MPa与1249 MPa,图8为其破断试样;采用60 mm厚度石棉包裹筋材,施加1170 MPa拉伸应力,经过1000℃火焰灼烧2 h,筋材表面温度最高为170℃,筋材完好,没有发生断裂,剩余强度为3121 MPa,筋材基本没有发生损伤。

    图  6  持荷条件下CFRP筋阻燃防火措施对比
    Figure  6.  Comparison on fire retardant measures of CFRP tendons under load conditions
    表  1  不同防护类型下CFRP筋材温度及持荷性能
    Table  1.  Temperature and load carrying capacity of CFRP tendons under different protection types
    Protection
    type
    Protection thickness/mmBurning time/minCFRP tendons temperature/℃Stress level/MPaTest resultResident strength/MPa
    2510001170Resin pyrolysis,
    tendon tensile fracture
    Ceramic fiber cloth451205621170Resin pyrolysis,
    tendon is not fracture
    1646
    Asbestos451206351170Resin pyrolysis,
    tendon is not fracture
    1249
    Asbestos601201701170The tendon is not damaged3121
    下载: 导出CSV 
    | 显示表格
    图  7  CFRP筋材高温下树脂热解(562℃,2 h)
    Figure  7.  Resin pyrolysis of tendons at high temperature (562℃, 2 h)
    图  8  树脂热解后CFRP筋材极限拉伸破断
    Figure  8.  Ultimate tensile fracture of CFRP tendons after resin pyrolysis

    以上试验研究可以看出,包裹60 mm厚的石棉可以起到很好的阻燃防火效果,但是过厚的石棉必然影响索体直径,给CFRP索的盘卷带来困难,同时会改变索体表面原有的空气动力学特性,不方便应用。

    选用一种阻燃防火涂层,刷在CFRP索股索体双层聚乙烯(PE)护套外表面,其中索股直径61 mm,PE护套厚度6 mm,阻燃防火涂层厚度2 mm,如图9所示。所用阻燃防火涂料层由基料丙烯酸乳液、膨胀催化剂聚磷酸铵、碳化剂季戊四醇、膨胀发泡剂三聚氰胺与氯化石蜡、颜料钛白粉、成膜助剂醇酯等组成。

    图  9  刷有阻燃防火涂层的CFRP索股
    Figure  9.  CFRP cable strand coated with fire retardant coating

    在PE表面刷有2 mm阻燃防火涂层,并在索体PE内表面预埋测温线,用火焰温度1000℃的高温火焰枪对索股局部进行长达2 h的高温灼烧试验(图10),阻燃防火涂料层发生膨胀并形成均匀而致密蜂窝状碳化层,保护双层PE护套不发生燃烧,使得缆索具有阻燃防火特性,PE护套仅发生软化。无阻燃防火涂层保护的索体5 min内PE护套燃烧殆尽,漏出索体(图11)。图12为2 mm阻燃防火涂层温度-时间曲线。可以看出,2 h灼烧索股PE内表面最高温度为206℃。

    图  10  阻燃防火涂层遇火焰发泡
    Figure  10.  Fire retardant coating foams when expose to fire
    图  11  无阻燃防火涂层聚乙烯(PE)燃烧
    Figure  11.  Combustion of polyethylene (PE) sheath without fire retardant coating
    图  12  2 mm厚阻燃防火涂层温度-时间曲线
    Figure  12.  Temperature-time curve of 2 mm thickness fire retardant coating

    为探究发生火灾时CFRP索股内部PE内筋材温度,将测温线置于不同位置处测量灼烧试验时各位置的温度(图13),分别为索股PE内表面、距离PE内表面7 mm、距离PE内表面14 mm。图14为灼烧2 h索股内部不同位置处温度-时间曲线。可以看出,紧贴PE内表面的温度最高,为206℃,其次是测温线与PE内表层间隔7 mm处的温度(次外层筋材),为156℃,温度最低的是与PE内表层距离14 mm处的温度(第三层筋材),为100℃。

    图  13  CFRP索股测温位置
    Figure  13.  Temperature measurement position of CFRP cable strand
    图  14  CFRP索股不同位置处温度-时间曲线
    Figure  14.  Temperature-time curves at different positions of CFRP cable strand

    针对阻燃防火涂层的不同厚度,试验研究在1000℃火焰灼烧下阻燃防火效果的持续性,索股规格同2.2节。图15为不同厚度阻燃防火涂层温度-时间曲线。可知无阻燃防火涂层防护,索股PE层5 min燃烧殆尽;0.3 mm厚度阻燃防火涂层可保护索股PE层20 min;1.4 mm厚度阻燃防火涂层可保护索股PE层160 min;刷有2 mm厚度阻燃防火涂层的索股在长达360 min的火焰灼烧下,PE内表面最高温度为245℃,PE层未发生破坏,仅发生软化,建议阻燃防火涂层厚度为2 mm。

    图  15  不同厚度阻燃防火涂层的温度-时间曲线
    Figure  15.  Temperature-time curves of fire retardant coating with different thickness

    图16为2 mm厚度阻燃防火涂层的索股燃烧360 min试验过程的发泡过程。可以看出,随着火焰灼烧时间的增长,发泡层高度逐渐增大,发泡尺寸也逐渐增大,6 h熄火后形成一个6 cm×8 cm、高4 cm的发泡层,长达6 h的灼烧试验,PE内表面最高温度为245℃,熄火后,拨开厚厚的发泡层,PE护套仅发生软化。结合图15图16,可以看出,燃烧前20 min为快速发泡升温阶段,发泡层快速增大,PE内表面温度从室温上升到196℃;20~140 min为稳定阶段,发泡层缓慢增大,PE内表面温度维持在203~209℃之间;140~360 min为动态平衡阶段,继续燃烧温度缓慢升高,燃烧至180 min,PE内表面温度达到216℃,阻燃防火涂层内层达到发泡温度开始发泡,发泡层高度增加,PE内表面温度下降,燃烧至240 min,PE内表面温度降至200℃,燃烧至280 min左右,发泡层表层开始发生热解,PE内表面温度升高至230℃左右,阻燃防火涂层内层达到发泡温度进一步发泡,发泡层高度持续增加,PE内表面温度下降,但随着发泡层表层热解,PE内表面温度又缓慢上升。

    图  16  2 mm厚度阻燃防火涂层的CFRP索股膨胀发泡过程
    Figure  16.  Intumescent process of CFRP cable strand coated with 2 mm thickness fire retardant coating

    (1) 碳纤维增强树脂复合材料(Carbon fiber reinforced polymer,CFRP)筋材高温剩余强度随温度升高呈线性下降趋势,210℃加热3 h,剩余强度最低为2245.8 MPa,比初始强度下降26.13%。

    (2) CFRP筋材高温加热冷却后强度存在一定程度的可逆性恢复,剩余强度均能达到2800 MPa以上,但较原始强度略微下降,且经历温度越高剩余强度越低,最大下降幅度为6.13%。

    (3) 对比3种阻燃防火措施,阻燃防火涂层具有较好的阻燃防火效果,2 h灼烧索股聚乙烯(PE)内表面最高温度为206℃,次外层筋材最高温度为156℃,第三层筋材最高温度为100℃,火灾2 h内,索股仍可承载,剩余强度≥2245 MPa。

    (4) 阻燃防火涂层越厚防护时间越长,2 mm厚阻燃防火涂层的索股在长达360 min的火焰灼烧下,PE内表面最高温度为245℃,PE层未发生破坏,仅发生软化,建议阻燃防火涂层的厚度为2 mm。

  • 图  1   硅溶胶掺量对涂料性能的影响

    Figure  1.   Influence of silica sol content on coating properties

    图  2   不同硅溶胶掺量的涂料水接触角照片

    Figure  2.   Photos of water contact angle of coatings with different silica sol contents

    图  3   不同硅溶胶掺量的涂料/水泥加压板拉拔破坏情况

    Figure  3.   Drawing damage situations between cement pressurization plate and coating with different silica sol contents

    图  4   无机矿物掺加方式对涂料性能的影响

    Figure  4.   Influence of inorganic mineral adding way on coating properties

    图  5   不同无机矿物掺加方式的氟碳复合涂料水接触角照片

    Figure  5.   Photos of water contact angle of fluorocarbon composite coatings with different inorganic mineral adding ways

    图  6   不同无机矿物掺加方式的氟碳复合涂料/水泥加压板拉拔破坏情况

    Figure  6.   Drawing damage situations between cement pressurization plate and fluorocarbon composite coatings with different inorganic mineral adding ways

    图  7   盐冻前后不同无机矿物掺加方式的氟碳复合涂料附着力

    Figure  7.   Adhesion of fluorocarbon composite coatings with different inorganic mineral adding ways before and after salt freezing

    图  8   盐冻后不同混凝土/涂料体系拉拔破坏情况

    Figure  8.   Drawing damage situations between concrete and different coatings after salt freezing

    图  9   盐冻过程中不同无机矿物掺加方式的氟碳复合涂料防护下混凝土单位面积剥落量

    Figure  9.   Spalling amount per unit area of concrete protected by fluorocarbon composite coatings with different inorganic mineral adding ways during the salt freezing process

    图  10   冻融循环28次后混凝土表面形貌

    Figure  10.   Surface morphologies of concrete after 28 freeze-thaw cycles

    图  11   盐冻前后不同涂料水接触角对比

    Figure  11.   Comparison result between water contact angles of different coatings before and after salt freezing

    图  12   盐冻前后不同涂料微观形貌对比

    Figure  12.   Comparison result between microscopic appearances of different coatings before and after salt freezing

    图  13   盐冻前后不同涂料孔结构对比结果

    Figure  13.   Comparison result between pore structures of different coatings before and after salt freezing

    V—Cumulative pore volume; D—Diameter of hole

    图  14   盐冻后混凝土表面微观形貌对比结果

    Figure  14.   Comparison result between microscopic appearances of concrete surface after salt freezing

    表  1   铁尾矿粉的化学组成

    Table  1   Chemical composition of iron tailing powder wt%

    SiO2Al2O3CaOMgOFe2O3Na2OK2OTiO2
    51.7018.009.365.865.293.692.671.39
    下载: 导出CSV

    表  2   无机矿物氟碳复合涂料配方

    Table  2   Inorganic mineral fluorocarbon composite coating formulas

    Serial numberFluorocarbon coatingSilica solNano-SiO2 content/wt%
    F00 1 0 0
    F02 1 0.02 1
    F04 1 0.04 2
    F06 1 0.06 3
    F08 1 0.08 4
    F10 1 0.10 5
    F15 1 0.15 7.4
    F20 1 0.20 9.8
    F25 1 0.25 12.3
    F30 1 0.30 14.7
    F35 1 0.35 17.2
    F40 1 0.40 19.6
    Notes: The formula refers to the mass ratios of various materials; Nano-SiO2 content refers to the mass fraction of nano-SiO2 accounting for fluorocarbon resin in the coating.
    下载: 导出CSV

    表  3   水泥和煤粉灰的化学组成

    Table  3   Chemical composition of cement and fly ash wt%

    CategoryCaOSiO2Al2O3MgOFe2O3K2ONa2OSO3
    Cement59.8021.35 6.802.932.551.020.183.66
    Fly ash 4.9448.2835.601.033.660.880.210.86
    下载: 导出CSV

    表  4   混凝土配合比

    Table  4   Concrete mix ratio kg·m−3

    CementFly ashCoarse aggregateFine aggregateWater reducerWater
    290801 0817528.1170
    下载: 导出CSV

    表  5   不同无机矿物掺加方式的氟碳复合涂料配方

    Table  5   Formulas of fluorocarbon composite coatings with different inorganic mineral adding ways

    Serial number Fluorocarbon coating Silica sol Sepiolite powder Iron tailing powder
    F 1
    FS 1 0.250
    FSS 1 0.125 0.1250
    FSSI 1 0.125 0.0625 0.0625
    下载: 导出CSV
  • [1] 李中华, 巴恒静. 除冰盐环境下混凝土有机硅涂层防护性能研究[J]. 中国矿业大学学报, 2009, 38(1):41-45. DOI: 10.3321/j.issn:1000-1964.2009.01.009

    LI Zhonghua, BA Hengjing. A study of the protection of concrete from freeze-deicing salt by an organo-silicone coating[J]. Journal of China University of Mining and Technology,2009,38(1):41-45(in Chinese). DOI: 10.3321/j.issn:1000-1964.2009.01.009

    [2] 郑焱. 水性氟碳涂料对混凝土防护作用的研究[D]. 北京: 北京工业大学, 2012.

    ZHENG Yan. Study on the protective function of water-borne fluorocarbon coating for concrete[D]. Beijing: Beijing University of Technology, 2012(in Chinese).

    [3]

    PAN X Y, SHI Z G, SHI C J, et al. A review on concrete surface treatment Part Ⅰ: Types and mechanisms[J]. Construction and Building Materials,2017,132:578-590. DOI: 10.1016/j.conbuildmat.2016.12.025

    [4] 房亚楠, 秦立光, 赵文杰, 等. 氟碳涂料在防腐领域的研发现状和发展趋势[J]. 中国腐蚀与防护学报, 2016, 36(2):97-106.

    FANG Yanan, QIN Liguang, ZHAO Wenjie, et al. Research progress and development trend on corrosion resistant fluorocarbon paint[J]. Journal of Chinese Society for Corrosion and Protection,2016,36(2):97-106(in Chinese).

    [5]

    SHCHUKIN D, MÖHWALD H. A coat of many functions[J]. Science,2013,341:1458-1459. DOI: 10.1126/science.1242895

    [6] 郑焱, 毛倩瑾, 王亚丽, 等. 水性氟碳涂料对混凝土防护作用的研究[J]. 化学工业与工程, 2012, 29(4):21-25. DOI: 10.3969/j.issn.1004-9533.2012.04.005

    ZHENG Yan, MAO Qianjin, WANG Yali, et al. Concrete protective function of fluorine carbon resin coating water[J]. Chemical Industry and Engineering,2012,29(4):21-25(in Chinese). DOI: 10.3969/j.issn.1004-9533.2012.04.005

    [7] 吕太勇, 刘波, 罗源军, 等. 水溶性氟碳涂料的研究进展[J]. 化工新型材料, 2016, 44(9):45-46.

    LYU Taiyong, LIU Bo, LUO Yuanjun, et al. Concrete protective function of fluorine carbon resin coating water[J]. New Chemical Materials,2016,44(9):45-46(in Chinese).

    [8] 房亚楠, 刘栓, 赵文杰, 等. 石墨烯/氟碳涂层的制备及其耐蚀性能[J]. 表面技术, 2016, 45(11):67-75. DOI: 10.16490/j.cnki.issn.1001-3660.2016.11.010

    FANG Yanan, LIU Shuan, ZHAO Wenjie, et al. Preparation and corrosion resistance of graphene/fluorocarbon coating[J]. Surface Technology,2016,45(11):67-75(in Chinese). DOI: 10.16490/j.cnki.issn.1001-3660.2016.11.010

    [9] 田惠文, 李伟华, 宗成中, 等. 海洋环境钢筋混凝土腐蚀机理和防腐涂料研究进展[J]. 涂料工业, 2008, 38(8):62-67. DOI: 10.3969/j.issn.0253-4312.2008.08.019

    TIAN Huiwen, LI Weihua, ZONG Chengzhong, et al. Corrosion mechanism and research progress of anti-corrosion coatings for reinforced concrete used in marine environment[J]. Paint and Coatings Industry,2008,38(8):62-67(in Chinese). DOI: 10.3969/j.issn.0253-4312.2008.08.019

    [10] 詹耀. 海上风电钢结构防腐及氟碳涂料应用[J]. 涂料技术与文摘, 2012, 33(10):22-25. DOI: 10.3969/j.issn.1672-2418.2012.10.006

    ZHAN Yao. Anticorrosion technology for steel structure of offshore wind power system and application of fluorocarbon coatings[J]. Coating Technology and Abstracts,2012,33(10):22-25(in Chinese). DOI: 10.3969/j.issn.1672-2418.2012.10.006

    [11]

    MONCAYO-RIASCOS I, HOYOS B A. Fluorocarbon versus hydrocarbon organosilicon surfactants for wettability alteration: A molecular dynamics approach[J]. Journal of Industrial and Engineering Chemistry,2020,88:224-232. DOI: 10.1016/j.jiec.2020.04.017

    [12]

    LUO S, PENG X X, ZHANG Y F, et al. Oil-repellent and antifog coatings based on poly(vinyl alcohol)/hydrolyzed poly(styrene-co-maleic anhydride)/fluorocarbon surfactant[J]. Progress in Organic Coatings,2020,141:105560. DOI: 10.1016/j.porgcoat.2020.105560

    [13]

    UZOMA P C, LIU F C, HAN E H. Multi-stimuli-triggered and self-repairable fluorocarbon organic coatings with urea-formaldehyde microcapsules filled with fluorosilane[J]. Journal of Materials Science and Technology,2020,45:70-83. DOI: 10.1016/j.jmst.2019.11.022

    [14]

    ZHU Z Y, ZHOU F, ZHAN S. Enhanced antifouling property of fluorocarbon resin coating (PEVE) by the modification of g-C3N4/Ag2WO4 composite step-scheme photocatalyst[J]. Applied Surface Science,2020,506:144934. DOI: 10.1016/j.apsusc.2019.144934

    [15]

    ZHENG H P, LIU L, MENG F D, et al. Multifunctional superhydrophobic coatings fabricated from basalt scales on a fluorocarbon coating base[J]. Journal of Materials Science and Technology,2021,84:86-96. DOI: 10.1016/j.jmst.2020.12.022

    [16]

    GAO Q, WU X M, SHI F Y. Novel superhydrophobic NIR reflective coatings based on montmorillonite/SiO2 compo-sites for energy-saving building[J]. Construction and Building Materials,2022,326:126998. DOI: 10.1016/j.conbuildmat.2022.126998

    [17]

    SU N, ZHOU F. Study of BiOI/BiOIO3 composite photocatalyst for improved sterilization performance of fluorocarbon resin coating (PEVE)[J]. Chemical Physics Letters,2021,766:138329. DOI: 10.1016/j.cplett.2021.138329

    [18]

    ZHANG Q, LI L, CAO L X, et al. Coalescence separation of oil-water emulsion on amphiphobic fluorocarbon polymer and silica nanoparticles coated fiber-bed coalescer[J]. Chinese Journal of Chemical Engineering,2021,36:29-37. DOI: 10.1016/j.cjche.2020.07.034

    [19] 胡涛. 水工混凝土表面氟碳纳米复合涂层的制备及防护耐久性研究[D]. 武汉: 长江科学院, 2017.

    HU Tao. Preparation and durability of fluorocarbon nanocomposite coating on hydraulic concrete surface[D]. Wuhan: Changjiang River Scientific Research Institute, 2017(in Chinese).

    [20] 杨景花. 纳米二氧化钛改性氟碳涂料及涂装工艺的研究[D]. 长沙: 湖南大学, 2006.

    YANG Jinghua. Research on nano-TiO2 modified fluorocarbon coating and painting process[D]. Changsha: Hunan University, 2006(in Chinese).

    [21] 高敬民, 聂小燕, 方冉, 等. 纳米SiO2改性核壳型氟碳乳液的合成及性能研究[J]. 涂料工业, 2003, 33(11):1-5. DOI: 10.3969/j.issn.0253-4312.2003.11.001

    GAO Jingmin, NIE Xiaoyan, FANG Ran, et al. Research on synthesis and properties of core-shell fluorocarbon emulsion modified by nano-SiO2[J]. Paint and Coatings Industry,2003,33(11):1-5(in Chinese). DOI: 10.3969/j.issn.0253-4312.2003.11.001

    [22] 陈亮, 宋仁国, 郭燕清, 等. 改性纳米SiO2/三氟型FEVE复合氟碳涂料的制备及其性能[J]. 材料保护, 2014, 47(12):18-21.

    CHEN Liang, SONG Renguo, GUO Yanqing, et al. Preparation and properties of modified nano-SiO2/trifluoro FEVE composite fluorocarbon coating[J]. Materials Protection,2014,47(12):18-21(in Chinese).

    [23] 周志文. 硅溶胶改性环氧树脂复合乳液的制备及性能研究[D]. 南昌: 南昌航空大学, 2013.

    ZHOU Zhiwen. Preparation and properties of silica sol modified epoxy resin emulsion[D]. Nanchang: Nanchang Hangkong University, 2013(in Chinese).

    [24] 姜洪义, 栾聪梅. 改性海泡石粉体的孔结构与调湿性能[J]. 武汉理工大学学报, 2010, 32(5):9-11. DOI: 10.3963/j.issn.1671-4431.2010.05.003

    JIANG Hongyi, LUAN Congmei. Pore structures and humidity controlling capabilities of activated sepiolite powder[J]. Journal of Wuhan University of Technology,2010,32(5):9-11(in Chinese). DOI: 10.3963/j.issn.1671-4431.2010.05.003

    [25] 孙凯利, 王彩辉, 孙国文, 等. 海泡石对砂浆抗氯离子和碳化侵蚀性能的影响[J]. 硅酸盐通报, 2019, 38(10):3111-3120.

    SUN Kaili, WANG Caihui, SUN Guowen, et al. Effect of sepiolite on resistance to chloride ion and carbonization erosion of Mortar[J]. Bulletin of the Chinese Ceramic Society,2019,38(10):3111-3120(in Chinese).

    [26] 丁德宝, 汤庆国, 王菲, 等. 偶联改性对海泡石粉体表面官能团结构及性能的影响[J]. 科学技术与工程, 2017, 17(20):17-22. DOI: 10.3969/j.issn.1671-1815.2017.20.004

    DING Debao, TANG Qingguo, WANG Fei, et al. Effect of coupling modification on the surface functional group and properties of sepiolite powder[J]. Science Technology and Engineering,2017,17(20):17-22(in Chinese). DOI: 10.3969/j.issn.1671-1815.2017.20.004

    [27] 杨迎春, 毛宇光. 不同细度铁尾矿粉对水泥基材料性能的影响[J]. 西安建筑科技大学学报: 自然科学版, 2020, 52(2):241-247.

    YANG Yingchun, MAO Yuguang. Influence of iron tailing of different on properties of cement-based material[J]. Journal of Xi'an University of Architecture and Technology (Natural Science Edition),2020,52(2):241-247(in Chinese).

    [28] 张伟, 刘梁友, 李莉丽, 等. 铁尾矿粉-粉煤灰-矿渣粉复合掺合料对混凝土性能的影响[J]. 硅酸盐通报, 2016, 35(11):3826-3831.

    ZHANG Wei, LIU Liangyou, LI Lili, et al. Influence of iron tailings slag-fly ash-slag powder composite admixture on the properties of concrete[J]. Bulletin of the Chinese Ceramic Society,2016,35(11):3826-3831(in Chinese).

    [29] 侯云芬, 刘锦涛, 赵思儒, 等. 铁尾矿粉对水泥砂浆性能的影响及机理分析[J]. 应用基础与工程科学学报, 2019, 27(5):1149-1157.

    HOU Yunfen, LIU Jintao, ZHAO Siru, et al. Effect mecha-nism of iron tailing powder on cement mortar properties[J]. Journal of Basic Science and Engineering,2019,27(5):1149-1157(in Chinese).

    [30] 余茂林, 孙皓, 解亚, 等. 改性硅溶胶-苯丙乳液复合涂层的制备及性能[J]. 表面技术, 2021, 50(11):147-154.

    YU Maolin, SUN Hao, XIE Ya, et al. Preparation and properties of modified silica sol styrene acrylic emulsion compo-site coating[J]. Surface Technology,2021,50(11):147-154(in Chinese).

    [31] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 色漆和清漆 拉开法附着力试验: GB/T 5210—2006[S]. 北京: 中国标准出版社, 2006.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Paints and varnishes—Pull-off test for adhesion: GB/T 5210—2006[S]. Beijing: Standards Press of China, 2006(in Chinese).

    [32] 国家技术监督局. 涂膜硬度铅笔测定法: GB/T 6739—1996[S]. 北京: 中国标准出版社, 1996.

    The State Bureau of Quality and Technical Supervision. Determination of film hardness by pencil test: GB/T 6739—1996[S]. Beijing: Standards Press of China, 1996(in Chinese).

    [33] 中华人民共和国住房和城乡建设部. 普通混凝土长期性能和耐久性能试验方法标准: GB/T 50082—2009[S]. 北京: 中国建筑工业出版社, 2009.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test methods of long-term performance and durability of ordinary concrete: GB/T 50082—2009[S]. Beijing: China Building Industry Press, 2009(in Chinese).

    [34] 郭寅川, 申爱琴, 郑盼飞, 等. 高寒地区桥面板水泥混凝土抗盐冻性能研究[J]. 公路交通科技, 2019, 36(3):73-79.

    GUO Yinchuan, SHEN Aiqin, ZHENG Panfei, et al. Study on salt-freeze resistance of bridge deck concrete in alpine region[J]. Journal of Highway and Transportation Research,2019,36(3):73-79(in Chinese).

    [35] 金大铖. 新型含氟硅烷偶联剂的合成及其疏水涂层的构建[D]. 杭州: 浙江大学, 2019.

    JIN Dacheng. Synthesis of novel fluoride-containing silane coupling agents and their application in hydrophobic coating construction[D]. Hanzhou: Zhejiang University, 2019(in Chinese).

    [36] 潘帅锋, 冯杰. PET膜用氟碳溶胶涂层性能研究[J]. 涂料技术与文摘, 2014, 35(1):16-18. DOI: 10.3969/j.issn.1672-2418.2014.01.004

    PAN Shuaifeng, FENG Jie. Research on property of fluorocarbon dispersion based layer for PET film[J]. Coating Technology and Abstracts,2014,35(1):16-18(in Chinese). DOI: 10.3969/j.issn.1672-2418.2014.01.004

    [37] 中华人民共和国工业和信息化部. 水性氟树脂涂料: HG/T 4104—2019[S]. 北京: 化学工业出版社, 2019.

    Ministry of Industry and Information Technology of the People's Republic of China. Water-based fluorocarbon resin coatings: HG/T 4104—2019[S]. Beijing: Chemical Industry Press, 2019(in Chinese).

    [38] 王过之. 纳米防腐涂料原理与实践[J]. 四川兵工学报, 2003, 24(3):10-12.

    WANG Guozhi. Principle and practice of nanometer anticorrosive coatings[J]. Journal of Sichuan Ordnance,2003,24(3):10-12(in Chinese).

    [39]

    WANG W S, GUO Y L, OTAIGBE J. The synthesis, characterization and biocompatibility of poly(ester urethane)/polyhedral oligomeric silesquioxane nanocomposites[J]. Polymer,2009,50(24):5749-5757. DOI: 10.1016/j.polymer.2009.05.037

    [40] 张鸿儒, 季韬, 刘福江, 等. 不同养护制度下掺铁尾矿粉超高性能混凝土力学性能[J]. 福州大学学报:自然科学版, 2020, 48(1):90-97.

    ZHANG Hongru, JI Tao, LIU Fujiang, et al. Mechanical properties of UHPC prepared with iron tail mineral powder cured under different conditions[J]. Journal of Fuzhou University (Natural Science Edition),2020,48(1):90-97(in Chinese).

    [41]

    KANG H J, SONG M S, KIM Y S. The effects of sepiolite on the properties of portland cement mortar[J]. Journal of the Korean Ceramic Society,2008,45(8):443-452. DOI: 10.4191/KCERS.2008.45.8.443

    [42]

    KAVAS T, SABAH E, ÇELIK M S. Structural properties of sepiolite-reinforced cement composite[J]. Cement and Concrete Research,2004,34(11):2135-2139. DOI: 10.1016/j.cemconres.2004.03.015

  • 期刊类型引用(2)

    1. 李友明,景昭,吴增文,李冰垚,刘琛,葛敬冉,梁军. 随机疲劳下复合材料剩余刚度-剩余强度关联模型及寿命预测. 强度与环境. 2024(01): 23-30 . 百度学术
    2. 马帅,金珊珊. 碳纤维增强复合材料对钢筋混凝土的加固作用. 材料导报. 2022(S1): 252-256 . 百度学术

    其他类型引用(1)

图(14)  /  表(5)
计量
  • 文章访问数:  918
  • HTML全文浏览量:  418
  • PDF下载量:  59
  • 被引次数: 3
出版历程
  • 收稿日期:  2022-05-23
  • 修回日期:  2022-07-14
  • 录用日期:  2022-07-24
  • 网络出版日期:  2022-08-08
  • 刊出日期:  2023-05-14

目录

/

返回文章
返回