超短脉冲激光精细加工纤维增强树脂基复合材料的研究进展

李遥遥, 侯新富, 何光宇, 王明伟

李遥遥, 侯新富, 何光宇, 等. 超短脉冲激光精细加工纤维增强树脂基复合材料的研究进展[J]. 复合材料学报, 2023, 40(5): 2465-2479. DOI: 10.13801/j.cnki.fhclxb.20220804.005
引用本文: 李遥遥, 侯新富, 何光宇, 等. 超短脉冲激光精细加工纤维增强树脂基复合材料的研究进展[J]. 复合材料学报, 2023, 40(5): 2465-2479. DOI: 10.13801/j.cnki.fhclxb.20220804.005
LI Yaoyao, HOU Xinfu, HE Guangyu, et al. Research progress of ultrashort pulse laser precision machining fiber reinforced resin matrix composite materials[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2465-2479. DOI: 10.13801/j.cnki.fhclxb.20220804.005
Citation: LI Yaoyao, HOU Xinfu, HE Guangyu, et al. Research progress of ultrashort pulse laser precision machining fiber reinforced resin matrix composite materials[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2465-2479. DOI: 10.13801/j.cnki.fhclxb.20220804.005

超短脉冲激光精细加工纤维增强树脂基复合材料的研究进展

基金项目: 国家自然科学基金(12174201)
详细信息
    通讯作者:

    王明伟,博士,教授,研究方向为飞秒激光科学与创新应用、太赫兹光电子学 E-mail: wangmingwei@nankai.edu.cn

  • 中图分类号: TN249

Research progress of ultrashort pulse laser precision machining fiber reinforced resin matrix composite materials

Funds: National Natural Science Foundation of China (12174201)
  • 摘要: 纤维增强树脂基复合材料具有轻质量、高强度、耐腐蚀和抗疲劳等优点,被广泛地应用在航空航天、风电及汽车等领域。然而纤维树脂复合材料是各向异性的非均质材料,属于典型的难加工材料,现有的加工技术存在热影响区过大、分层、起毛等问题,成为航空航天工业领域的精密加工技术瓶颈。超短脉冲激光加工作为一种新型加工技术,具有无热传递、不受物质种类限制、微小尺度、可控性强、非接触等优点,有望实现纤维复合材料的精细加工。本文在介绍目前激光加工纤维复合材料研究工作的基础上,讨论了超短脉冲激光加工以碳纤维增强树脂基复合材料为主的纤维复合材料的作用机制和提高加工质量的几种方法,指出了以突破航天工业高精度加工技术瓶颈为目的的超短脉冲激光精细加工纤维增强树脂基复合材料的研究方向、内容和科学问题,为后续实现符合航天工业高精度及大尺度要求的精密加工提供了技术路线和可能的解决方案。
    Abstract: Fiber reinforced resin matrix composites are widely used in aerospace, wind power and automobile industry due to the advantages of light weight, high strength, corrosion resistance, fatigue resistance etc. However, as heterogeneous anisotropic materials, fiber-reinforced composites are difficult to process. Traditional processing methods can lead to problems like excessive heat affected zone, delamination and fuzzing, which are difficult to meet the requirements of high-precision processing in the aeronautic and astronautic industry. As a new processing technique, ultrashort pulse laser processing has the advantages of micro scale, strong controllability, no material restriction and non-contact. It is expected to realize the high-precision processing of fiber composites. In this paper, on the basis of the current research on ultrafast laser processing carbon fiber reinforced polymer (CFRP) was reviewed, and the mechanisms of ultrafast laser processing CFRP and methods to improve the machining quality were discussed. Further, the research direction and content for the purpose of breaking through the bottleneck of high-precision machining technology in aerospace industry are prospected, which provides a technical route and possible solutions for precision machining meeting the high-precision and large-scale requirements of the aerospace industry.
  • 随着我国桥梁建设的快速发展,交通量的增加,桥梁结构遭遇火灾情况也时有发生[1-4],2007年10月广东广深高速虎门大桥,油罐车爆炸引发大火,拉索和桥墩都被大火湮灭;2014年,湖南郴州在建赤石特大桥在主跨合拢前6号桥墩左幅塔顶突发大火,事故导致6号桥墩左幅9根斜拉索断裂,这些火灾事故对缆索的受力性能构成了极大的考验。文献[5-8]对钢丝缆索的高温力学性能进行研究,在火灾高温下钢丝力学性能会明显下降,导致缆索的承载能力急剧下降。

    采用轻质、高强、耐腐蚀、抗疲劳的碳纤维增强树脂复合材料(Carbon fiber reinforced polymer,CFRP)用于桥梁缆索,可提高桥梁跨径,从根本上解决钢质拉索的腐蚀及疲劳问题。但CFRP索内的CFRP筋遇到火灾后环氧树脂会燃烧分解,影响其极限承载性能,对桥梁结构的安全造成影响。文献[9-12]通过试验研究发现,高温下CFRP筋的力学性能下降十分明显。付成龙等[11]研究了温度对CFRP筋弯曲强度和压缩强度的影响,研究显示温度对试样弯曲强度和压缩强度的影响较大,CFRP筋的强度保留率随温度升高而降低。方志等[12]对较高玻璃化转变温度Tg(Tg >200℃)的CFRP筋高温后力学性能进行研究,处理温度为100℃时,筋材静力性能与常温试件相比未发生明显变化,筋材经历200℃和300℃温升作用后,其抗拉强度、弹性模量和极限拉应变均有所下降。

    文献[13-15]对桥梁缆索的阻燃防火措施做了一些研究。李艳等[13]在索体外表面设置一种导热系数很低的耐高温防火涂层,从而降低火源热辐射传给索体的温度。张凯等[14]研究了带砂浆包覆层CFRP筋的高温力学性能,在砂浆包覆层保持完好未爆裂的情况下,包覆层为CFRP筋提供了较好的隔氧环境,CFRP筋在长时间高温作用后具有较高的残余强度。徐玉林等[15]对外包陶瓷纤维防火层的CFRP索的耐火性进行了火灾试验研究,对CFRP 缆索外包陶瓷纤维防火层可大幅提高缆索的临界安全耐火时长。

    综上所述,目前已有一些缆索的阻燃防火措施,如外包砂浆或陶瓷纤维防火层,但这些措施会大幅度增大索体直径,严重影响索体外表面的空气动力学特性。本文针对桥梁缆索用CFRP筋在高温下的力学性能及CFRP索的阻燃防火措施进行系统研究,研制开发具有阻燃防火特性的CFRP索,避免火灾带来的风险,保障应用安全,有助于CFRP索的推广应用。

    CFRP筋采用拉挤成型工艺制备,为了便于锚固,筋材表面带有螺旋肋,筋材底径7 mm,纤维体积分数为72vol%,密度为1.52 g/cm3,玻璃化转变温度Tg为120℃。

    图1为CFRP筋高温拉伸试验。可见,筋材两端采用粘结型锚固方式,筋材锚固后穿过试验台架,在筋材中间自由段部位外套金属铝筒,金属铝筒外缠绕加热带对筒内空气进行加热,采用热电偶监测空气温度,采用温度继电器控制温度,使金属铝筒内温度保持设定温度,采用千斤顶加载,加载速度不超过300 MPa/min。筋材拉伸强度为筋材破断时压力传感器载荷读数除以筋材承载面积。

    图  1  碳纤维增强树脂复合材料(CFRP)筋高温拉伸试验
    Figure  1.  High temperature tensile test of carbon fiber reinforced polymer (CFRP) tendon

    对筋材中间自由段部位进行加热,加热至指定温度,保温2 h后进行破断拉伸试验,获得筋材在高温下的拉伸强度。

    图2为不同温度下保温 2 h后的CFRP筋材抗拉强度。可以看出,随着试验温度的升高,筋材拉伸强度呈线性下降趋势,270℃加热2 h,筋材强度降为2000 MPa左右,210℃加热2 h,筋材强度最低为2245.8 MPa,比初始强度下降26.13%。图3为保温2 h后筋材高温拉伸破断照片。可以看出,筋材发生了散丝状断裂。

    图  2  不同温度下保温 2 h后的CFRP筋材抗拉强度
    Figure  2.  Tensile strength of CFRP tendons at different temperatures with heat preservation 2 h
    图  3  CFRP筋材高温拉伸破断状态
    Figure  3.  Tensile fracture state of CFRP tendons at high temperature

    对筋材中间自由段部位进行加热,加热至210℃,分别保温1、2、3 h后进行破断拉伸试验,获得筋材在高温下的拉伸强度。图4为210℃不同保温时间下的CFRP筋材抗拉强度。

    图  4  210℃不同保温时间下的CFRP筋材抗拉强度
    Figure  4.  Tensile strength of CFRP tendons with different holding time at 210℃

    可以看出,筋材高温拉伸强度仅与试验温度有关,当筋材芯部温度达到保温温度时,筋材的高温拉伸强度与保温时间无关,210℃的高温3 h内,筋材剩余拉伸强度均能达到2245.8 MPa以上。

    对筋材中间自由段部位进行加热,加热至指定温度,保温2 h,待筋材充分冷却至室温后进行破断拉伸试验,获得筋材经历高温冷却后的拉伸强度,如图5所示。可以看出,筋材高温加热冷却后继续进行拉伸试验,拉伸强度会存在一定的可逆性恢复,且恢复后的剩余强度均能达到2800 MPa以上,但最终剩余拉伸强度较原始强度呈略微下降趋势,且加热温度越高,剩余拉伸强度越低,最大下降幅度为6.13%。

    图  5  经历不同温度加热2 h冷却后CFRP筋材抗拉强度
    Figure  5.  Tensile strength of CFRP tendons after heating at different temperatures for 2 h and cooling

    分别采用石棉布、陶瓷纤维布及阻燃防火涂层材料来研究对CFRP筋/索的阻燃防火效果。

    对在持荷状态下的7 mm直径CFRP筋试验件中间部位用火焰温度1000℃的高温火焰枪进行灼烧,如图6所示,其中图6(a)中筋材无保护,图6(b)中筋材包裹陶瓷纤维布,观测不同时间筋材的受力状态及筋材表面的温度变化,灼烧2 h后,进行破断拉伸试验,获得剩余强度。

    表1为不同防护措施下筋材温度及持荷性能。可以看出,在无任何防护条件下,对拉伸应力水平1170 MPa条件下的CFRP筋用火焰温度1000℃的高温火焰枪进行灼烧,25 min后,筋材灼烧部位树脂热解,筋材断裂;采用45 mm厚度陶瓷纤维布与石棉包裹筋材,施加1170 MPa拉伸应力,经过1000℃火焰灼烧2 h,筋材表面温度最高分别为562℃与635℃,筋材高温部位树脂发生热解,没有发生断裂(图7),剩余强度分别为1646 MPa与1249 MPa,图8为其破断试样;采用60 mm厚度石棉包裹筋材,施加1170 MPa拉伸应力,经过1000℃火焰灼烧2 h,筋材表面温度最高为170℃,筋材完好,没有发生断裂,剩余强度为3121 MPa,筋材基本没有发生损伤。

    图  6  持荷条件下CFRP筋阻燃防火措施对比
    Figure  6.  Comparison on fire retardant measures of CFRP tendons under load conditions
    表  1  不同防护类型下CFRP筋材温度及持荷性能
    Table  1.  Temperature and load carrying capacity of CFRP tendons under different protection types
    Protection
    type
    Protection thickness/mmBurning time/minCFRP tendons temperature/℃Stress level/MPaTest resultResident strength/MPa
    2510001170Resin pyrolysis,
    tendon tensile fracture
    Ceramic fiber cloth451205621170Resin pyrolysis,
    tendon is not fracture
    1646
    Asbestos451206351170Resin pyrolysis,
    tendon is not fracture
    1249
    Asbestos601201701170The tendon is not damaged3121
    下载: 导出CSV 
    | 显示表格
    图  7  CFRP筋材高温下树脂热解(562℃,2 h)
    Figure  7.  Resin pyrolysis of tendons at high temperature (562℃, 2 h)
    图  8  树脂热解后CFRP筋材极限拉伸破断
    Figure  8.  Ultimate tensile fracture of CFRP tendons after resin pyrolysis

    以上试验研究可以看出,包裹60 mm厚的石棉可以起到很好的阻燃防火效果,但是过厚的石棉必然影响索体直径,给CFRP索的盘卷带来困难,同时会改变索体表面原有的空气动力学特性,不方便应用。

    选用一种阻燃防火涂层,刷在CFRP索股索体双层聚乙烯(PE)护套外表面,其中索股直径61 mm,PE护套厚度6 mm,阻燃防火涂层厚度2 mm,如图9所示。所用阻燃防火涂料层由基料丙烯酸乳液、膨胀催化剂聚磷酸铵、碳化剂季戊四醇、膨胀发泡剂三聚氰胺与氯化石蜡、颜料钛白粉、成膜助剂醇酯等组成。

    图  9  刷有阻燃防火涂层的CFRP索股
    Figure  9.  CFRP cable strand coated with fire retardant coating

    在PE表面刷有2 mm阻燃防火涂层,并在索体PE内表面预埋测温线,用火焰温度1000℃的高温火焰枪对索股局部进行长达2 h的高温灼烧试验(图10),阻燃防火涂料层发生膨胀并形成均匀而致密蜂窝状碳化层,保护双层PE护套不发生燃烧,使得缆索具有阻燃防火特性,PE护套仅发生软化。无阻燃防火涂层保护的索体5 min内PE护套燃烧殆尽,漏出索体(图11)。图12为2 mm阻燃防火涂层温度-时间曲线。可以看出,2 h灼烧索股PE内表面最高温度为206℃。

    图  10  阻燃防火涂层遇火焰发泡
    Figure  10.  Fire retardant coating foams when expose to fire
    图  11  无阻燃防火涂层聚乙烯(PE)燃烧
    Figure  11.  Combustion of polyethylene (PE) sheath without fire retardant coating
    图  12  2 mm厚阻燃防火涂层温度-时间曲线
    Figure  12.  Temperature-time curve of 2 mm thickness fire retardant coating

    为探究发生火灾时CFRP索股内部PE内筋材温度,将测温线置于不同位置处测量灼烧试验时各位置的温度(图13),分别为索股PE内表面、距离PE内表面7 mm、距离PE内表面14 mm。图14为灼烧2 h索股内部不同位置处温度-时间曲线。可以看出,紧贴PE内表面的温度最高,为206℃,其次是测温线与PE内表层间隔7 mm处的温度(次外层筋材),为156℃,温度最低的是与PE内表层距离14 mm处的温度(第三层筋材),为100℃。

    图  13  CFRP索股测温位置
    Figure  13.  Temperature measurement position of CFRP cable strand
    图  14  CFRP索股不同位置处温度-时间曲线
    Figure  14.  Temperature-time curves at different positions of CFRP cable strand

    针对阻燃防火涂层的不同厚度,试验研究在1000℃火焰灼烧下阻燃防火效果的持续性,索股规格同2.2节。图15为不同厚度阻燃防火涂层温度-时间曲线。可知无阻燃防火涂层防护,索股PE层5 min燃烧殆尽;0.3 mm厚度阻燃防火涂层可保护索股PE层20 min;1.4 mm厚度阻燃防火涂层可保护索股PE层160 min;刷有2 mm厚度阻燃防火涂层的索股在长达360 min的火焰灼烧下,PE内表面最高温度为245℃,PE层未发生破坏,仅发生软化,建议阻燃防火涂层厚度为2 mm。

    图  15  不同厚度阻燃防火涂层的温度-时间曲线
    Figure  15.  Temperature-time curves of fire retardant coating with different thickness

    图16为2 mm厚度阻燃防火涂层的索股燃烧360 min试验过程的发泡过程。可以看出,随着火焰灼烧时间的增长,发泡层高度逐渐增大,发泡尺寸也逐渐增大,6 h熄火后形成一个6 cm×8 cm、高4 cm的发泡层,长达6 h的灼烧试验,PE内表面最高温度为245℃,熄火后,拨开厚厚的发泡层,PE护套仅发生软化。结合图15图16,可以看出,燃烧前20 min为快速发泡升温阶段,发泡层快速增大,PE内表面温度从室温上升到196℃;20~140 min为稳定阶段,发泡层缓慢增大,PE内表面温度维持在203~209℃之间;140~360 min为动态平衡阶段,继续燃烧温度缓慢升高,燃烧至180 min,PE内表面温度达到216℃,阻燃防火涂层内层达到发泡温度开始发泡,发泡层高度增加,PE内表面温度下降,燃烧至240 min,PE内表面温度降至200℃,燃烧至280 min左右,发泡层表层开始发生热解,PE内表面温度升高至230℃左右,阻燃防火涂层内层达到发泡温度进一步发泡,发泡层高度持续增加,PE内表面温度下降,但随着发泡层表层热解,PE内表面温度又缓慢上升。

    图  16  2 mm厚度阻燃防火涂层的CFRP索股膨胀发泡过程
    Figure  16.  Intumescent process of CFRP cable strand coated with 2 mm thickness fire retardant coating

    (1) 碳纤维增强树脂复合材料(Carbon fiber reinforced polymer,CFRP)筋材高温剩余强度随温度升高呈线性下降趋势,210℃加热3 h,剩余强度最低为2245.8 MPa,比初始强度下降26.13%。

    (2) CFRP筋材高温加热冷却后强度存在一定程度的可逆性恢复,剩余强度均能达到2800 MPa以上,但较原始强度略微下降,且经历温度越高剩余强度越低,最大下降幅度为6.13%。

    (3) 对比3种阻燃防火措施,阻燃防火涂层具有较好的阻燃防火效果,2 h灼烧索股聚乙烯(PE)内表面最高温度为206℃,次外层筋材最高温度为156℃,第三层筋材最高温度为100℃,火灾2 h内,索股仍可承载,剩余强度≥2245 MPa。

    (4) 阻燃防火涂层越厚防护时间越长,2 mm厚阻燃防火涂层的索股在长达360 min的火焰灼烧下,PE内表面最高温度为245℃,PE层未发生破坏,仅发生软化,建议阻燃防火涂层的厚度为2 mm。

  • 图  1   受激电子弛豫过程的时间尺度

    Figure  1.   Various processes of excited electron relaxation

    图  2   (a) 长脉冲激光加工;(b) 超短脉冲激光加工[17]

    Figure  2.   (a) Long pulse laser processing; (b) Ultrashort pulse laser processing[17]

    图  3   超短脉冲激光加工的影响因素

    CW—Continue wave; HAZ—Heat-affected zone

    Figure  3.   Influencing factors of ultrashort laser processing

    图  4   实验装置图[23]

    f—Focal length

    Figure  4.   Scheme of the experimental setup[23]

    图  5   (a) 2 mm碳纤维树脂基复合材料(CFRP)样品打孔;(b) 边缘微观形貌[23]

    Figure  5.   (a) 2 mm thick carbon fiber-reinforced polymer (CFRP) samples; (b) Marginal morphology of hole edge[23]

    图  6   不同激光器和加工方法对热影响区(HAZ)的影响对比[24]

    TEA—Transversely excited atmospheric pressure; YAG—Y3Al5O12

    Figure  6.   Comparison of the effect of different lasers and machining methods on heat affected zone (HAZ)[24]

    图  7   (a)纳秒激光和连续激光;(b)超短脉冲激光(CFRP厚度为0.4 mm)[25]

    AFRP—Aramid fiberreinforced polymer

    Figure  7.   (a) Nanosecond laser and continuous laser; (b) Ultrashort pulse laser (CFRP's thickness equals 0.4 mm)[25]

    图  8   尼龙塑料聚酰胺6(PA6)、 聚醚醚酮(PEEK)、塑胶原料(PPS)和树脂的吸收光谱[31]

    Figure  8.   Absorption spectrum of Nylon plastic polyamide 6 (PA6), polyether-ether-ketone (PEEK), plastic raw material (PPS) and epoxy resin[31]

    图  9   不同激光参数加工的CFRP样品的扫描电镜图像[32]

    Figure  9.   SEM images of CFRP samples processed with different laser parameters[32]

    图  10   (a) 皮秒激光加工CFRP机制图;(b) 皮秒激光“双旋转”加工方法[36]

    R—Hole radius; r—Laser rotation radius; V—Scanning speed; d—Rotation distance

    Figure  10.   (a) CFRP sublimation mechanism with the picosecond laser; (b) Picosecond laser “double rotation” cutting method[36]

    图  11   (a) 实验光路图;(b) 孔边缘HAZ形貌[26]

    Figure  11.   (a) Experimental optical path diagram; (b) Morphologies of the HAZ at the edge of the hole

    图  12   (a) 激光路径示意图;(b) 传统扫描方式;(c) 交错扫描方式[37]

    h—Scanning spacing; H—Interlaced scanning method interlaced spacing

    Figure  12.   (a) Schematic diagram of laser path; (b) Traditional scanning method; (c) Interlaced scanning method[37]

    图  13   热电阻模型:(a) 平行于纤维轴的热传导;(b) 垂直于纤维轴的热传导;(c) 激光平行纤维方向切割示意图;(d) 激光垂直纤维方向切割示意图

    Rm—Matrix's resistance; Rf—Fiber's resistance

    Figure  13.   Thermal resistance model: (a) Heat conduction parallel to the fiber axis; (b) Heat conduction perpendicular to the fiber axis; (c) Laser cutting parallel to the fiber direction; (d) Laser cutting perpendicular to the fiber direction

    图  14   飞秒激光泵浦探测实验光路

    CCD—Charge coupled device; BBO—Barium boron oxide crystal

    Figure  14.   Experimental optical path of femtosecond laser pumped detection

    图  15   飞秒激光泵浦探测全息实验光路

    SPG1, SPG2—Spatial pulse generation; PBS—Polarizing beam splitter; BS1, BS2—Beam splitter; L1, L2, L3—Lens; Delay1—Delay optical path; CCD—Charge coupled device; λ—Wave length

    Figure  15.   Experimental optical path of femtosecond laser pumped detection holography

    图  16   (a) 传统聚焦加工;(b) 飞秒激光成丝加工

    Figure  16.   (a) Traditional focusing processing; (b) Femtosecond laser filament processing

    图  17   高斯光束和平顶光束能量分布图

    I—Intensity; D—Diameter

    Figure  17.   Energy distribution of Gaussian beam and flat topped beam

    表  1   激光与非金属相互作用光电离方式

    Table  1   Photoionization mode of laser nonmetal interaction

    Laser typePower density/(W·cm−2)Ionization mechanismsIonizations
    Long pulse laser<1013Linear effectLinear ionization, impact ionization
    Ultrafast laser>>1013Nonlinear effectMultiphoton ionization, tunneling ionization
    下载: 导出CSV

    表  2   各种激光源切割AFRP与CFRP的典型热影响区尺度[25]

    Table  2   Typical heat affected zone for laser cutting AFRP and CFRP sheets[25]

    CO2 laserns laserps/fs laser
    AFRP/mm0.5-1.00.5-1.00.01-0.1
    CFRP/mm1.0-2.01.0-2.00.01-0.1
    下载: 导出CSV

    表  3   不同类型激光切割CFRP的HAZ

    Table  3   HAZ of CFRP cut by different types of laser

    Laser typeWavelengthPulse lengthMachining conditionHAZRefs.
    Nd:YAG laser1064 nm10 psAverage power 80 W
    Repetition rate 0.2-10 MHz
    Focus diameter 70 μm
    <5 μm[23]
    Femtosecond laser(1028±5) nm290 fsPulse energy >0.2 mJ
    Maximum average power 10 W
    Maximum repetition rate 1100 kHz
    <10 μm[26]
    TEA CO2 laser10.6 μm8 μsAverage power 300 W
    Maximum average power 2 J
    Pulse repetition rate 150 Hz
    ~10 μm[24]
    Femtosecond laser343 nm500 fsAverage power 0-15 W
    Repetition rate 1 Hz-2 MHz
    Focus diameter 10 μm
    <25 μm[27]
    Ytterbium fiber laser1.06 μm5 nsAverage laser power 30 W
    Pulse repetition rate 30 kHz
    Scanning speed 0.5-1.5 m/s
    <50 μm[28]
    Nanosecond UV laser355 nm50 nsAverage power 0.02-20.61 W
    Repetition rate 20-100 MHz
    Pulse energy 0.4 mJ
    <50 μm[29]
    Quasi continue wave (QCW) fiber laser(1070±5) nmQCWModulation frequency 50 kHz
    Pulse energy 45 J
    Average power 450 W
    ~300 μm[30]
    下载: 导出CSV
  • [1] 王振林, 孙浩, 何芳, 等. 纤维增强树脂基复合材料制造技术研究进展[J]. 化学与粘合, 2020, 42(5):377-382. DOI: 10.3969/j.issn.1001-0017.2020.05.017

    WANG Zhenlin, SUN Hao, HE Fang, et al. Research progress in manufacturing technology of fiber reinforced resin based composites[J]. Chemistry and Adhesion,2020,42(5):377-382(in Chinese). DOI: 10.3969/j.issn.1001-0017.2020.05.017

    [2] 张瑄珺, 王健超, 沈佳骏. 碳纤维复合材料激光加工热损伤问题的研究现状[J]. 应用激光, 2019, 39(6):1041-1044.

    ZHANG Xuanjun, WANG Jianchao, SHEN Jiajun. Research status of thermal damage in laser processing of carbon fiber reinforced plastic[J]. Applied Laser,2019,39(6):1041-1044(in Chinese).

    [3]

    HASHIZU M, HAYAKAWA S, ITOIGAWA F. Influence of short-circuitng on machined surface quality in electrical discharge machining of carbon fiber reinforced plastics[J]. Procedia CIRP,2020,95:403-407. DOI: 10.1016/j.procir.2020.02.322

    [4] 王文亭, 胡冰, 王明伟. 飞秒激光精细加工含能材料[J]. 物理学报, 2013, 62(6):060601. DOI: 10.7498/aps.62.060601

    WANG Wenting, HU Bing, WANG Mingwei. Femtosecond laser fine machining of energetic materials[J]. Acta Physica Sinica,2013,62(6):060601(in Chinese). DOI: 10.7498/aps.62.060601

    [5]

    OLIVEIRA V, SHARMA S, DE MOURA M, et al. Surface treatment of CFRP composites using femtosecond laser radiation[J]. Optics and Lasers in Engineering,2017,94:37-43. DOI: 10.1016/j.optlaseng.2017.02.011

    [6]

    WANG P, ZHANG Z, LIU D, et al. Comparative investigations on machinability and surface integrity of CFRP plate by picosecond laser vs laser induced plasma micro-drilling[J]. Optics & Laser Technology,2022,151:108022.

    [7]

    CHOI I, LEE S J, SHIN D, et al. Green picosecond laser machining of thermoset and thermoplastic carbon fiber reinforced polymers[J]. Micromachines,2021,12(2):205. DOI: 10.3390/mi12020205

    [8] 邱一, 刘壮, 李元成, 等. CFRP 复材飞秒激光小孔加工工艺研究[J]. 激光与红外, 2022, 52(2):196-201. DOI: 10.3969/j.issn.1001-5078.2022.02.008

    QIU Yi, LIU Zhuang, LI Yuancheng, et al. Technological investigation of femtosecond laser drilling of CFRP composite[J]. Laser & Infarared,2022,52(2):196-201(in Chinese). DOI: 10.3969/j.issn.1001-5078.2022.02.008

    [9] 杨建军. 飞秒激光超精细 “冷” 加工技术及其应用 (Ⅰ)[J]. 激光与光电子学进展, 2004, 41(3):42-52.

    YANG Jianjun. Femtosecond laser “cold” micro-machining and its advanced applications[J]. Laser & Optoelectronics Progress,2004,41(3):42-52(in Chinese).

    [10]

    CHEN W, LAI W, WANG Y, et al. Ultrafast laser engraving method to fabricate gravure plate for printed metal-mesh touch panel[J]. Micromachines,2015,6(10):1483-1489. DOI: 10.3390/mi6101433

    [11] 李佳群, 闫剑锋, 李欣, 等. 透明介质材料的超快激光微纳加工研究进展[J]. 中国激光, 2021, 48(2):0202019. DOI: 10.3788/CJL202148.0202019

    LI Jiaqun, YAN Jianfeng, LI Xin, et al. Research advancement on ultrafast laser microprocessing of transparent dielectrics[J]. Chiness Journal of Lasers,2021,48(2):0202019(in Chinese). DOI: 10.3788/CJL202148.0202019

    [12]

    CHEN Z, YANG J, LIU H, et al. A short review on functionalized metallic surfaces by ultrafast laser micromachining[J]. The International Journal of Advanced Manufacturing Technology,2022,119(11-12):6919-6948.

    [13]

    CAO Q, WANG Z, HE W, et al. Fabrication of super hydrophilic surface on alumina ceramic by ultrafast laser microprocessing[J]. Applied Surface Science,2021,557:149842. DOI: 10.1016/j.apsusc.2021.149842

    [14]

    PENILLA E, DEVIA-CRUZ L, WIEG A, et al. Ultrafast laser welding of ceramics[J]. Science,2019,365(6455):803-808. DOI: 10.1126/science.aaw6699

    [15]

    SHEN N, DATTA D, SCHAFFER C B, et al. Ablation of cytoskeletal filaments and mitochondria in live cells using a femtosecond laser nanoscissor[J]. Mechanics & Che-mistry of Biosystems,2005,2(1):17 - 25.

    [16]

    ROESKE F, BENTEROU J, LEE R, et al. Cutting and machining energetic materials with a femtosecond laser[J]. Propellants, Explosives, Pyrotechnics: An International Journal Dealing with Scientific and Technological Aspects of Energetic Materials,2003,28(2):53-57.

    [17] 苏笑星. 飞秒激光调控材料电子动态和光学性质的第一性原理研究[D]. 北京: 北京理工大学, 2018.

    SU Xiaoxing. First-principle simulations of electron dynamics and optical properties modulation of materials by femtosecond laser pulse[D]. Beijing: Beijing Institute of Technology, 2018(in Chinese).

    [18]

    ANISIMOV S, KAPELIOVICH B, PERELMAN T. Electron emission from metal surfaces exposed to ultrashort laser pulses[J]. JETP Letters,1974,66(2):375-377.

    [19]

    GLEZER E N, MAZUR E. Ultrafast-laser driven micro-explosions in transparent materials[J]. Applied Physics Letters,1997,71(7):882-884. DOI: 10.1063/1.119677

    [20]

    LIU J. Simple technique for measurements of pulsed Gaussian-beam spot sizes[J]. Optics Letters,1982,7(5):196-198. DOI: 10.1364/OL.7.000196

    [21]

    SATO Y, TSUKAMOTO M, MATSUOKA F, et al. Thermal effect on CFRP ablation with a 100 W class pulse fiber laser using a PCF amplifier[J]. Applied Surface Science,2017,417:250-255. DOI: 10.1016/j.apsusc.2017.03.286

    [22]

    LAU W S, LEE W B, PANG S. Pulsed Nd : YAG laser cutting of carbon fibre composite materials[J]. CIRP Annals,1990,39(1):179-182. DOI: 10.1016/S0007-8506(07)61030-0

    [23]

    FINGER J, WEINAND M, WORTMANN D. Ablation and cutting of carbon-fiber reinforced plastics using picosecond pulsed laser radiation with high average power[J]. Journal of Laser Applications,2013,25(4):042007. DOI: 10.2351/1.4807082

    [24]

    SALAMA A, LI L, MATIVENGA P, et al. TEA CO2 laser machining of CFRP composite[J]. Applied Physics A: Materials Science & Processing,2016,122(5):1-19.

    [25] 张开虎, 于洋, 张夏明, 等. 纤维增强树脂基复合材料激光切割热影响探析[J]. 导航与控制, 2019, 18(5):60-66.

    ZHANG Kaihu, YU Yang, ZHANG Xiaming, et al. Laser cutting induced heat affected zone in fiber reinforced polymer: A comparative analysis[J]. Navigation and Control,2019,18(5):60-66(in Chinese).

    [26]

    JIANG H, MA C, LI M, et al. Femtosecond laser drilling of cylindrical holes for carbon fiber-reinforced polymer (CFRP) composites[J]. Molecules,2021,26(10):2953. DOI: 10.3390/molecules26102953

    [27]

    LI Y, SHEN Y, HUANG Y, et al. Research on UV femtosecond pulsed laser cutting carbon fiber composite materials[C]//Proceedings of the 24th National Laser Conference & Fifteenth National Conference on Laser Technology and Optoelectronics. SPIE: 2020, 11717: 552-557.

    [28]

    KOTOV S. Dimensional processing of composite materials by picosecond pulsed ytterbium fiber laser[C]//Journal of Physics: Conference Series. National Research Nuclear University "MEPhI": IOP Publishing, 2017, 941(1): 012039.

    [29]

    WANG Y, HU J, LI K. Defect control strategy of carbon fiber reinforced polymer during nanosecond ultraviolet laser processing[J]. Materials Research Express,2019,6(8):085608. DOI: 10.1088/2053-1591/ab1696

    [30]

    LEONE C, MINGIONE E, GENNA S. Laser cutting of CFRP by quasi-continuous wave (QCW) fibre laser: Effect of process parameters and analysis of the HAZ index[J]. Composites Part B: Engineering,2021,224:109146. DOI: 10.1016/j.compositesb.2021.109146

    [31]

    ROMOLI L, FISCHER F, KLING R. A study on UV laser drilling of PEEK reinforced with carbon fibers[J]. Optics and Lasers in Engineering,2012,50(3):449-457. DOI: 10.1016/j.optlaseng.2011.10.008

    [32]

    FUJITA M, OHKAWA H, SOMEKAWA T, et al. Wavelength and pulsewidth dependences of laser processing of CFRP[J]. Physics Procedia,2016,83:1031-1036. DOI: 10.1016/j.phpro.2016.08.108

    [33]

    GEBAUER J, BURKHARDT M, FRANKE V, et al. On the ablation behavior of carbon fiber-reinforced plastics during laser surface treatment using pulsed lasers[J]. Materials,2020,13(24):5682. DOI: 10.3390/ma13245682

    [34] 杨剑, 张瑞, 赵煜, 等. 皮秒激光切割 AFRP 复合材料实验研究[J]. 复合材料学报, 2022, 39(1):149-160.

    YANG Jian, ZHANG Rui, ZHAO Yu, et al. Experimental study on picosecond laser cutting AFRP composites[J]. Acta Materiae Compositae Sinica,2022,39(1):149-160(in Chinese).

    [35] 盖晓晨. 飞秒激光微加工的系统建立及工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.

    GAI Xiaochen. Research on experimental system and technique of femtosecond laser micromachining[D]. Harbin: Harbin Institute of Technology, 2013(in Chinese).

    [36]

    OUYANG W, JIAO J, XU Z, et al. Experimental study on CFRP drilling with the picosecond laser “double rotation” cutting technique[J]. Optics & Laser Technology,2021,142:107238.

    [37]

    LI W, ZHANG G, HUANG Y, et al. UV laser high-quality drilling of CFRP plate with a new interlaced scanning mode[J]. Composite Structures,2021,273:114258. DOI: 10.1016/j.compstruct.2021.114258

    [38]

    NEGARESTANI R, LI L, SEZER H, et al. Nano-second pulsed DPSS Nd : YAG laser cutting of CFRP composites with mixed reactive and inert gases[J]. The International Journal of Advanced Manufacturing Technology,2010,49(5):553-566.

    [39]

    KONONENKO T, FREITAG C, KOMLENOK M, et al. Oxygen-assisted multipass cutting of carbon fiber reinforced plastics with ultra-short laser pulses[J]. Journal of Applied Physics,2014,115(10):103107. DOI: 10.1063/1.4868385

    [40]

    SATO Y, TSUKAMOTO M, MATSUOKA F, et al. Experimental investigation of CFRP cutting with nano second laser under air and Ar gas ambienc[C]//Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XX. San Francisco: SPIE: 2015, 9350: 93-99.

    [41] 花银群, 肖淘, 薛青, 等. 激光切割碳纤维复合材料的实验研究[J]. 激光技术, 2013, 37(5):565-570. DOI: 10.7510/jgjs.issn.1001-3806.2013.05.002

    HUA Yinqun, XIAO Tao, XUE Qing, et al. Experimental study about laser cutting of carbon fiber reinforced polymer[J]. Laser Technology,2013,37(5):565-570(in Chinese). DOI: 10.7510/jgjs.issn.1001-3806.2013.05.002

    [42]

    TANGWARODOMNUKUN V, KHAMWISET K, QI H. Investigation into laser machining of carbon fiber reinforced plastic in a flowing water layer[J]. The International Journal of Advanced Manufacturing Technology,2019,104(9):3629-3645.

    [43]

    KAAKKUNEN J, SILVENNOINEN M, PAIVASAARI K, et al. Water-assisted femtosecond laser pulse ablation of high aspect ratio holes[J]. Physics Procedia,2011,12:89-93. DOI: 10.1016/j.phpro.2011.03.110

    [44] 汪建新, 吴耀文, 张广义, 等. 碳纤维增强复合材料水导激光切割试验研究[J]. 中国机械工程, 2021, 32(13):1608-1616.

    WANG Jianxin, WU Yaowen, ZHANG Guangyi, et al. The experimental research on carbon fiber reinforced plastic cutting by using waterjet guided laser processing[J]. China Mechanical Engineering,2021,32(13):1608-1616(in Chinese).

    [45] 霍秀兵, 徐强, 王海波, 等. 简析树脂基碳纤维复合材料制孔缺陷以及钻削工艺[J]. 当代化工研究, 2021, 16:142-144. DOI: 10.3969/j.issn.1672-8114.2021.22.047

    HUO Xiubing, XU Qiang, WANG Haibo, et al. Brief analysis of hole-making defects and drilling technology of resin-based carbon fiber composites[J]. Modern Chemical Research,2021,16:142-144(in Chinese). DOI: 10.3969/j.issn.1672-8114.2021.22.047

    [46] 韩旭, 王续跃. 双层碳纤维复合板材激光切割试验研究[J]. 现代机械, 2019(4):50-56. DOI: 10.13667/j.cnki.52-1046/th.2019.04.013

    HAN Xu, WANG Xuyue. Experimental study on laser cutting of double-layer carbon fiber reinforced plastics sheets[J]. Modern Machinery,2019(4):50-56(in Chinese). DOI: 10.13667/j.cnki.52-1046/th.2019.04.013

    [47]

    PAN C, HOCHENG H. The anisotropic heat-affected zone in the laser grooving of fiber-reinforced composite material[J]. Journal of Materials Processing Technology,1996,62(1-3):54-60. DOI: 10.1016/0924-0136(95)02192-2

    [48]

    JUNG K W, KAWAHITO Y, KATAYAMA S. Ultra-high speed disk laser cutting of carbon fiber reinforced plastics[J]. Journal of Laser Applications,2012,24(1):012007. DOI: 10.2351/1.3673521

    [49]

    STAEHR R, BLUEMEL S, HANSEN P, et al. The influence of moisture content on the heat affected zone and the resulting in-plane shear strength of laser cut thermoplastic CFRP[J]. Plastics, Rubber and Composites,2015,44(3):111-116. DOI: 10.1179/1743289814Y.0000000114

    [50]

    ZHENG L, WANG L, LU M, et al. Research on laser precision cutting of carbon fiber reinforced polymer for satellite[C]//24th National Laser Conference & Fifteenth National Conference on Laser Technology and Optoelectronics. Shanghai: SPIE: 2020, 11717: 814-819.

    [51] 路明雨, 张明, 张开虎, 等. 高模量碳纤维增强树脂基复合材料的皮秒激光加工阈值特性[J]. 复合材料学报, 2021, 38(11): 3601-3609.

    LU Mingyu, ZHANG Ming, ZHANG Kaihu, et al. Threshold properties of high modulus carbon fiber reinforced plastic composite with picosecond laser processing[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3601-3609(in Chinese).

    [52]

    KUMAR D, SINGH K K. Effect of nanofiller on fibre laser drilling quality of carbon fibre reinforced polymer compo-site laminates[J]. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering,2019,233(4):857-870. DOI: 10.1177/0954408918812253

    [53]

    CANISIUS M, HERZOG D, SCHMIDT-LEHR M, et al. Laser cutting of carbon fiber-reinforced plastic with an absorber transparent for visible spectrum[J]. Journal of Laser Applications,2015,27(3):032003. DOI: 10.2351/1.4916532

    [54] 宋抒航. 碳纤维复合材料激光切割实验研究[J]. 机械制造, 2015, 53(613):49-51. DOI: 10.3969/j.issn.1000-4998.2015.09.016

    SONG Shuhang. Experimental study on laser cutting of carbon fiber composites[J]. Machine Manufacturing,2015,53(613):49-51(in Chinese). DOI: 10.3969/j.issn.1000-4998.2015.09.016

    [55]

    YU Z, XU L, CAO W, et al. Study on picosecond laser processing of blind holes in carbon fiber-reinforced plastics[J]. Applied Physics A: Materials Science & Processing ,2020,126(12):1-10.

    [56]

    NEGARESTANI R, SUNDAR M, SHEIKH M, et al. Numeri-cal simulation of laser machining of carbon-fibre-reinforced composites[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture,2010,224(7):1017-1027. DOI: 10.1243/09544054JEM1662

    [57]

    XU L, LU J, LI K, et al. Removal mechanism of CFRP by laser multi direction interaction[J]. Optics & Laser Technology,2021,143:107281.

    [58] 马维刚, 王海东, 张兴, 等. 飞秒脉冲激光加热金属薄膜的理论和实验研究[J]. 物理学报, 2011, 60(6):421-427. DOI: 10.7498/aps.60.064401

    MA Weigang, WANG Haidong, ZHANG Xing, et al. Theoretical and experimental study of femtosecond pulse laser heating on thin metal film[J]. Acta Physica Sinica,2011,60(6):421-427(in Chinese). DOI: 10.7498/aps.60.064401

    [59] 纪利平, 宋梓钰, 孙亚萍, 等. 基于COMSOL的皮秒激光单脉冲烧蚀铜片[J]. 激光与光电子学进展, 2018, 55(10):101402.

    JI Liping, SONG Ziyu, SUN Yaping, et al. Single-shot picosecond laser ablation of copper based on COMSOL[J]. Laser & Optoelectronics Progress,2018,55(10):101402(in Chinese).

    [60]

    WU Y, CHEN F, DU G, et al. Ultrafast thermalization dynamics of gold-coated fused silica irradiated by a femtosecond laser[J]. Applied Thermal Engineering,2014,71(1):56-61. DOI: 10.1016/j.applthermaleng.2014.06.011

    [61]

    HU J, XU H, LI C. Laser absorption of carbon fiber reinforced polymer with randomly distributed carbon fibers[J]. Laser Physics,2018,28(3):036002. DOI: 10.1088/1555-6611/aa9d07

    [62]

    ZHANG N, ZHU X, YANG J, et al. Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum[J]. Physical Review Letters,2007,99(16):167602. DOI: 10.1103/PhysRevLett.99.167602

    [63]

    WANG M W, WANG X L, ZHAI H C. Pulsed digital micro-holography of femto-second order by double-wavelength recording[J]. Optoelectronics Letters,2007,3(2):133-135. DOI: 10.1007/s11801-007-7011-5

    [64] 丁铠文, 王聪, 罗志, 等. 超快激光光束整形原理与方法及其在功能性微结构制造中的应用[J]. 中国激光, 2021, 48(2):0202005. DOI: 10.3788/CJL202148.0202005

    DING Kaiwen, WANG Cong, LUO Zhi, et al. Principle and method of ultrafast laser beam shaping and its application in functional microstructure fabrication[J]. Chinese Jour-nal of Lasers,2021,48(2):0202005(in Chinese). DOI: 10.3788/CJL202148.0202005

    [65]

    WANG M, YU Z, ZHANG N, et al. Drilling high aspect ratio holes by femtosecond laser filament with aberrations[J]. Frontiers of Optoelectronics,2021,14(4):522-528. DOI: 10.1007/s12200-021-1214-4

    [66] 付丽丽, 常峻巍, 陈佳琪, 等. 平顶飞秒激光经圆锥透镜在熔融石英中成丝及超连续辐射[J]. 物理学报, 2020, 69(4):110-114. DOI: 10.7498/aps.69.20191350

    FU Lili, CHANG Junwei, CHEN Jiaqi, et al. Filamentation and supercontinuum emission generated from flattened femtosecond laser beam by use of axicon in fused silica[J]. Acta Physica Sinica,2020,69(4):110-114(in Chinese). DOI: 10.7498/aps.69.20191350

  • 期刊类型引用(2)

    1. 李友明,景昭,吴增文,李冰垚,刘琛,葛敬冉,梁军. 随机疲劳下复合材料剩余刚度-剩余强度关联模型及寿命预测. 强度与环境. 2024(01): 23-30 . 百度学术
    2. 马帅,金珊珊. 碳纤维增强复合材料对钢筋混凝土的加固作用. 材料导报. 2022(S1): 252-256 . 百度学术

    其他类型引用(1)

图(17)  /  表(3)
计量
  • 文章访问数:  1617
  • HTML全文浏览量:  757
  • PDF下载量:  224
  • 被引次数: 3
出版历程
  • 收稿日期:  2022-05-24
  • 修回日期:  2022-07-14
  • 录用日期:  2022-07-22
  • 网络出版日期:  2022-08-04
  • 刊出日期:  2023-05-14

目录

/

返回文章
返回