留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

BFRP筋钢-混组合梁高温后力学性能试验

武芳文 陈中村 何岚清 左剑 樊州

武芳文, 陈中村, 何岚清, 等. BFRP筋钢-混组合梁高温后力学性能试验[J]. 复合材料学报, 2023, 40(5): 2938-2950. doi: 10.13801/j.cnki.fhclxb.20220804.004
引用本文: 武芳文, 陈中村, 何岚清, 等. BFRP筋钢-混组合梁高温后力学性能试验[J]. 复合材料学报, 2023, 40(5): 2938-2950. doi: 10.13801/j.cnki.fhclxb.20220804.004
WU Fangwen, CHEN Zhongcun, HE Lanqing, et al. Mechanical properties experiment of steel-concrete composite beams reinforced with BFRP bars after high temperature[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2938-2950. doi: 10.13801/j.cnki.fhclxb.20220804.004
Citation: WU Fangwen, CHEN Zhongcun, HE Lanqing, et al. Mechanical properties experiment of steel-concrete composite beams reinforced with BFRP bars after high temperature[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2938-2950. doi: 10.13801/j.cnki.fhclxb.20220804.004

BFRP筋钢-混组合梁高温后力学性能试验

doi: 10.13801/j.cnki.fhclxb.20220804.004
基金项目: 中央高校基本科研业务费(300102212212);陕西省自然科学基础研究计划重点项目(2022 JZ-32)
详细信息
    通讯作者:

    武芳文,工学博士,副教授,博士生导师,研究方向为钢-混凝土组合结构理论与应用 E-mail: wufangwen@chd.edu.cn

  • 中图分类号: TB332;U441.4

Mechanical properties experiment of steel-concrete composite beams reinforced with BFRP bars after high temperature

Funds: Fundamental Research Funds for the Central Universities, CHD (300102212212); Natural Science Basic Research Program of Shaanxi (2022 JZ-32)
  • 摘要: 设计了常温(25℃)、200℃、400℃和600℃四个工况,通过模型试验方法探究了玄武岩纤维增强树脂复合材料(Basalt fiber reinforced polymer,BFRP)筋钢-混组合梁高温后的破坏形态和力学性能。通过分析试验梁裂缝开展、挠度变形、温度场和破坏过程规律,研究BFRP筋和普通钢筋钢-混组合梁的破坏模式和承载能力。结果表明:经历400℃高温后,BFRP筋劣化导致力学性能大幅降低;筋体膨胀导致混凝土板开裂,其裂缝开展与普通钢筋钢-混组合梁显著不同,主裂缝沿横向筋材规律开展,且裂缝较宽。温度低于400℃时,由于混凝土的包裹,BFRP筋未达到劣化温度,两种钢-混组合梁承载能力和外观差别较小;600℃后,BFRP筋劣化,削弱了混凝土板刚度和强度,导致BFRP筋钢-混组合梁承载能力比普通钢筋钢-混组合梁降低更多;BFRP筋钢-混组合梁因整体刚度较小,加载后变形更大。高温后两种钢-混组合梁破坏模式相似,均为剪切破坏,有明显弹性、弹塑性和破坏阶段;600℃时,两种钢-混组合梁延性大幅降低,塑性变形减少,破坏较为突然。研究成果可为BFRP筋在钢-混组合梁中的应用提供参考。

     

  • 图  1  试验梁尺寸

    Figure  1.  Test beam size

    图  2  高温试验

    Figure  2.  High temperature test

    图  3  变形测点布置

    Figure  3.  Layout of deformation measuring points

    图  4  高温炉升温曲线

    Figure  4.  Heating curves of furnace

    图  5  热电偶布置

    Figure  5.  Thermocouple arrangement

    图  6  加载装置图

    Figure  6.  Loading scheme

    图  7  高温后的玄武岩纤维增强树脂复合材料(BFRP)筋

    Figure  7.  Basalt fiber reinforced polymer (BFRP) bars after high temperature

    图  8  材料力学性能试验

    Figure  8.  Material mechanical properties test

    图  9  高温后各材料力学性能

    Figure  9.  Mechanical properties of materials after high temperature

    ftu—Ultimate tensile strength of steel; fy—Yield strength of steel; fcu—Ultimate compressive strength of concrete cube

    图  10  高温后钢-混组合梁外观

    Figure  10.  Appearance of steel-concrete composite beams after high temperature

    图  11  600℃时温度沿钢-混组合梁梁长的变化

    Figure  11.  Temperature changes along beam length of steel-concrete composite beam at 600℃

    h—Distance from the bottom of the beam

    图  12  温度沿钢-混组合梁梁高的变化

    Figure  12.  Temperature change along the height of steel-concrete composite beam

    T—Furnace temperature

    图  13  钢-混组合梁混凝土板升温曲线

    Figure  13.  Heating curves of steel-concrete composite beam concrete slab

    图  14  钢-混组合梁破坏图

    Figure  14.  Failure diagram of steel-concrete composite beams

    图  15  钢-混组合梁荷载-挠度曲线

    Figure  15.  Load-deflection curves of steel-concrete composite beams

    图  16  钢-混组合梁跨中截面应变分布

    Figure  16.  Strain distribution at mid-span section of steel-concrete composite beams

    表  1  C50混凝土配合比

    Table  1.   C50 concrete mix proportion kg/m3

    CementMineral finesSandCrushed stoneWaterWater reducer
    335.283.265511161708.1
    下载: 导出CSV

    表  2  钢-混组合梁设计参数

    Table  2.   Design parameters of steel-concrete composite beams

    NumberMaterial compositionTest temperature/℃
    S-SCB-25C50+HRB400 25
    S-SCB-200C50+HRB400200
    S-SCB-400C50+HRB400400
    S-SCB-600C50+HRB400600
    BFRP-SCB-25C50+BFRP bars 25
    BFRP-SCB-200C50+BFRP bars200
    BFRP-SCB-400C50+BFRP bars400
    BFRP-SCB-600C50+BFRP bars600
    Notes: S, BFRP—Type of reinforcement; SCB—Steel-concrete composite beam; Figure—Test temperature; such as BFRP-SCB-200—Steel-concrete composite beam with BFRP bars at 200℃.
    下载: 导出CSV

    表  3  钢-混组合梁残余承载能力

    Table  3.   Residual bearing capacity of steel-concrete composite beams

    Test beamPu (25℃)/kNPu (200℃)/kNPu (400℃)/kNPu (600℃)/kN
    S-SCB512.8476.2439.1390.0
    BFRP-SCB506.3465.9441.1332.7
    Note: Pu—Ultimate bearing capacity.
    下载: 导出CSV
  • [1] 卫星, 肖林, 温宗意, 等. 钢混组合结构桥梁2020年度研究进展[J]. 土木与环境工程学报, 2021, 43(S1):107-119.

    WEI Xing, XIAO Lin, WEN Zongyi, et al. State-of-the-art review of steel-concrete composite bridges in 2020[J]. Journal of Civil and Environmental Engineering,2021,43(S1):107-119(in Chinese).
    [2] 《中国公路学报》编辑部. 中国桥梁工程学术研究综述·2021[J]. 中国公路学报, 2021, 34(2):1-97. doi: 10.3969/j.issn.1001-7372.2021.02.002

    Editorial Department of China Journal of Highway and Transport. Review on China's bridge engineering research: 2021[J]. China Journal of Highway and Transport,2021,34(2):1-97(in Chinese). doi: 10.3969/j.issn.1001-7372.2021.02.002
    [3] 王言磊, 孙会杰, 曹明敏. 环境侵蚀下钢-混凝土组合梁耐久性使用寿命分析[J]. 建筑结构学报, 2015, 36(S1):355-359. doi: 10.14006/j.jzjgxb.2015.S1.054

    WANG Yanlei, SUN Huijie, CAO Mingmin. Analysis of durability service life for steel-concrete composite beams under[J]. Journal of Building Structures,2015,36(S1):355-359(in Chinese). doi: 10.14006/j.jzjgxb.2015.S1.054
    [4] ABED F, ALHAFIZ A R. Effect of basalt fibers on the flexural behavior of concrete beams reinforced with BFRP bars[J]. Composite Structures,2019,215:23-34. doi: 10.1016/j.compstruct.2019.02.050
    [5] AHMED M O, WADDAH A H, MOHAMMAD K. Durability and mechanical properties of concrete reinforced with basalt fiber-reinforced polymer (BFRP) bars: Towards sustainable infrastructure[J]. Polymers,2021,13(9):1402. doi: 10.3390/polym13091402
    [6] GARBACZ A, URBAŃSKI M, ŁAPKO A. BFRP bars as an alternative reinforcement of concrete structures–Compatibi-lity and adhesion issues[J]. Advanced Materials Research,2015,3903(1129):233-241.
    [7] HOU W, LI Z Q, GAO W Y, et al. Flexural behavior of RC beams strengthened with BFRP bars-reinforced ECC matrix[J]. Composite Structures, 2020, 241: 112092.
    [8] DUIC J, KENNO S, DAS S. Performance of concrete beams reinforced with basalt fibre composite rebar[J]. Construction and Building Materials,2018,176:470-481. doi: 10.1016/j.conbuildmat.2018.04.208
    [9] 霍宝荣, 张向东. BFRP筋的力学性能试验[J]. 沈阳建筑大学学报(自然科学版), 2011, 27(4):626-630.

    HUO Baorong, ZHANG Xiangdong. Experimental study of mechanical properties of the BFRP bar in different diameters[J]. Journal of Shenyang Jianzhu University (Natural Science),2011,27(4):626-630(in Chinese).
    [10] 吴智深, 汪昕, 史健喆. 玄武岩纤维复合材料性能提升及其新型结构[J]. 工程力学, 2020, 37(5):1-14.

    WU Zhishen, WANG Xin, SHI Jianzhe. Advancement of basalt fiber-reinforced polymers (BFRPs) and the novel structures reinforced with BFRPs[J]. Engineering Mecha-nics,2020,37(5):1-14(in Chinese).
    [11] 姚伟发, 黄侨, 张娟秀. 火灾环境下钢-混凝土组合梁力学性能试验研究[J]. 工程力学, 2016, 33(8):58 -65. doi: 10.6052/j.issn.1000-4750.2014.11.1000

    YAO Weifa, HUANG Qiao, ZHANG Juanxiu. Experimental study on mechanical performance of steel-concrete girders under fire loading[J]. Engineering Mechanics,2016,33(8):58 -65(in Chinese). doi: 10.6052/j.issn.1000-4750.2014.11.1000
    [12] 李光辉. 高温后FRP筋混凝土梁静力与疲劳受弯性能试验研究[D]. 郑州: 郑州大学, 2019.

    LI Guanghui. Flexural behavior of fiber reinforced polymer (FRP) bars reinforced concrete beams under static and fatigue loads after elevated temperature exposure[D]. Zhengzhou: Zhengzhou University, 2019(in Chinese).
    [13] 李趁趁, 王英来, 赵军, 等. 高温后FRP筋纵向拉伸性能[J]. 建筑材料学报, 2014, 17(6):1076-1081. doi: 10.3969/j.issn.1007-9629.2014.06.024

    LI Chenchen, WANG Yinglai, ZHAO Jun, et al. Longitudi-nal tensile properties of FRP bars after high temperature[J]. Journal of Building Materials,2014,17(6):1076-1081(in Chinese). doi: 10.3969/j.issn.1007-9629.2014.06.024
    [14] 唐利, 张春涛, 李彪, 等. 高温作用下BFRP筋力学性能试验研究[J]. 建筑科学, 2017, 33(1):36-40. doi: 10.13614/j.cnki.11-1962/tu.2017.01.007

    TANG Li, ZHANG Chuntao, LI Biao, et al. Experimental research on the mechanical properties of BFRP under high temperature[J]. Building Science,2017,33(1):36-40(in Chinese). doi: 10.13614/j.cnki.11-1962/tu.2017.01.007
    [15] HU Y J, JIANG C, LIU W, et al. Degradation of the in-plane shear modulus of structural BFRP laminates due to high temperature[J]. Sensors,2018,18(10):3361. doi: 10.3390/s18103361
    [16] 姚伟发, 黄侨, 张娟秀. 钢-混组合梁的火灾试验及剩余承载力[J]. 东南大学学报(自然科学版), 2016, 46(2):347-352. doi: 10.3969/j.issn.1001-0505.2016.02.019

    YAO Weifa, HUANG Qiao, ZHANG Juanxiu. Fire experiment and residual strength of steel-concrete composite girders[J]. Journal of Southeast University (Natural Science Edition),2016,46(2):347-352(in Chinese). doi: 10.3969/j.issn.1001-0505.2016.02.019
    [17] 张岗, 宋超杰, 李徐阳, 等. 燃油火灾下预应力混凝土梁耐火试验[J]. 中国公路学报, 2022, 35(1):210-221. doi: 10.3969/j.issn.1001-7372.2022.01.019

    ZHANG Gang, SONG Chaojie, LI Xuyang, et al. Experimental study on fire resistance of prestressed concrete girders under fuel fire exposure[J]. China Journal of Highway and Transport,2022,35(1):210-221(in Chinese). doi: 10.3969/j.issn.1001-7372.2022.01.019
    [18] 张岗, 宗如欢, 施颖, 等. 钢-混组合简支箱梁耐火性能研究[J]. 桥梁建设, 2017, 47(3):41-46. doi: 10.3969/j.issn.1003-4722.2017.03.008

    ZHANG Gang, ZONG Ruhuan, SHI Ying, et al. Study of fire resistance performance of simply-supported steel and concrete composite box girder[J]. Bridge Construction,2017,47(3):41-46(in Chinese). doi: 10.3969/j.issn.1003-4722.2017.03.008
    [19] HAKEM A, HAYA M, NOOR T, et al. Serviceability and flexural behavior of concrete beams reinforced with basalt fiber-reinforced polymer (BFRP) bars exposed to harsh conditions[J]. Polymers,2020,12(9):2110. doi: 10.3390/polym12092110
    [20] 刘静雅, 霍静思, 刘艳芝. CFRP约束高温后混凝土力学性能试验研究[J]. 工程力学, 2017, 34(9):158-166. doi: 10.6052/j.issn.1000-4750.2016.05.0348

    LIU Jingya, HUO Jingsi, LIU Yanzhi. Experimental study on the mechanical performance of post-fire concrete confined by CFRP sheets[J]. Engineering Mechanics,2017,34(9):158-166(in Chinese). doi: 10.6052/j.issn.1000-4750.2016.05.0348
    [21] AHMED H, FOUAD K, HEND E, et al. Behaviour of concrete beams reinforced using basalt and steel bars under fire exposure[J]. Engineering Structures,2021,238:112251. doi: 10.1016/j.engstruct.2021.112251
    [22] 上海市城市建设设计研究总院. 钢-混凝土组合桥梁设计规范: GB/T 50917—2013[S]. 北京: 中国计划出版社, 2013.

    Shanghai Urban Design Research Institute. Code for design of steel and concrete composite bridges: GB/T 50917—2013[S]. Beijing: China Planning Press, 2013(in Chinese).
    [23] ZHU B, LIU H, LIU G, et al. Bond behavior between BFRP bars and hybrid fiber recycled aggregate concrete after high temperature[J]. Journal of Renewable Materials,2021,9(3):507-521. doi: 10.32604/jrm.2021.013580
    [24] 陆燕青, 周星宇, 周济, 等. 火灾高温后混凝土的轴心抗压强度及评估方法[J]. 混凝土, 2021(7):22-27. doi: 10.3969/j.issn.1002-3550.2021.07.005

    LU Yanqing, ZHOU Xingyu, ZHOU Ji, et al. Axial compres-sive strength and assessment of concrete after fire temperature[J]. Concrete,2021(7):22-27(in Chinese). doi: 10.3969/j.issn.1002-3550.2021.07.005
    [25] HAGER I. Behaviour of cement concrete at high tempera-ture[J]. Bulletin of the Polish Academy of Sciences-Technical Sciences,2013,61(1):145-154. doi: 10.2478/bpasts-2013-0013
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  924
  • HTML全文浏览量:  436
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-10
  • 修回日期:  2022-07-18
  • 录用日期:  2022-07-20
  • 网络出版日期:  2022-08-05
  • 刊出日期:  2023-05-15

目录

    /

    返回文章
    返回