留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超短脉冲激光精细加工纤维增强树脂基复合材料的研究进展

李遥遥 侯新富 何光宇 王明伟

李遥遥, 侯新富, 何光宇, 等. 超短脉冲激光精细加工纤维增强树脂基复合材料的研究进展[J]. 复合材料学报, 2023, 40(5): 2465-2479. doi: 10.13801/j.cnki.fhclxb.20220804.005
引用本文: 李遥遥, 侯新富, 何光宇, 等. 超短脉冲激光精细加工纤维增强树脂基复合材料的研究进展[J]. 复合材料学报, 2023, 40(5): 2465-2479. doi: 10.13801/j.cnki.fhclxb.20220804.005
LI Yaoyao, HOU Xinfu, HE Guangyu, et al. Research progress of ultrashort pulse laser precision machining fiber reinforced resin matrix composite materials[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2465-2479. doi: 10.13801/j.cnki.fhclxb.20220804.005
Citation: LI Yaoyao, HOU Xinfu, HE Guangyu, et al. Research progress of ultrashort pulse laser precision machining fiber reinforced resin matrix composite materials[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2465-2479. doi: 10.13801/j.cnki.fhclxb.20220804.005

超短脉冲激光精细加工纤维增强树脂基复合材料的研究进展

doi: 10.13801/j.cnki.fhclxb.20220804.005
基金项目: 国家自然科学基金(12174201)
详细信息
    通讯作者:

    王明伟,博士,教授,研究方向为飞秒激光科学与创新应用、太赫兹光电子学 E-mail: wangmingwei@nankai.edu.cn

  • 中图分类号: TN249

Research progress of ultrashort pulse laser precision machining fiber reinforced resin matrix composite materials

Funds: National Natural Science Foundation of China (12174201)
  • 摘要: 纤维增强树脂基复合材料具有轻质量、高强度、耐腐蚀和抗疲劳等优点,被广泛地应用在航空航天、风电及汽车等领域。然而纤维树脂复合材料是各向异性的非均质材料,属于典型的难加工材料,现有的加工技术存在热影响区过大、分层、起毛等问题,成为航空航天工业领域的精密加工技术瓶颈。超短脉冲激光加工作为一种新型加工技术,具有无热传递、不受物质种类限制、微小尺度、可控性强、非接触等优点,有望实现纤维复合材料的精细加工。本文在介绍目前激光加工纤维复合材料研究工作的基础上,讨论了超短脉冲激光加工以碳纤维增强树脂基复合材料为主的纤维复合材料的作用机制和提高加工质量的几种方法,指出了以突破航天工业高精度加工技术瓶颈为目的的超短脉冲激光精细加工纤维增强树脂基复合材料的研究方向、内容和科学问题,为后续实现符合航天工业高精度及大尺度要求的精密加工提供了技术路线和可能的解决方案。

     

  • 图  1  受激电子弛豫过程的时间尺度

    Figure  1.  Various processes of excited electron relaxation

    图  2  (a) 长脉冲激光加工;(b) 超短脉冲激光加工[17]

    Figure  2.  (a) Long pulse laser processing; (b) Ultrashort pulse laser processing[17]

    图  3  超短脉冲激光加工的影响因素

    CW—Continue wave; HAZ—Heat-affected zone

    Figure  3.  Influencing factors of ultrashort laser processing

    图  4  实验装置图[23]

    f—Focal length

    Figure  4.  Scheme of the experimental setup[23]

    图  5  (a) 2 mm碳纤维树脂基复合材料(CFRP)样品打孔;(b) 边缘微观形貌[23]

    Figure  5.  (a) 2 mm thick carbon fiber-reinforced polymer (CFRP) samples; (b) Marginal morphology of hole edge[23]

    图  6  不同激光器和加工方法对热影响区(HAZ)的影响对比[24]

    TEA—Transversely excited atmospheric pressure; YAG—Y3Al5O12

    Figure  6.  Comparison of the effect of different lasers and machining methods on heat affected zone (HAZ)[24]

    图  7  (a)纳秒激光和连续激光;(b)超短脉冲激光(CFRP厚度为0.4 mm)[25]

    AFRP—Aramid fiberreinforced polymer

    Figure  7.  (a) Nanosecond laser and continuous laser; (b) Ultrashort pulse laser (CFRP's thickness equals 0.4 mm)[25]

    图  8  尼龙塑料聚酰胺6(PA6)、 聚醚醚酮(PEEK)、塑胶原料(PPS)和树脂的吸收光谱[31]

    Figure  8.  Absorption spectrum of Nylon plastic polyamide 6 (PA6), polyether-ether-ketone (PEEK), plastic raw material (PPS) and epoxy resin[31]

    图  9  不同激光参数加工的CFRP样品的扫描电镜图像[32]

    Figure  9.  SEM images of CFRP samples processed with different laser parameters[32]

    图  10  (a) 皮秒激光加工CFRP机制图;(b) 皮秒激光“双旋转”加工方法[36]

    R—Hole radius; r—Laser rotation radius; V—Scanning speed; d—Rotation distance

    Figure  10.  (a) CFRP sublimation mechanism with the picosecond laser; (b) Picosecond laser “double rotation” cutting method[36]

    图  11  (a) 实验光路图;(b) 孔边缘HAZ形貌[26]

    Figure  11.  (a) Experimental optical path diagram; (b) Morphologies of the HAZ at the edge of the hole

    图  12  (a) 激光路径示意图;(b) 传统扫描方式;(c) 交错扫描方式[37]

    h—Scanning spacing; H—Interlaced scanning method interlaced spacing

    Figure  12.  (a) Schematic diagram of laser path; (b) Traditional scanning method; (c) Interlaced scanning method[37]

    图  13  热电阻模型:(a) 平行于纤维轴的热传导;(b) 垂直于纤维轴的热传导;(c) 激光平行纤维方向切割示意图;(d) 激光垂直纤维方向切割示意图

    Rm—Matrix's resistance; Rf—Fiber's resistance

    Figure  13.  Thermal resistance model: (a) Heat conduction parallel to the fiber axis; (b) Heat conduction perpendicular to the fiber axis; (c) Laser cutting parallel to the fiber direction; (d) Laser cutting perpendicular to the fiber direction

    图  14  飞秒激光泵浦探测实验光路

    CCD—Charge coupled device; BBO—Barium boron oxide crystal

    Figure  14.  Experimental optical path of femtosecond laser pumped detection

    图  15  飞秒激光泵浦探测全息实验光路

    SPG1, SPG2—Spatial pulse generation; PBS—Polarizing beam splitter; BS1, BS2—Beam splitter; L1, L2, L3—Lens; Delay1—Delay optical path; CCD—Charge coupled device; λ—Wave length

    Figure  15.  Experimental optical path of femtosecond laser pumped detection holography

    图  16  (a) 传统聚焦加工;(b) 飞秒激光成丝加工

    Figure  16.  (a) Traditional focusing processing; (b) Femtosecond laser filament processing

    图  17  高斯光束和平顶光束能量分布图

    I—Intensity; D—Diameter

    Figure  17.  Energy distribution of Gaussian beam and flat topped beam

    表  1  激光与非金属相互作用光电离方式

    Table  1.   Photoionization mode of laser nonmetal interaction

    Laser typePower density/(W·cm−2)Ionization mechanismsIonizations
    Long pulse laser<1013Linear effectLinear ionization, impact ionization
    Ultrafast laser>>1013Nonlinear effectMultiphoton ionization, tunneling ionization
    下载: 导出CSV

    表  2  各种激光源切割AFRP与CFRP的典型热影响区尺度[25]

    Table  2.   Typical heat affected zone for laser cutting AFRP and CFRP sheets[25]

    CO2 laserns laserps/fs laser
    AFRP/mm0.5-1.00.5-1.00.01-0.1
    CFRP/mm1.0-2.01.0-2.00.01-0.1
    下载: 导出CSV

    表  3  不同类型激光切割CFRP的HAZ

    Table  3.   HAZ of CFRP cut by different types of laser

    Laser typeWavelengthPulse lengthMachining conditionHAZRefs.
    Nd:YAG laser1064 nm10 psAverage power 80 W
    Repetition rate 0.2-10 MHz
    Focus diameter 70 μm
    <5 μm[23]
    Femtosecond laser(1028±5) nm290 fsPulse energy >0.2 mJ
    Maximum average power 10 W
    Maximum repetition rate 1100 kHz
    <10 μm[26]
    TEA CO2 laser10.6 μm8 μsAverage power 300 W
    Maximum average power 2 J
    Pulse repetition rate 150 Hz
    ~10 μm[24]
    Femtosecond laser343 nm500 fsAverage power 0-15 W
    Repetition rate 1 Hz-2 MHz
    Focus diameter 10 μm
    <25 μm[27]
    Ytterbium fiber laser1.06 μm5 nsAverage laser power 30 W
    Pulse repetition rate 30 kHz
    Scanning speed 0.5-1.5 m/s
    <50 μm[28]
    Nanosecond UV laser355 nm50 nsAverage power 0.02-20.61 W
    Repetition rate 20-100 MHz
    Pulse energy 0.4 mJ
    <50 μm[29]
    Quasi continue wave (QCW) fiber laser(1070±5) nmQCWModulation frequency 50 kHz
    Pulse energy 45 J
    Average power 450 W
    ~300 μm[30]
    下载: 导出CSV
  • [1] 王振林, 孙浩, 何芳, 等. 纤维增强树脂基复合材料制造技术研究进展[J]. 化学与粘合, 2020, 42(5):377-382. doi: 10.3969/j.issn.1001-0017.2020.05.017

    WANG Zhenlin, SUN Hao, HE Fang, et al. Research progress in manufacturing technology of fiber reinforced resin based composites[J]. Chemistry and Adhesion,2020,42(5):377-382(in Chinese). doi: 10.3969/j.issn.1001-0017.2020.05.017
    [2] 张瑄珺, 王健超, 沈佳骏. 碳纤维复合材料激光加工热损伤问题的研究现状[J]. 应用激光, 2019, 39(6):1041-1044.

    ZHANG Xuanjun, WANG Jianchao, SHEN Jiajun. Research status of thermal damage in laser processing of carbon fiber reinforced plastic[J]. Applied Laser,2019,39(6):1041-1044(in Chinese).
    [3] HASHIZU M, HAYAKAWA S, ITOIGAWA F. Influence of short-circuitng on machined surface quality in electrical discharge machining of carbon fiber reinforced plastics[J]. Procedia CIRP,2020,95:403-407. doi: 10.1016/j.procir.2020.02.322
    [4] 王文亭, 胡冰, 王明伟. 飞秒激光精细加工含能材料[J]. 物理学报, 2013, 62(6):060601. doi: 10.7498/aps.62.060601

    WANG Wenting, HU Bing, WANG Mingwei. Femtosecond laser fine machining of energetic materials[J]. Acta Physica Sinica,2013,62(6):060601(in Chinese). doi: 10.7498/aps.62.060601
    [5] OLIVEIRA V, SHARMA S, DE MOURA M, et al. Surface treatment of CFRP composites using femtosecond laser radiation[J]. Optics and Lasers in Engineering,2017,94:37-43. doi: 10.1016/j.optlaseng.2017.02.011
    [6] WANG P, ZHANG Z, LIU D, et al. Comparative investigations on machinability and surface integrity of CFRP plate by picosecond laser vs laser induced plasma micro-drilling[J]. Optics & Laser Technology,2022,151:108022.
    [7] CHOI I, LEE S J, SHIN D, et al. Green picosecond laser machining of thermoset and thermoplastic carbon fiber reinforced polymers[J]. Micromachines,2021,12(2):205. doi: 10.3390/mi12020205
    [8] 邱一, 刘壮, 李元成, 等. CFRP 复材飞秒激光小孔加工工艺研究[J]. 激光与红外, 2022, 52(2):196-201. doi: 10.3969/j.issn.1001-5078.2022.02.008

    QIU Yi, LIU Zhuang, LI Yuancheng, et al. Technological investigation of femtosecond laser drilling of CFRP composite[J]. Laser & Infarared,2022,52(2):196-201(in Chinese). doi: 10.3969/j.issn.1001-5078.2022.02.008
    [9] 杨建军. 飞秒激光超精细 “冷” 加工技术及其应用 (Ⅰ)[J]. 激光与光电子学进展, 2004, 41(3):42-52.

    YANG Jianjun. Femtosecond laser “cold” micro-machining and its advanced applications[J]. Laser & Optoelectronics Progress,2004,41(3):42-52(in Chinese).
    [10] CHEN W, LAI W, WANG Y, et al. Ultrafast laser engraving method to fabricate gravure plate for printed metal-mesh touch panel[J]. Micromachines,2015,6(10):1483-1489. doi: 10.3390/mi6101433
    [11] 李佳群, 闫剑锋, 李欣, 等. 透明介质材料的超快激光微纳加工研究进展[J]. 中国激光, 2021, 48(2):0202019. doi: 10.3788/CJL202148.0202019

    LI Jiaqun, YAN Jianfeng, LI Xin, et al. Research advancement on ultrafast laser microprocessing of transparent dielectrics[J]. Chiness Journal of Lasers,2021,48(2):0202019(in Chinese). doi: 10.3788/CJL202148.0202019
    [12] CHEN Z, YANG J, LIU H, et al. A short review on functionalized metallic surfaces by ultrafast laser micromachining[J]. The International Journal of Advanced Manufacturing Technology,2022,119(11-12):6919-6948.
    [13] CAO Q, WANG Z, HE W, et al. Fabrication of super hydrophilic surface on alumina ceramic by ultrafast laser microprocessing[J]. Applied Surface Science,2021,557:149842. doi: 10.1016/j.apsusc.2021.149842
    [14] PENILLA E, DEVIA-CRUZ L, WIEG A, et al. Ultrafast laser welding of ceramics[J]. Science,2019,365(6455):803-808. doi: 10.1126/science.aaw6699
    [15] SHEN N, DATTA D, SCHAFFER C B, et al. Ablation of cytoskeletal filaments and mitochondria in live cells using a femtosecond laser nanoscissor[J]. Mechanics & Che-mistry of Biosystems,2005,2(1):17 - 25.
    [16] ROESKE F, BENTEROU J, LEE R, et al. Cutting and machining energetic materials with a femtosecond laser[J]. Propellants, Explosives, Pyrotechnics: An International Journal Dealing with Scientific and Technological Aspects of Energetic Materials,2003,28(2):53-57.
    [17] 苏笑星. 飞秒激光调控材料电子动态和光学性质的第一性原理研究[D]. 北京: 北京理工大学, 2018.

    SU Xiaoxing. First-principle simulations of electron dynamics and optical properties modulation of materials by femtosecond laser pulse[D]. Beijing: Beijing Institute of Technology, 2018(in Chinese).
    [18] ANISIMOV S, KAPELIOVICH B, PERELMAN T. Electron emission from metal surfaces exposed to ultrashort laser pulses[J]. JETP Letters,1974,66(2):375-377.
    [19] GLEZER E N, MAZUR E. Ultrafast-laser driven micro-explosions in transparent materials[J]. Applied Physics Letters,1997,71(7):882-884. doi: 10.1063/1.119677
    [20] LIU J. Simple technique for measurements of pulsed Gaussian-beam spot sizes[J]. Optics Letters,1982,7(5):196-198. doi: 10.1364/OL.7.000196
    [21] SATO Y, TSUKAMOTO M, MATSUOKA F, et al. Thermal effect on CFRP ablation with a 100 W class pulse fiber laser using a PCF amplifier[J]. Applied Surface Science,2017,417:250-255. doi: 10.1016/j.apsusc.2017.03.286
    [22] LAU W S, LEE W B, PANG S. Pulsed Nd : YAG laser cutting of carbon fibre composite materials[J]. CIRP Annals,1990,39(1):179-182. doi: 10.1016/S0007-8506(07)61030-0
    [23] FINGER J, WEINAND M, WORTMANN D. Ablation and cutting of carbon-fiber reinforced plastics using picosecond pulsed laser radiation with high average power[J]. Journal of Laser Applications,2013,25(4):042007. doi: 10.2351/1.4807082
    [24] SALAMA A, LI L, MATIVENGA P, et al. TEA CO2 laser machining of CFRP composite[J]. Applied Physics A: Materials Science & Processing,2016,122(5):1-19.
    [25] 张开虎, 于洋, 张夏明, 等. 纤维增强树脂基复合材料激光切割热影响探析[J]. 导航与控制, 2019, 18(5):60-66.

    ZHANG Kaihu, YU Yang, ZHANG Xiaming, et al. Laser cutting induced heat affected zone in fiber reinforced polymer: A comparative analysis[J]. Navigation and Control,2019,18(5):60-66(in Chinese).
    [26] JIANG H, MA C, LI M, et al. Femtosecond laser drilling of cylindrical holes for carbon fiber-reinforced polymer (CFRP) composites[J]. Molecules,2021,26(10):2953. doi: 10.3390/molecules26102953
    [27] LI Y, SHEN Y, HUANG Y, et al. Research on UV femtosecond pulsed laser cutting carbon fiber composite materials[C]//Proceedings of the 24th National Laser Conference & Fifteenth National Conference on Laser Technology and Optoelectronics. SPIE: 2020, 11717: 552-557.
    [28] KOTOV S. Dimensional processing of composite materials by picosecond pulsed ytterbium fiber laser[C]//Journal of Physics: Conference Series. National Research Nuclear University "MEPhI": IOP Publishing, 2017, 941(1): 012039.
    [29] WANG Y, HU J, LI K. Defect control strategy of carbon fiber reinforced polymer during nanosecond ultraviolet laser processing[J]. Materials Research Express,2019,6(8):085608. doi: 10.1088/2053-1591/ab1696
    [30] LEONE C, MINGIONE E, GENNA S. Laser cutting of CFRP by quasi-continuous wave (QCW) fibre laser: Effect of process parameters and analysis of the HAZ index[J]. Composites Part B: Engineering,2021,224:109146. doi: 10.1016/j.compositesb.2021.109146
    [31] ROMOLI L, FISCHER F, KLING R. A study on UV laser drilling of PEEK reinforced with carbon fibers[J]. Optics and Lasers in Engineering,2012,50(3):449-457. doi: 10.1016/j.optlaseng.2011.10.008
    [32] FUJITA M, OHKAWA H, SOMEKAWA T, et al. Wavelength and pulsewidth dependences of laser processing of CFRP[J]. Physics Procedia,2016,83:1031-1036. doi: 10.1016/j.phpro.2016.08.108
    [33] GEBAUER J, BURKHARDT M, FRANKE V, et al. On the ablation behavior of carbon fiber-reinforced plastics during laser surface treatment using pulsed lasers[J]. Materials,2020,13(24):5682. doi: 10.3390/ma13245682
    [34] 杨剑, 张瑞, 赵煜, 等. 皮秒激光切割 AFRP 复合材料实验研究[J]. 复合材料学报, 2022, 39(1):149-160.

    YANG Jian, ZHANG Rui, ZHAO Yu, et al. Experimental study on picosecond laser cutting AFRP composites[J]. Acta Materiae Compositae Sinica,2022,39(1):149-160(in Chinese).
    [35] 盖晓晨. 飞秒激光微加工的系统建立及工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.

    GAI Xiaochen. Research on experimental system and technique of femtosecond laser micromachining[D]. Harbin: Harbin Institute of Technology, 2013(in Chinese).
    [36] OUYANG W, JIAO J, XU Z, et al. Experimental study on CFRP drilling with the picosecond laser “double rotation” cutting technique[J]. Optics & Laser Technology,2021,142:107238.
    [37] LI W, ZHANG G, HUANG Y, et al. UV laser high-quality drilling of CFRP plate with a new interlaced scanning mode[J]. Composite Structures,2021,273:114258. doi: 10.1016/j.compstruct.2021.114258
    [38] NEGARESTANI R, LI L, SEZER H, et al. Nano-second pulsed DPSS Nd : YAG laser cutting of CFRP composites with mixed reactive and inert gases[J]. The International Journal of Advanced Manufacturing Technology,2010,49(5):553-566.
    [39] KONONENKO T, FREITAG C, KOMLENOK M, et al. Oxygen-assisted multipass cutting of carbon fiber reinforced plastics with ultra-short laser pulses[J]. Journal of Applied Physics,2014,115(10):103107. doi: 10.1063/1.4868385
    [40] SATO Y, TSUKAMOTO M, MATSUOKA F, et al. Experimental investigation of CFRP cutting with nano second laser under air and Ar gas ambienc[C]//Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XX. San Francisco: SPIE: 2015, 9350: 93-99.
    [41] 花银群, 肖淘, 薛青, 等. 激光切割碳纤维复合材料的实验研究[J]. 激光技术, 2013, 37(5):565-570. doi: 10.7510/jgjs.issn.1001-3806.2013.05.002

    HUA Yinqun, XIAO Tao, XUE Qing, et al. Experimental study about laser cutting of carbon fiber reinforced polymer[J]. Laser Technology,2013,37(5):565-570(in Chinese). doi: 10.7510/jgjs.issn.1001-3806.2013.05.002
    [42] TANGWARODOMNUKUN V, KHAMWISET K, QI H. Investigation into laser machining of carbon fiber reinforced plastic in a flowing water layer[J]. The International Journal of Advanced Manufacturing Technology,2019,104(9):3629-3645.
    [43] KAAKKUNEN J, SILVENNOINEN M, PAIVASAARI K, et al. Water-assisted femtosecond laser pulse ablation of high aspect ratio holes[J]. Physics Procedia,2011,12:89-93. doi: 10.1016/j.phpro.2011.03.110
    [44] 汪建新, 吴耀文, 张广义, 等. 碳纤维增强复合材料水导激光切割试验研究[J]. 中国机械工程, 2021, 32(13):1608-1616.

    WANG Jianxin, WU Yaowen, ZHANG Guangyi, et al. The experimental research on carbon fiber reinforced plastic cutting by using waterjet guided laser processing[J]. China Mechanical Engineering,2021,32(13):1608-1616(in Chinese).
    [45] 霍秀兵, 徐强, 王海波, 等. 简析树脂基碳纤维复合材料制孔缺陷以及钻削工艺[J]. 当代化工研究, 2021, 16:142-144. doi: 10.3969/j.issn.1672-8114.2021.22.047

    HUO Xiubing, XU Qiang, WANG Haibo, et al. Brief analysis of hole-making defects and drilling technology of resin-based carbon fiber composites[J]. Modern Chemical Research,2021,16:142-144(in Chinese). doi: 10.3969/j.issn.1672-8114.2021.22.047
    [46] 韩旭, 王续跃. 双层碳纤维复合板材激光切割试验研究[J]. 现代机械, 2019(4):50-56. doi: 10.13667/j.cnki.52-1046/th.2019.04.013

    HAN Xu, WANG Xuyue. Experimental study on laser cutting of double-layer carbon fiber reinforced plastics sheets[J]. Modern Machinery,2019(4):50-56(in Chinese). doi: 10.13667/j.cnki.52-1046/th.2019.04.013
    [47] PAN C, HOCHENG H. The anisotropic heat-affected zone in the laser grooving of fiber-reinforced composite material[J]. Journal of Materials Processing Technology,1996,62(1-3):54-60. doi: 10.1016/0924-0136(95)02192-2
    [48] JUNG K W, KAWAHITO Y, KATAYAMA S. Ultra-high speed disk laser cutting of carbon fiber reinforced plastics[J]. Journal of Laser Applications,2012,24(1):012007. doi: 10.2351/1.3673521
    [49] STAEHR R, BLUEMEL S, HANSEN P, et al. The influence of moisture content on the heat affected zone and the resulting in-plane shear strength of laser cut thermoplastic CFRP[J]. Plastics, Rubber and Composites,2015,44(3):111-116. doi: 10.1179/1743289814Y.0000000114
    [50] ZHENG L, WANG L, LU M, et al. Research on laser precision cutting of carbon fiber reinforced polymer for satellite[C]//24th National Laser Conference & Fifteenth National Conference on Laser Technology and Optoelectronics. Shanghai: SPIE: 2020, 11717: 814-819.
    [51] 路明雨, 张明, 张开虎, 等. 高模量碳纤维增强树脂基复合材料的皮秒激光加工阈值特性[J]. 复合材料学报, 2021, 38(11): 3601-3609.

    LU Mingyu, ZHANG Ming, ZHANG Kaihu, et al. Threshold properties of high modulus carbon fiber reinforced plastic composite with picosecond laser processing[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3601-3609(in Chinese).
    [52] KUMAR D, SINGH K K. Effect of nanofiller on fibre laser drilling quality of carbon fibre reinforced polymer compo-site laminates[J]. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering,2019,233(4):857-870. doi: 10.1177/0954408918812253
    [53] CANISIUS M, HERZOG D, SCHMIDT-LEHR M, et al. Laser cutting of carbon fiber-reinforced plastic with an absorber transparent for visible spectrum[J]. Journal of Laser Applications,2015,27(3):032003. doi: 10.2351/1.4916532
    [54] 宋抒航. 碳纤维复合材料激光切割实验研究[J]. 机械制造, 2015, 53(613):49-51. doi: 10.3969/j.issn.1000-4998.2015.09.016

    SONG Shuhang. Experimental study on laser cutting of carbon fiber composites[J]. Machine Manufacturing,2015,53(613):49-51(in Chinese). doi: 10.3969/j.issn.1000-4998.2015.09.016
    [55] YU Z, XU L, CAO W, et al. Study on picosecond laser processing of blind holes in carbon fiber-reinforced plastics[J]. Applied Physics A: Materials Science & Processing ,2020,126(12):1-10.
    [56] NEGARESTANI R, SUNDAR M, SHEIKH M, et al. Numeri-cal simulation of laser machining of carbon-fibre-reinforced composites[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture,2010,224(7):1017-1027. doi: 10.1243/09544054JEM1662
    [57] XU L, LU J, LI K, et al. Removal mechanism of CFRP by laser multi direction interaction[J]. Optics & Laser Technology,2021,143:107281.
    [58] 马维刚, 王海东, 张兴, 等. 飞秒脉冲激光加热金属薄膜的理论和实验研究[J]. 物理学报, 2011, 60(6):421-427. doi: 10.7498/aps.60.064401

    MA Weigang, WANG Haidong, ZHANG Xing, et al. Theoretical and experimental study of femtosecond pulse laser heating on thin metal film[J]. Acta Physica Sinica,2011,60(6):421-427(in Chinese). doi: 10.7498/aps.60.064401
    [59] 纪利平, 宋梓钰, 孙亚萍, 等. 基于COMSOL的皮秒激光单脉冲烧蚀铜片[J]. 激光与光电子学进展, 2018, 55(10):101402.

    JI Liping, SONG Ziyu, SUN Yaping, et al. Single-shot picosecond laser ablation of copper based on COMSOL[J]. Laser & Optoelectronics Progress,2018,55(10):101402(in Chinese).
    [60] WU Y, CHEN F, DU G, et al. Ultrafast thermalization dynamics of gold-coated fused silica irradiated by a femtosecond laser[J]. Applied Thermal Engineering,2014,71(1):56-61. doi: 10.1016/j.applthermaleng.2014.06.011
    [61] HU J, XU H, LI C. Laser absorption of carbon fiber reinforced polymer with randomly distributed carbon fibers[J]. Laser Physics,2018,28(3):036002. doi: 10.1088/1555-6611/aa9d07
    [62] ZHANG N, ZHU X, YANG J, et al. Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum[J]. Physical Review Letters,2007,99(16):167602. doi: 10.1103/PhysRevLett.99.167602
    [63] WANG M W, WANG X L, ZHAI H C. Pulsed digital micro-holography of femto-second order by double-wavelength recording[J]. Optoelectronics Letters,2007,3(2):133-135. doi: 10.1007/s11801-007-7011-5
    [64] 丁铠文, 王聪, 罗志, 等. 超快激光光束整形原理与方法及其在功能性微结构制造中的应用[J]. 中国激光, 2021, 48(2):0202005. doi: 10.3788/CJL202148.0202005

    DING Kaiwen, WANG Cong, LUO Zhi, et al. Principle and method of ultrafast laser beam shaping and its application in functional microstructure fabrication[J]. Chinese Jour-nal of Lasers,2021,48(2):0202005(in Chinese). doi: 10.3788/CJL202148.0202005
    [65] WANG M, YU Z, ZHANG N, et al. Drilling high aspect ratio holes by femtosecond laser filament with aberrations[J]. Frontiers of Optoelectronics,2021,14(4):522-528. doi: 10.1007/s12200-021-1214-4
    [66] 付丽丽, 常峻巍, 陈佳琪, 等. 平顶飞秒激光经圆锥透镜在熔融石英中成丝及超连续辐射[J]. 物理学报, 2020, 69(4):110-114. doi: 10.7498/aps.69.20191350

    FU Lili, CHANG Junwei, CHEN Jiaqi, et al. Filamentation and supercontinuum emission generated from flattened femtosecond laser beam by use of axicon in fused silica[J]. Acta Physica Sinica,2020,69(4):110-114(in Chinese). doi: 10.7498/aps.69.20191350
  • 加载中
图(17) / 表(3)
计量
  • 文章访问数:  1501
  • HTML全文浏览量:  713
  • PDF下载量:  211
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-25
  • 修回日期:  2022-07-15
  • 录用日期:  2022-07-23
  • 网络出版日期:  2022-08-05
  • 刊出日期:  2023-05-15

目录

    /

    返回文章
    返回