Mechanical properties experiment of steel-concrete composite beams reinforced with BFRP bars after high temperature
-
摘要: 设计了常温(25℃)、200℃、400℃和600℃四个工况,通过模型试验方法探究了玄武岩纤维增强树脂复合材料(Basalt fiber reinforced polymer,BFRP)筋钢-混组合梁高温后的破坏形态和力学性能。通过分析试验梁裂缝开展、挠度变形、温度场和破坏过程规律,研究BFRP筋和普通钢筋钢-混组合梁的破坏模式和承载能力。结果表明:经历400℃高温后,BFRP筋劣化导致力学性能大幅降低;筋体膨胀导致混凝土板开裂,其裂缝开展与普通钢筋钢-混组合梁显著不同,主裂缝沿横向筋材规律开展,且裂缝较宽。温度低于400℃时,由于混凝土的包裹,BFRP筋未达到劣化温度,两种钢-混组合梁承载能力和外观差别较小;600℃后,BFRP筋劣化,削弱了混凝土板刚度和强度,导致BFRP筋钢-混组合梁承载能力比普通钢筋钢-混组合梁降低更多;BFRP筋钢-混组合梁因整体刚度较小,加载后变形更大。高温后两种钢-混组合梁破坏模式相似,均为剪切破坏,有明显弹性、弹塑性和破坏阶段;600℃时,两种钢-混组合梁延性大幅降低,塑性变形减少,破坏较为突然。研究成果可为BFRP筋在钢-混组合梁中的应用提供参考。Abstract: Four working conditions of room temperature (25℃), 200℃, 400℃ and 600℃ were designed. The failure modes and mechanical properties of steel-concrete composite beams reinforced with basalt fiber reinforced polymer (BFRP) bars after high temperature were studied by the model experiment method. The failure modes and bearing capacity of steel-concrete composite beams reinforced with BFRP bars and steel bars were studied by analyzing the test beam’s crack development, deflection deformation, temperature field and failure process. The results show that the mechanical properties of BFRP bars are significantly reduced after a high temperature of 400℃. The mechanical properties of composite beams are significantly reduced after the high temperature of 400℃ due to the deterioration of BFRP bars. The expansion of BFRP bars leads to the cracking of concrete slab, and the crack development is obviously different from that of steel-concrete composite beams reinforced with steel bars. The main cracks regularly develop along with the transverse reinforcements, and the cracks are wider. When the temperature is lower than 400℃, BFRP bars do not reach the deterioration temperature due to the wrapping of concrete, and the bearing capacity and appearance of the two steel-concrete composite beams have little difference. After 600℃, the deterioration of BFRP bars weakens the stiffness and strength of concrete slabs, resulting in a decrease in the bearing capacity of steel-concrete composite beams reinforced with BFRP bars more than steel bars. The steel-concrete composite beams reinforced with BFRP bars have larger deformation after loading due to the small overall stiffness. After high temperature, the failure modes of the two steel-concrete composite beams are similar, which are shear failure with evident elastic, elastoplastic and failure stages. At 600℃, the ductility of the two steel-concrete composite beams is significantly reduced, the plastic deformation is reduced, and the failure is more sudden. The research results can provide a reference for applying BFRP bars in steel-concrete composite beams.
-
Key words:
- steel-concrete composite beam /
- model test /
- high temperature /
- BFRP bars /
- mechanical properties
-
表 1 C50混凝土配合比
Table 1. C50 concrete mix proportion
kg/m3 Cement Mineral fines Sand Crushed stone Water Water reducer 335.2 83.2 655 1116 170 8.1 表 2 钢-混组合梁设计参数
Table 2. Design parameters of steel-concrete composite beams
Number Material composition Test temperature/℃ S-SCB-25 C50+HRB400 25 S-SCB-200 C50+HRB400 200 S-SCB-400 C50+HRB400 400 S-SCB-600 C50+HRB400 600 BFRP-SCB-25 C50+BFRP bars 25 BFRP-SCB-200 C50+BFRP bars 200 BFRP-SCB-400 C50+BFRP bars 400 BFRP-SCB-600 C50+BFRP bars 600 Notes: S, BFRP—Type of reinforcement; SCB—Steel-concrete composite beam; Figure—Test temperature; such as BFRP-SCB-200—Steel-concrete composite beam with BFRP bars at 200℃. 表 3 钢-混组合梁残余承载能力
Table 3. Residual bearing capacity of steel-concrete composite beams
Test beam Pu (25℃)/kN Pu (200℃)/kN Pu (400℃)/kN Pu (600℃)/kN S-SCB 512.8 476.2 439.1 390.0 BFRP-SCB 506.3 465.9 441.1 332.7 Note: Pu—Ultimate bearing capacity. -
[1] 卫星, 肖林, 温宗意, 等. 钢混组合结构桥梁2020年度研究进展[J]. 土木与环境工程学报, 2021, 43(S1):107-119.WEI Xing, XIAO Lin, WEN Zongyi, et al. State-of-the-art review of steel-concrete composite bridges in 2020[J]. Journal of Civil and Environmental Engineering,2021,43(S1):107-119(in Chinese). [2] 《中国公路学报》编辑部. 中国桥梁工程学术研究综述·2021[J]. 中国公路学报, 2021, 34(2):1-97. doi: 10.3969/j.issn.1001-7372.2021.02.002Editorial Department of China Journal of Highway and Transport. Review on China's bridge engineering research: 2021[J]. China Journal of Highway and Transport,2021,34(2):1-97(in Chinese). doi: 10.3969/j.issn.1001-7372.2021.02.002 [3] 王言磊, 孙会杰, 曹明敏. 环境侵蚀下钢-混凝土组合梁耐久性使用寿命分析[J]. 建筑结构学报, 2015, 36(S1):355-359. doi: 10.14006/j.jzjgxb.2015.S1.054WANG Yanlei, SUN Huijie, CAO Mingmin. Analysis of durability service life for steel-concrete composite beams under[J]. Journal of Building Structures,2015,36(S1):355-359(in Chinese). doi: 10.14006/j.jzjgxb.2015.S1.054 [4] ABED F, ALHAFIZ A R. Effect of basalt fibers on the flexural behavior of concrete beams reinforced with BFRP bars[J]. Composite Structures,2019,215:23-34. doi: 10.1016/j.compstruct.2019.02.050 [5] AHMED M O, WADDAH A H, MOHAMMAD K. Durability and mechanical properties of concrete reinforced with basalt fiber-reinforced polymer (BFRP) bars: Towards sustainable infrastructure[J]. Polymers,2021,13(9):1402. doi: 10.3390/polym13091402 [6] GARBACZ A, URBAŃSKI M, ŁAPKO A. BFRP bars as an alternative reinforcement of concrete structures–Compatibi-lity and adhesion issues[J]. Advanced Materials Research,2015,3903(1129):233-241. [7] HOU W, LI Z Q, GAO W Y, et al. Flexural behavior of RC beams strengthened with BFRP bars-reinforced ECC matrix[J]. Composite Structures, 2020, 241: 112092. [8] DUIC J, KENNO S, DAS S. Performance of concrete beams reinforced with basalt fibre composite rebar[J]. Construction and Building Materials,2018,176:470-481. doi: 10.1016/j.conbuildmat.2018.04.208 [9] 霍宝荣, 张向东. BFRP筋的力学性能试验[J]. 沈阳建筑大学学报(自然科学版), 2011, 27(4):626-630.HUO Baorong, ZHANG Xiangdong. Experimental study of mechanical properties of the BFRP bar in different diameters[J]. Journal of Shenyang Jianzhu University (Natural Science),2011,27(4):626-630(in Chinese). [10] 吴智深, 汪昕, 史健喆. 玄武岩纤维复合材料性能提升及其新型结构[J]. 工程力学, 2020, 37(5):1-14.WU Zhishen, WANG Xin, SHI Jianzhe. Advancement of basalt fiber-reinforced polymers (BFRPs) and the novel structures reinforced with BFRPs[J]. Engineering Mecha-nics,2020,37(5):1-14(in Chinese). [11] 姚伟发, 黄侨, 张娟秀. 火灾环境下钢-混凝土组合梁力学性能试验研究[J]. 工程力学, 2016, 33(8):58 -65. doi: 10.6052/j.issn.1000-4750.2014.11.1000YAO Weifa, HUANG Qiao, ZHANG Juanxiu. Experimental study on mechanical performance of steel-concrete girders under fire loading[J]. Engineering Mechanics,2016,33(8):58 -65(in Chinese). doi: 10.6052/j.issn.1000-4750.2014.11.1000 [12] 李光辉. 高温后FRP筋混凝土梁静力与疲劳受弯性能试验研究[D]. 郑州: 郑州大学, 2019.LI Guanghui. Flexural behavior of fiber reinforced polymer (FRP) bars reinforced concrete beams under static and fatigue loads after elevated temperature exposure[D]. Zhengzhou: Zhengzhou University, 2019(in Chinese). [13] 李趁趁, 王英来, 赵军, 等. 高温后FRP筋纵向拉伸性能[J]. 建筑材料学报, 2014, 17(6):1076-1081. doi: 10.3969/j.issn.1007-9629.2014.06.024LI Chenchen, WANG Yinglai, ZHAO Jun, et al. Longitudi-nal tensile properties of FRP bars after high temperature[J]. Journal of Building Materials,2014,17(6):1076-1081(in Chinese). doi: 10.3969/j.issn.1007-9629.2014.06.024 [14] 唐利, 张春涛, 李彪, 等. 高温作用下BFRP筋力学性能试验研究[J]. 建筑科学, 2017, 33(1):36-40. doi: 10.13614/j.cnki.11-1962/tu.2017.01.007TANG Li, ZHANG Chuntao, LI Biao, et al. Experimental research on the mechanical properties of BFRP under high temperature[J]. Building Science,2017,33(1):36-40(in Chinese). doi: 10.13614/j.cnki.11-1962/tu.2017.01.007 [15] HU Y J, JIANG C, LIU W, et al. Degradation of the in-plane shear modulus of structural BFRP laminates due to high temperature[J]. Sensors,2018,18(10):3361. doi: 10.3390/s18103361 [16] 姚伟发, 黄侨, 张娟秀. 钢-混组合梁的火灾试验及剩余承载力[J]. 东南大学学报(自然科学版), 2016, 46(2):347-352. doi: 10.3969/j.issn.1001-0505.2016.02.019YAO Weifa, HUANG Qiao, ZHANG Juanxiu. Fire experiment and residual strength of steel-concrete composite girders[J]. Journal of Southeast University (Natural Science Edition),2016,46(2):347-352(in Chinese). doi: 10.3969/j.issn.1001-0505.2016.02.019 [17] 张岗, 宋超杰, 李徐阳, 等. 燃油火灾下预应力混凝土梁耐火试验[J]. 中国公路学报, 2022, 35(1):210-221. doi: 10.3969/j.issn.1001-7372.2022.01.019ZHANG Gang, SONG Chaojie, LI Xuyang, et al. Experimental study on fire resistance of prestressed concrete girders under fuel fire exposure[J]. China Journal of Highway and Transport,2022,35(1):210-221(in Chinese). doi: 10.3969/j.issn.1001-7372.2022.01.019 [18] 张岗, 宗如欢, 施颖, 等. 钢-混组合简支箱梁耐火性能研究[J]. 桥梁建设, 2017, 47(3):41-46. doi: 10.3969/j.issn.1003-4722.2017.03.008ZHANG Gang, ZONG Ruhuan, SHI Ying, et al. Study of fire resistance performance of simply-supported steel and concrete composite box girder[J]. Bridge Construction,2017,47(3):41-46(in Chinese). doi: 10.3969/j.issn.1003-4722.2017.03.008 [19] HAKEM A, HAYA M, NOOR T, et al. Serviceability and flexural behavior of concrete beams reinforced with basalt fiber-reinforced polymer (BFRP) bars exposed to harsh conditions[J]. Polymers,2020,12(9):2110. doi: 10.3390/polym12092110 [20] 刘静雅, 霍静思, 刘艳芝. CFRP约束高温后混凝土力学性能试验研究[J]. 工程力学, 2017, 34(9):158-166. doi: 10.6052/j.issn.1000-4750.2016.05.0348LIU Jingya, HUO Jingsi, LIU Yanzhi. Experimental study on the mechanical performance of post-fire concrete confined by CFRP sheets[J]. Engineering Mechanics,2017,34(9):158-166(in Chinese). doi: 10.6052/j.issn.1000-4750.2016.05.0348 [21] AHMED H, FOUAD K, HEND E, et al. Behaviour of concrete beams reinforced using basalt and steel bars under fire exposure[J]. Engineering Structures,2021,238:112251. doi: 10.1016/j.engstruct.2021.112251 [22] 上海市城市建设设计研究总院. 钢-混凝土组合桥梁设计规范: GB/T 50917—2013[S]. 北京: 中国计划出版社, 2013.Shanghai Urban Design Research Institute. Code for design of steel and concrete composite bridges: GB/T 50917—2013[S]. Beijing: China Planning Press, 2013(in Chinese). [23] ZHU B, LIU H, LIU G, et al. Bond behavior between BFRP bars and hybrid fiber recycled aggregate concrete after high temperature[J]. Journal of Renewable Materials,2021,9(3):507-521. doi: 10.32604/jrm.2021.013580 [24] 陆燕青, 周星宇, 周济, 等. 火灾高温后混凝土的轴心抗压强度及评估方法[J]. 混凝土, 2021(7):22-27. doi: 10.3969/j.issn.1002-3550.2021.07.005LU Yanqing, ZHOU Xingyu, ZHOU Ji, et al. Axial compres-sive strength and assessment of concrete after fire temperature[J]. Concrete,2021(7):22-27(in Chinese). doi: 10.3969/j.issn.1002-3550.2021.07.005 [25] HAGER I. Behaviour of cement concrete at high tempera-ture[J]. Bulletin of the Polish Academy of Sciences-Technical Sciences,2013,61(1):145-154. doi: 10.2478/bpasts-2013-0013