Research progress of personal thermal management materials based on infrared radiation regulation
-
摘要: 维持热舒适是人体进行正常生命活动的基本条件,传统暖通空调系统调节温度能效较低,同时产生大量碳足迹。基于红外辐射调控的个人热管理材料通过人体自身及局部微环境热管理实现个性化温度调节,为缓解日益紧张的能源负担、维持人体热舒适提供了新途径。本文基于红外辐射调控的个人热管理材料最新研究进展,分室内和室外两种环境阐述辐射降温、辐射保温机制,并介绍辐射降温/保温一体的温度调节模式。论述基于红外辐射调控的个人热管理材料相关设计思路、制备方法、微观结构和温控效果,分析个人热管理材料发展趋势。Abstract: Maintaining thermal comfort is of essential significance for human normal life, but traditional heating, ventilation, and air conditioning systems are inefficient and produce large carbon footprint. Personal thermal management materials based on infrared radiation regulation provide new ways to mitigate the pressing burden of energy crisis and keep thermal comfort of humankind, which harnesses thermal management of human body and local microenvironment for personalized temperature control. Here, the latest progress on personal thermal management materials with engineered infrared radiation properties are reviewed. The regulation principles of radiative cooling and radiative heating are elucidated from both indoor and outdoor scenarios, and the bidirectional temperature regulation mode of radiative cooling/heating is discussed. The design ideas, fabrication, microstructure and temperature regulation effect of corresponding materials are elaborated, an outlook about development trend is provided as well.
-
图 2 (a) 纳米多孔聚乙烯隔膜(nano PE)和其他材料的红外透过率及可见光不透过率对比[7];(b) 利用甲氧基聚乙二醇胺处理的聚多巴胺(PDA)颗粒(mPPDAPs)/超高分子量聚乙烯(UHMWPE)-聚酯复合织物与同厚度对比材料的红外透过率和可见光不透明度[36]
Figure 2. (a) Infrared transmittance and visible opacity of nanoporous polyethylene (nano PE) compared with other materials[7]; (b) Infrared transmittance and visible opacity of methoxypoly(ethylene glycol)-aminoethyl/polydopamine particles (mPPDAPs)/ultra high molecular weight polyethylene (UHMWPE)-polyester composites and contrast materials with same thickness[36]
图 4 (a) 尼龙6(PA 6)/SiO2纤维膜的传热过程示意图和透过率[51];(b) 聚合物基纳米光子织物(PBNT)与光的相互作用及PBNT与棉和亚麻的光学性能[52];(c) 超材料织物的原理图和反射/发射光谱[54]
DM—Dense membrane; NFM—Nano fibrous membrane; PBNT—Polymer-based nanophotonic textile; PTFE—Polytetrafluoroethylene; PLA—Polylactic acid; VIS-NIR—Visible-near infrared; MIR—Mid-Infrared; E—Electric field of the incident light; k—Wave vector of the incident light
Figure 4. (a) Schematic heat transfer process and transmittance spectra of nylon 6 (PA 6)/SiO2 fibrous membrane[51]; (b) Interaction between the polymer-based nanophotonic textile (PBNT) and light, and optical properties of PBNT, cotton and linen[52]; (c) Schematic and measured reflectivity/emissivity of the metafabric[54]
图 5 (a) 聚丙烯腈(PAN)纳米纤维的SEM图像和全光谱反射率[57];(b) 聚偏二氟乙烯(PVDF)纤维膜的SEM图像及同常规织物的光学特性和热图对比[58]
Figure 5. (a) SEM images and total spectral reflectance of polyacrylonitrile (PAN) nanofibers[57]; (b) SEM images of polyvinylidene fluoride (PVDF) nanomesh and its optical properties, thermal images compared with those of the normal textile[58]
图 6 (a) Ag纳米线布的红外反射率[61];(b) 纳米Ag/聚乙烯(PE)及其他材料的红外反射光谱[8];(c) 芳纶纤维(WKF)及其复合材料的红外反射率和焦耳热效应测试[63]
Ag NW—Ag nanowire; PDMS—Polydimethylsiloxane; rGO—Reduced graphene oxide
Figure 6. (a) IR reflectance of Ag nanowire cloth[61]; (b) IR reflectance of nano Ag/polyethylene (PE) and other materials[8]; (c) IR reflectance and Joule heating measurement of woven kevlar fiber (WKF) and its composites[63]
图 7 (a)碳纳米管(CNTs)/醋酸纤维素/银仿生薄膜的层状结构图和光谱表征图[66];(b) MXene/nano PE示意图和切换加热模式的实时温度[67]
Figure 7. (a) Laminated structure and spectra characterization of the biomimetic carbon nanotube (CNTs)/cellulose acetate/Ag membrane[66]; (b) Schematic of MXene/nano PE and real-time temperature for switching its heating mode[67]
图 8 (a) 双模式织物原理图[26];(b) 双模式织物材料的工作原理和结构图[72];(c) 具有双模式的多层膜示意图[74];(d) 红外辐射“门控”效应织物材料工作原理图[76]
εtex—Emissivity of textile; Ttex—Temperature of textile; α—Solar absorptivity; ε—Emissivity; Ts—Temperature of skin; PMMA—Polymethyl methacrylate; ePTFE—Expanded polytetrafluoroethylene; nPE—Nanoporous PE; ZnNPs—Zn nano-particles; CuNPs—Cu nano-particles; qrad—Heat loss rates due to thermal radiation; qsun—Solar illumination intensity
Figure 8. (a) Schematic of the dual-mode textile[26]; (b) Schematic and structure diagram of the Janus textile[72]; (c) Schematic of the multilayer membrane with dual mode[74]; (d) Working principle diagram of the infrared radiation "gated" fabric material[76]
-
[1] WEBB P. Temperatures of skin, subcutaneous tissue, muscle and core in resting men in cold, comfortable and hot conditions[J]. European Journal of Applied Physiology and Occupational Physiology,1992,64(5):471-476. doi: 10.1007/BF00625070 [2] NASTOS P T, MATZARAKIS A. Weather impacts on respiratory infections in Athens, Greece[J]. International Journal of Biometeorology,2006,50(6):358-369. doi: 10.1007/s00484-006-0031-1 [3] FANG Y, ZHAO X, CHEN G, et al. Smart poly-ethylene textiles for radiative and evaporative cooling[J]. Joule,2021,5(4):752-754. doi: 10.1016/j.joule.2021.03.019 [4] WANG Z, DE DEAR R, LUO M, et al. Individual difference in thermal comfort: A literature review[J]. Building and Environment,2018,138:181-193. doi: 10.1016/j.buildenv.2018.04.040 [5] FONG K F, HANBY V I, CHOW T T. HVAC system optimization for energy management by evolutionary programming[J]. Energy and Buildings,2006,38(3):220-231. doi: 10.1016/j.enbuild.2005.05.008 [6] HOTY T, LEE K H, ZHANG H, et al. Energy savings from extended air temperature setpoints and reductions in room air mixing [C]//Proceedings of the 13th International Conference on Environmental Ergonomics. San Jose: Curran Associates, Inc., 2009: 1-5. [7] HSU P C, SONG A Y, CATRYSSE P B, et al. Radiative human body cooling by nanoporous polyethylene textile[J]. Science,2016,353(6303):1019-1023. doi: 10.1126/science.aaf5471 [8] CAI L, SONG A Y, WU P, et al. Warming up human body by nanoporous metallized polyethylene textile[J]. Nature Communications,2017,8(1):1-8. doi: 10.1038/s41467-016-0009-6 [9] ZHU F L, FENG Q Q. Recent advances in textile materials for personal radiative thermal management in indoor and outdoor environments[J]. International Journal of Thermal Sciences,2021,165(6303):106899-106912. [10] GU B, LIANG K, ZHANG T, et al. Multifunctional lami-nated membranes with adjustable infrared radiation for personal thermal management applications[J]. Cellulose,2020,27(14):8471-8483. doi: 10.1007/s10570-020-03354-9 [11] CUI Y, GONG H, WANG Y, et al. A thermally insulating textile inspired by polar bear hair[J]. Advanced Materials,2018,30(14):1706807-1706814. doi: 10.1002/adma.201706807 [12] LIU Z, LYU J, FANG D, et al. Nanofibrous kevlar aerogel threads for thermal insulation in harsh environments[J]. ACS Nano,2019,13(5):5703-5711. doi: 10.1021/acsnano.9b01094 [13] LIU P, LI Y, XU Y, et al. Stretchable and energy-efficient heating carbon nanotube fiber by designing a hierarchically helical structure[J]. Small,2018,14(4):1702926-1702931. doi: 10.1002/smll.201702926 [14] HONG S, GU Y, SEO JOON K, et al. Wearable thermoelectrics for personalized thermoregulation[J]. Science Advances,2019,5(5):536-547. doi: 10.1126/sciadv.aaw0536 [15] MOKHTARI YAZDI M, SHEIKHZADEH M. Personal cooling garments: A review[J]. Journal of the Textile Institute,2014,105(12):1231-1250. doi: 10.1080/00405000.2014.895088 [16] FORT J. On the nonequilibrium generalization of the Wien displacement[J]. Physics Letters A,1999,253(5):266-272. [17] BORISKINA S V. Nanoporous fabrics could keep you cool[J]. Science,2016,353(6303):986-987. doi: 10.1126/science.aah5577 [18] STEKETEE J. Spectral emissivity of skin and pericardium[J]. Physics in Medicine and Biology,1973,18(5):686-694. doi: 10.1088/0031-9155/18/5/307 [19] HARDY J D, DUBOIS E F. Regulation of heat loss from the human body[J]. Proceedings of the National Academy of Sciences of the United States of America,1937,23(12):624-631. doi: 10.1073/pnas.23.12.624 [20] WINSLOW C E A, GAGGE A P, HERRINGTON L P. The influence of air movement upon heat losses from the clothed human body[J]. American Journal of Physiology,1939,127(3):505-518. doi: 10.1152/ajplegacy.1939.127.3.505 [21] BOIS E. Heat loss from the human body: Harvey lecture, December 15, 1938[J]. Bulletin of the New York Academy of Medicine,1939,15(3):143-173. [22] SHIN S, CHEN R. Cool textile[J]. Joule,2021,5(9):2258-2260. doi: 10.1016/j.joule.2021.08.011 [23] SILVERSTEIN R M, BASSLER G C. Spectrometric identification of organic compounds[J]. Journal of Chemical Education,1962,39(11):546-553. doi: 10.1021/ed039p546 [24] STUART B H. Infrared spectroscopy: Fundamentals and applications[M]. London: John Wiley & Sons, Inc., 2004: 76-79. [25] LOTENS W A, PIETERS A M J. Transfer of radiative heat through clothing ensembles[J]. Ergonomics,1995,38(6):1132-1155. doi: 10.1080/00140139508925178 [26] HSU P C, LIU C, SONG A Y, et al. A dual-mode textile for human body radiative heating and cooling[J]. Science Advances,2017,3(11):1700895-1700903. doi: 10.1126/sciadv.1700895 [27] LIENHARD J H, LIENHARD J H. A heat transfer textbook[M]. 3th Edition. Cambridge: Phlogiston Press, 2016. [28] TONG J K, HUANG X, BORISKINA S V, et al. Infrared-transparent visible-opaque fabrics for wearable personal thermal management[J]. ACS Photonics,2015,2(6):769-778. doi: 10.1021/acsphotonics.5b00140 [29] BOHREN C F, HUFFMAN D R. Absorption and scattering of light by small particles[M]. London: John Wiley & Sons, Inc., 2008: 72-78. [30] GULMINE J V, JANISSEK P R, HEISE H M, et al. Polyethylene characterization by FTIR[J]. Polymer Testing,2002,21(5):557-563. doi: 10.1016/S0142-9418(01)00124-6 [31] 佘长辉, 于宏伟. 聚丙烯变温傅里叶变换透射红外光谱研究[J]. 化学工程师, 2016, 30(7):75-78. doi: 10.16247/j.cnki.23-1171/tq.20160775SHE Changhui, YU Hongwei. Temperature effect on FTIR spectrum of polypropylene[J]. Chemical Engineer,2016,30(7):75-78(in Chinese). doi: 10.16247/j.cnki.23-1171/tq.20160775 [32] 朱开贵, 石建中, 李可斌, 等. 聚四氟乙烯薄膜的制备及其红外光谱研究[J]. 物理学报, 1997, 46(9):1764-1767. doi: 10.3321/j.issn:1000-3290.1997.09.015ZHU Kaigui, SHI Jianzhong, LI Kebin, et al. Preparations and infrared spectrum studies of polytetrafluoroethylene thin films[J]. Acta Physica Sinica,1997,46(9):1764-1767(in Chinese). doi: 10.3321/j.issn:1000-3290.1997.09.015 [33] 朱吴兰. 红外光谱法鉴别不同种类的聚酰胺[J]. 塑料, 2009, 38(3):114-117.ZHU Wulan. Discrimination of different polyamides by IR[J]. Plastics,2009,38(3):114-117(in Chinese). [34] CHEN J, WANG Z L. Reviving vibration energy harvesting and self-powered sensing by a triboelectric nanogenerator[J]. Joule,2017,1(3):480-521. doi: 10.1016/j.joule.2017.09.004 [35] UGBOLUE S C. Polyolefin fibres: Structure, properties and industrial applications[M]. Sawston: Woodhead Publishing, 2017: 14-15. [36] LIU R, WANG X, YU J, et al. A novel approach to design nanoporous polyethylene/polyester composite fabric via TIPS for human body cooling[J]. Macromolecular Materials and Engineering,2018,303(3):1700456-1700465. doi: 10.1002/mame.201700456 [37] KE Y, WANG F, XU P, et al. On the use of a novel nanoporous polyethylene (nano PE) passive cooling material for personal thermal comfort management under uniform indoor environments[J]. Building and Environment,2018,145:85-95. doi: 10.1016/j.buildenv.2018.09.021 [38] PENG Y, CHEN J, SONG A Y, et al. Nanoporous polyethylene microfibres for large-scale radiative cooling fabric[J]. Nature Sustainability,2018,1(2):105-112. doi: 10.1038/s41893-018-0023-2 [39] CAI L, PENG Y, XU J, et al. Temperature regulation in colored infrared-transparent polyethylene textiles[J]. Joule,2019,3(6):1478-1486. doi: 10.1016/j.joule.2019.03.015 [40] ALBERGHINI M, HONG S, LOZANO L M, et al. Sustainable polyethylene fabrics with engineered moisture transport for passive cooling[J]. Nature Sustainability,2021,4(8):715-724. doi: 10.1038/s41893-021-00688-5 [41] WEI J F, HU X Y, SUN L Q, et al. Technology for radiation efficiency measurement of high-power halogen tungsten lamp used in calibration of high-energy laser energy meter[J]. Applied Optics,2015,54(9):2289-2295. doi: 10.1364/AO.54.002289 [42] AKHALAYA M Y, MAKSIMOV G V, RUBIN A B, et al. Molecular action mechanisms of solar infrared radiation and heat on human skin[J]. Ageing Research Reviews,2014,16:1-11. doi: 10.1016/j.arr.2014.03.006 [43] CAI L, SONG A Y, WEI L, et al. Spectrally selective nanocomposite textile for outdoor personal cooling[J]. Advanced Materials,2018,30(35):1802152-1802158. doi: 10.1002/adma.201802152 [44] PANWAR K, JASSAL M, AGRAWAL A K. TiO2-SiO2 Janus particles treated cotton fabric for thermal regulation[J]. Surface and Coatings Technology,2017,309:897-903. doi: 10.1016/j.surfcoat.2016.10.066 [45] WONG A, DAOUD W A, LIANG H H, et al. Application of rutile and anatase onto cotton fabric and their effect on the NIR reflection/surface temperature of the fabric[J]. Solar Energy Materials and Solar Cells,2015,134:425-437. doi: 10.1016/j.solmat.2014.12.011 [46] MEHRIZI M K, MORTAZAVI S M, MALLAKPOUR S, et al. The effect of nano- and micro-TiO2 particles on reflective behavior of printed cotton/nylon fabrics in VIS/NIR regions[J]. Color Research & Application,2012,37(3):199-205. [47] WEI W, ZHU Y, LI Q, et al. An Al2O3-cellulose acetate-coated textile for human body cooling[J]. Solar Energy Materials and Solar Cells,2020,211:110525-110531. doi: 10.1016/j.solmat.2020.110525 [48] ZHU B, LI W, ZHANG Q, et al. Subambient daytime radia-tive cooling textile based on nanoprocessed silk[J]. Nature Nanotechnology,2021,16(12):1342-1348. doi: 10.1038/s41565-021-00987-0 [49] LI D, LIU X, LI W, et al. Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling[J]. Nature Nanotechnology,2021,16(2):153-158. doi: 10.1038/s41565-020-00800-4 [50] SONG Y N, LI Y, YAN D X, et al. Novel passive cooling composite textile for both outdoor and indoor personal thermal management[J]. Composites Part A: Applied Science and Manufacturing,2020,130:105738-105746. doi: 10.1016/j.compositesa.2019.105738 [51] XIAO R, HOU C, YANG W, et al. Infrared-radiation-enhanced nanofiber membrane for sky radiative cooling of the human body[J]. ACS Applied Materials & Interfaces,2019,11(47):44673-44681. [52] SONG Y N, LEI M Q, DENG L F, et al. Hybrid metamaterial textiles for passive personal cooling indoors and outdoors[J]. ACS Applied Polymer Materials,2020,2(11):4379-4386. doi: 10.1021/acsapm.0c00234 [53] WANG X, LIU X, LI Z, et al. Scalable flexible hybrid membranes with photonic structures for daytime radiative cooling[J]. Advanced Functional Materials,2020,30(5):1907562-1907570. doi: 10.1002/adfm.201907562 [54] ZENG S, PIAN S, SU M, et al. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling[J]. Science,2021,373(6555):692-696. doi: 10.1126/science.abi5484 [55] SONG Y N, MA R J, XU L, et al. Wearable polyethylene/polyamide composite fabric for passive human body cooling[J]. ACS Applied Materials & Interfaces,2018,10(48):41637-41644. [56] SONG Y N, LEI M Q, LEI J, et al. A scalable hybrid fiber and its textile with pore and wrinkle structures for passive personal cooling[J]. Advanced Materials Technologies,2020,5(7):2000287-2000295. doi: 10.1002/admt.202000287 [57] KIM H, MCSHERRY S, BROWN B, et al. Selectively enhancing solar scattering for direct radiative cooling through control of polymer nanofiber morphology[J]. ACS Applied Materials & Interfaces,2020,12(39):43553-43559. [58] KIM G, PARK K, HWANG K J, et al. Highly sunlight reflec-tive and infrared semi-transparent nanomesh textiles[J]. ACS Nano,2021,15(10):15962-15971. doi: 10.1021/acsnano.1c04104 [59] DOE U S. Buildings energy databook[M]. US Department of Energy: Energy Efficiency and Renewable Energy Department, 2011: 286-287. [60] HAYES S G, VENKATRAMAN P. Materials and technology for sportswear and performance apparel[M]. Boca Raton: CRC Press, 2016: 153-169. [61] HSU P C, LIU X, LIU C, et al. Personal thermal management by metallic nanowire-coated textile[J]. Nano Letters,2015,15(1):365-371. doi: 10.1021/nl5036572 [62] LIU Q, HUANG J, ZHANG J, et al. Thermal, waterproof, breathable, and antibacterial cloth with a nanoporous structure[J]. ACS Applied Materials & Interfaces,2018,10(2):2026-2032. [63] HAZARIKA A, DEKA B K, KIM D, et al. Woven kevlar fiber/polydimethylsiloxane/reduced graphene oxide composite-based personal thermal management with freestanding Cu-Ni core-shell nanowires[J]. Nano Letters,2018,18(11):6731-6739. doi: 10.1021/acs.nanolett.8b02408 [64] LUO Y, FU B, SHEN Q, et al. Patterned surfaces for solar-driven interfacial evaporation[J]. ACS Applied Materials & Interfaces,2019,11(7):7584-7590. [65] PRECIADO J A, RUBINSKY B, OTTEN D, et al. Radiative properties of polar bear hair [C]//ASME 2002 International Mechanical Engineering Congress and Exposition. New York: ASME Press, 2002: 57-58. [66] YUE X, HE M, ZHANG T, et al. Laminated fibrous membrane inspired by polar bear pelt for outdoor personal radiation management[J]. ACS Applied Materials & Interfaces,2020,12(10):12285-12293. [67] SHI M, SHEN M, GUO X, et al. Ti3C2Tx MXene-decorated nanoporous polyethylene textile for passive and active personal precision heating[J]. ACS Nano,2021,15(7):11396-11405. doi: 10.1021/acsnano.1c00903 [68] LUO H, LI Q, DU K, et al. An ultra-thin colored textile with simultaneous solar and passive heating abilities[J]. Nano Energy,2019,65:103998-104006. doi: 10.1016/j.nanoen.2019.103998 [69] YANG H C, HOU J, CHEN V, et al. Janus membranes: Exploring duality for advanced separation[J]. Angewandte Chemie International Edition,2016,55(43):13398-13407. doi: 10.1002/anie.201601589 [70] YUE X, ZHANG T, YANG D, et al. Multifunctional Janus fibrous hybrid membranes with sandwich structure for on-demand personal thermal management[J]. Nano Energy,2019,63:103808-103817. doi: 10.1016/j.nanoen.2019.06.004 [71] QIU S, JIA H, JIANG S X. Fabrication and characterization of thermal management fabric with heating and cooling modes through magnetron sputtering[J]. Materials Letters,2021,300:130217-130220. doi: 10.1016/j.matlet.2021.130217 [72] LUO H, ZHU Y, XU Z, et al. Outdoor personal thermal management with simultaneous electricity generation[J]. Nano Letters,2021,21(9):3879-3886. doi: 10.1021/acs.nanolett.1c00400 [73] DAI B, LI X, XU T, et al. Radiative cooling and solar heating Janus films for personal thermal management[J]. ACS Applied Materials & Interfaces,2022,14(16):18877-18883. [74] SONG Y N, LEI M Q, HAN D L, et al. Multifunctional membrane for thermal management applications[J]. ACS Applied Materials & Interfaces,2021,13(16):19301-19311. [75] YE G, WAN Y, WU J, et al. Multifunctional device integrating dual-temperature regulator for outdoor personal thermal comfort and triboelectric nanogenerator for self-powered human-machine interaction[J]. Nano Energy,2022,97:107148-107161. doi: 10.1016/j.nanoen.2022.107148 [76] ZHANG X A, YU S, XU B, et al. Dynamic gating of infrared radiation in a textile[J]. Science,2019,363(6427):619-623. doi: 10.1126/science.aau1217 [77] LEUNG E M, COLORADO E M, STIUBIANU G T, et al. A dynamic thermoregulatory material inspired by squid skin[J]. Nature Communications,2019,10(1):1-10. doi: 10.1038/s41467-018-07882-8 [78] TANG K, DONG K, LI J, et al. Temperature-adaptive radiative coating for all-season household thermal regulation[J]. Science,2021,374(6574):1504-1509. doi: 10.1126/science.abf7136 [79] WANG S, JIANG T, MENG Y, et al. Scalable thermochromic smart windows with passive radiative cooling regulation[J]. Science,2021,374(6574):1501-1504. doi: 10.1126/science.abg0291 [80] LIN C, HUR J, CHAO C Y H, et al. All-weather thermochromic windows for synchronous solar and thermal radiation regulation[J]. Science Advances,2022,8(17):7359-7369. doi: 10.1126/sciadv.abn7359 [81] ZHANG X, LIU C, SHEN C, et al. Promising commercial fabrics with radiative cooling for personal thermal management[J]. Science Bulletin,2022,67(3):229-231. doi: 10.1016/j.scib.2021.08.019