留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纤维状磁性二氧化钛复合材料的制备及其对La3+的吸附行为

郑嘉辉 彭陈亮 王观石 罗进 秦磊

郑嘉辉, 彭陈亮, 王观石, 等. 纤维状磁性二氧化钛复合材料的制备及其对La3+的吸附行为[J]. 复合材料学报, 2023, 40(5): 2804-2817. doi: 10.13801/j.cnki.fhclxb.20220729.001
引用本文: 郑嘉辉, 彭陈亮, 王观石, 等. 纤维状磁性二氧化钛复合材料的制备及其对La3+的吸附行为[J]. 复合材料学报, 2023, 40(5): 2804-2817. doi: 10.13801/j.cnki.fhclxb.20220729.001
ZHENG Jiahui, PENG Chenliang, WANG Guanshi, et al. Preparation of fibrous magnetic titania composites and their adsorption behavior for La3+[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2804-2817. doi: 10.13801/j.cnki.fhclxb.20220729.001
Citation: ZHENG Jiahui, PENG Chenliang, WANG Guanshi, et al. Preparation of fibrous magnetic titania composites and their adsorption behavior for La3+[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2804-2817. doi: 10.13801/j.cnki.fhclxb.20220729.001

纤维状磁性二氧化钛复合材料的制备及其对La3+的吸附行为

doi: 10.13801/j.cnki.fhclxb.20220729.001
基金项目: 国家自然科学基金(52004108;52164008);江西理工大学清江青年英才支持计划项目(JXUSTQJYX2020009);江西省高等学校井冈学者特聘教授岗位资助项目;江西省离子型稀土资源绿色开发与高值利用国家重点实验室培育计划(20194 AFD44003);江西省研究生创新专项资金项目(YC2021-S558)
详细信息
    通讯作者:

    彭陈亮,博士,讲师,硕士生导师,研究方向为离子型稀土绿色提取 E-mail: pengchenliang@jxust.edu.cn

  • 中图分类号: TB331;X52

Preparation of fibrous magnetic titania composites and their adsorption behavior for La3+

Funds: Natural Science Foundation of China (52004108; 52164008); Program of Qingjiang Excellent Young Talents, Jiangxi University of Science and Technology (JXUSTQJYX2020009); Distinguished Professor Program of Jinggang Scholars in Institutions of Higher Learning, Jiangxi Province; Cultivation Project of the State key Laboratory of Green Development and High-value Utilization of Ionic Rare Earth Resources in Jiangxi Province (20194 AFD44003); Jiangxi Province Postgraduate Innovation Special Fund Project (YC2021-S558)
  • 摘要: 为富集回收低浓度矿山尾水中稀土资源,采用溶胶-凝胶法和水热法制备了纤维状外壳的磁性二氧化钛复合材料Fe3O4@fTiO2,利用SEM、TEM、XPS、FTIR和XRD对材料进行表征,考察了Fe3O4@fTiO2对稀土La3+的吸附行为。结果表明:Fe3O4@fTiO2是外壳为纤维状的核壳结构磁性复合材料;吸附剂具有良好的超顺磁性,饱和磁化强度高达30.81 emu·g−1;在15℃、pH=5的酸性条件下,Fe3O4@fTiO2对稀土La3+在15 min内达到吸附平衡,且符合伪一级动力学模型;Langmuir等温吸附模型能较好地描述吸附La3+过程,理论吸附容量为142.88 mg·g−1;Fe3O4@fTiO2在NaOH的再生下循环利用5次时的吸附量为110 mg·g−1,是首次吸附容量的73.8%,表现出良好的循环利用性。

     

  • 图  1  Fe3O4 ((a), (d))、Fe3O4@TiO2 ((b), (e)) 和Fe3O4@fTiO2 ((c), (f)) 的SEM及TEM图像;(g) Fe3O4@fTiO2的HRTEM图像;(h) Fe3O4@fTiO2的EDS图谱

    d—Interlayer spacing

    Figure  1.  SEM and TEM images of Fe3O4 ((a), (d)), Fe3O4@TiO2 ((b), (e)) and Fe3O4@fTiO2 ((c), (f)); (g) HRTEM image of Fe3O4@fTiO2; (h) EDS pattern of Fe3O4@fTiO2

    图  2  Fe3O4、Fe3O4@TiO2和Fe3O4@fTiO2的XRD图谱

    Figure  2.  XRD patterns of Fe3O4, Fe3O4@TiO2 and Fe3O4@fTiO2

    图  3  Fe3O4@fTiO2循环5次前后XRD图谱

    Figure  3.  XRD patterns of Fe3O4@fTiO2 before and after cycles 5 times

    图  4  Fe3O4@fTiO2的N2吸附解吸等温线(a)及孔径分布曲线(b)

    Figure  4.  N2 adsorption and desorption isotherms (a) and pore size distribution curves (b) of Fe3O4@fTiO2

    图  5  Fe3O4@fTiO2吸附La3+前后的红外图谱

    Figure  5.  Infrared spectroscopy of Fe3O4@fTiO2 before and after adsorption of La3+

    图  6  Fe3O4、Fe3O4@TiO2和Fe3O4@fTiO2的磁滞回线

    Figure  6.  Hysteresis loops of Fe3O4, Fe3O4@TiO2 and Fe3O4@fTiO2

    图  7  Fe3O4、Fe3O4@TiO2和Fe3O4@fTiO2对La3+的吸附效果

    Figure  7.  Adsorption effect of Fe3O4, Fe3O4@TiO2 and Fe3O4@fTiO2 on La3+

    图  8  Fe3O4@fTiO2吸附La3+的动力学模型拟合曲线

    Figure  8.  Kinetic model fitting curve of Fe3O4@fTiO2 adsorption of La3+

    图  9  Fe3O4@fTiO2吸附La3+的Weber-Moris粒子扩散模型拟合曲线

    qe—Calculation amount of Fe3O4@fTiO2 removed per unit mass of adsorbent

    Figure  9.  Fitting curve of Weber-Moris particle diffusion model for Fe3O4@fTiO2 adsorption of La3+

    图  10  溶液pH对La3+在Fe3O4@fTiO2上吸附的影响

    Figure  10.  Effect of pH on La3+ adsorption by Fe3O4@fTiO2

    图  11  不同pH下Fe3O4@fTiO2吸附La3+后的SEM图像

    Figure  11.  SEM images of Fe3O4@fTiO2 after La3+ adsorption at different pH

    图  12  Fe3O4@fTiO2对La3+的吸附等温线模型拟合曲线

    Figure  12.  Fitting curve of adsorption isotherm model of Fe3O4@fTiO2 for La3+

    图  13  不同温度下Fe3O4@fTiO2吸附La3+的吸附等温线模型拟合曲线

    Figure  13.  Fitting curve of adsorption isotherm model of Fe3O4@fTiO2 adsorption La3+ at different temperatures

    图  14  Fe3O4@fTiO2吸附La3+前后的全谱图

    Figure  14.  Fe3O4@fTiO2 full spectrum before and after adsorption of La3+

    图  15  Fe3O4@fTiO2吸附La3+前后的XPS图谱

    Figure  15.  XPS spectrum of Fe3O4@fTiO2 before and after La3+ adsorption

    图  16  杂质离子对Fe3O4@fTiO2吸附稀土La3+性能的影响

    Figure  16.  Effects of impurity ions on the adsorption of rare earth La3+ by Fe3O4@fTiO2

    图  17  Fe3O4@fTiO2对La3+循环吸附/解吸5次的结果对比

    Figure  17.  Comparisons of results for 5 cycles of La3+ adsorption/desorption by Fe3O4@fTiO2

    表  1  Fe3O4@fTiO2吸附La3+动力学模型的拟合参数

    Table  1.   Fitting parameters for kinetic models of La3+ adsorption onto Fe3O4@fTiO2

    Modelk/min−1qe/(mg·g−1)R2
    Pseudo-first-order0.3036104.0010.957
    Pseudo-second-order0.0036112.6630.912
    Notes: k—Pseudo-first-order kinetic and Pseudo-second-order kinetic constants; R2—Correlation coefficient.
    下载: 导出CSV

    表  2  Fe3O4@fTiO2吸附La3+颗粒的内扩散模型的拟合参数

    Table  2.   Intra-particle diffusion model parameters of adsorption La3+ on Fe3O4@fTiO2

    ModelParameter
    kid/(mg·min1/2·g−1)cid/(mg·g−1)R2
    Boundary layer
    diffusion stage
    67.12−49.990.980
    Intragranular
    diffusion stage
    9.01 67.010.962
    Equilibrium stage 0.33101.300.870
    Notes: kid—Intraparticle diffusion rate constant; cid—Constant related to boundary layer thickness.
    下载: 导出CSV

    表  3  Fe3O4@fTiO2在不同pH下上清液的离子组分

    Table  3.   Ionic components of supernatants of Fe3O4@fTiO2 at different pH mg/L

    pHFeTiNaLa
    20.931.7225.40259.82
    40.1248.50181.58
    60.1344.50143.58
    下载: 导出CSV

    表  4  Fe3O4@fTiO2吸附La3+等温线模型的拟合参数

    Table  4.   Fitting parameters for isotherm models of La3+ adsorption onto Fe3O4@fTiO2

    LangmuirFreundlich
    KL/min−1qm/(mg·g−1)R2Kf/(mg·g−1)nR2
    0.01846142.880.97918.66523.2760.937
    Notes: KL—Langmuir coefficient of distribution of the adsorption; qm—Langmuir adsorption maximum; Kf—Freundlich coefficient of distribution of the adsorption; n—Freundlich constant related to adsorption strength.
    下载: 导出CSV

    表  5  La3+在Fe3O4@fTiO2上吸附的热力学参数

    Table  5.   Thermodynamic parameters of adsorption of La3+ on Fe3O4@fTiO2

    Temperature
    T/K
    KTΔGθ/
    (kJ·mol−1)
    ΔHθ/
    (kJ·mol−1)
    ΔSθ/
    (J·mol−1·K−1)
    2881.42×105−28.4114.88149.82
    3031.59×105−30.18
    3182.57×105−32.94
    Notes: KT—A dimensionless parameter calculated using the Langmuir constant KL according to equation (11); ΔGθ—Gibbs free energy; ΔHθ—Enthalpy; ΔSθ—Entropy.
    下载: 导出CSV

    表  6  Fe3O4@fTiO2吸附La3+前后表面元素的原子分数参数

    Table  6.   Atomic fraction of elements on the surface of Fe3O4@fTiO2 before and after La3+ adsorption

    ElementLa/at%Ti/at%O/at%C/at%Fe/at%Na/at%
    Before adsorption0.0016.6041.3026.044.0012.07
    After adsorption2.7917.3444.5431.843.49 0.00
    下载: 导出CSV

    表  7  不同吸附剂对La3+吸附能力的比较

    Table  7.   Comparison of La3+ adsorption capacity among different adsorbents

    Materialsqm/(mg·g−1)t/minpHRef.
    PAMAM 50.12 240 7 [45]
    LA-IIP 62.80 30 4 [46]
    ZnO NPs 58.80 70 5 [47]
    SnO2-TiO2 NPs 65.60 60 5 [48]
    Activated carbon 175.40 60 3.5 [49]
    Fe3O4@fTiO2 142.90 15 5 This work
    Notes: t—Reaction time; PAMAM—Straw grafted with polyamide amine dendritic macromolecules; LA-IIP—Novel La(III) imprinted polymers; NPs—Nanocomposite.
    下载: 导出CSV
  • [1] 程建忠, 车丽萍. 中国稀土资源开采现状及发展趋势[J]. 稀土, 2010, 31(2):65-69, 85. doi: 10.3969/j.issn.1004-0277.2010.02.015

    CHENG Jianzhong, CHE Liping. The current situation and development trend of rare earth resource extraction in China[J]. Chinese Rare Earths,2010,31(2):65-69, 85(in Chinese). doi: 10.3969/j.issn.1004-0277.2010.02.015
    [2] 池汝安, 刘雪梅. 风化壳淋积型稀土矿开发的现状及展望[J]. 中国稀土学报, 2019, 37(2):129-140.

    CHI Ru'an, LIU Xuemei. Prospect and development of weathered crust elution-deposited rare earth ore[J]. Jour-nal of the Chinese Society of Rare Earths,2019,37(2):129-140(in Chinese).
    [3] 邓国庆, 杨幼明. 离子型稀土矿开采提取工艺发展述评[J]. 稀土, 2016, 37(3):129-133.

    DENG Gouqing, YANG Youming. A review of the mining technologies of ion-absorbed rare earth mineral[J]. Chinese Rare Earths,2016,37(3):129-133(in Chinese).
    [4] 秦磊, 胡世丽, 宋晨曦, 等. 离子型稀土尾矿的氨氮淋洗去除[J]. 中国有色金属学报, 2021, 31(5):1395-1404.

    QIN Lei, HU Shili, SONG Chenxi, et al. Removal of ammonia nitrogen from ion type tailings[J]. The Chinses Journal of Nonferrous Metals,2021,31(5):1395-1404(in Chinese).
    [5] 高国华, 赖富国, 徐耗祥, 等. 氧化钙沉淀富集低浓度硫酸稀土溶液中稀土的研究[J]. 稀有金属, 2019, 43(4):409-419. doi: 10.13373/j.cnki.cjrm.xy18010036

    GAO Guohua, LAI Fuguo, XU Haoxiang, et al. Enrichment of rare earth from low concentration rare earth sulfate solution by calcium oxide precipitation[J]. Chinese Journal of Rare Metals,2019,43(4):409-419(in Chinese). doi: 10.13373/j.cnki.cjrm.xy18010036
    [6] 徐光宪, 高松, 李标国, 等. 稀土萃取分离工艺研究新进展[J]. 中国稀土学报, 1993(3):193-198.

    XU Guangxian, GAO Song, LI Biaoguo, et al. Research progress of rare earth extraction and separation technology[J]. Journal of the Chinese Society of Rare Earths,1993(3):193-198(in Chinese).
    [7] 钟宜航, 彭陈亮, 王观石, 等. 蒙脱石对Y3+的吸附特性及机制研究[J]. 中国稀土学报, 2019, 37(6):713-723.

    ZHONG Yihang, PENG Chenliang, WANG Guanshi, et al. Adsorption characteristics and mechanism of Y3+ by montmorillonite[J]. Journal of the Chinese Society of Rare Earths,2019,37(6):713-723(in Chinese).
    [8] 陈灿, 杨黎彬, 周雪飞. 纳米材料在水环境中对微藻毒性的效应及机理研究进展[J]. 净水技术, 2022, 41(5):5-13.

    CHEN Can, YANG Libin, ZHOU Xuefei. Research progress of the effect and mechanism of nanomaterials on microalgae toxicity in water environment[J]. Water Purification Technology,2022,41(5):5-13(in Chinese).
    [9] 任家丰, 陆晓赟, 徐珂凡, 等. 自掺杂TiO2纳米材料在能源和环境领域的应用进展[J]. 化工新型材料, 2022, 50(2):15-19.

    REN Jiafeng, LU Xiaoyun, XU Kefan, et al. Application progress on self-doped TiO2 nanomaterial in the fields of energy and environment[J]. New Chemical Materials,2022,50(2):15-19(in Chinese).
    [10] KHIN M M, NAIR A S, BABU V J, et al. A review on nanomaterials for environmental remediation[J]. Energy & Environmental Science,2012,5(8):8075-8109.
    [11] LIU X, HU Q, FANG Z, et al. Magnetic chitosan nanocomposites: A useful recyclable tool for heavy metal ion removal[J]. Langmuir,2009,25(1):3-8. doi: 10.1021/la802754t
    [12] 王子帅, 王耀强, 肖刚, 等. 磁性纳米Fe3O4@TiO2可见光下光催化还原Cr(Ⅵ)[J]. 化工学报, 2019, 70(10):4062-4071.

    WANG Zishuai, WANG Yaoqiang, XIAO Gang, et al. Photocatalytic reduction of Cr(Ⅵ) by magnetic nanomaterial Fe3O4@TiO2 under visible light[J]. CIESC Journal,2019,70(10):4062-4071(in Chinese).
    [13] 王耀强, 赵怡琳, 李玲慧, 等. 海胆状Fe3O4@TiO2磁性纳米介质对Pb2+的选择吸附特性[J]. 化工学报, 2018, 69(1):446-454.

    WANG Yaoqiang, ZHAO Yilin, LI Linghui, et al. Selective adsorption of Pb2+ by sea urchin magnetic nano- Fe3O4@TiO2[J]. CIESC Journal,2018,69(1):446-454(in Chinese).
    [14] MA W F, ZHANG Y, LI L L, et al. Tailor-made magnetic Fe3O4@mTiO2 microspheres with a tunable mesoporous anatase shell for highly selective and effective enrichment of phosphopeptides[J]. ACS Nano,2012,6(4):3179-3188. doi: 10.1021/nn3009646
    [15] DENG H, LI X, PENG Q, et al. Monodisperse magnetic single-crystal ferrite microspheres[J]. Angewandte Chemie,2005,117(18):2842-2845. doi: 10.1002/ange.200462551
    [16] ZHU Y, YONEDA K, KANAMORI K, et al. Hierarchically porous titanium phosphate monoliths and their crystallization behavior in ethylene glycol[J]. New Journal of Chemistry,2016,40(5):4153-4159. doi: 10.1039/C5NJ02820E
    [17] MAHMOUD M E, NABIL G M, KHALIFA M A, et al. Effective removal of crystal violet and methylene blue dyes from water by surface functionalized zirconium silicate nanocomposite[J]. Journal of Environmental Chemical Engineering, 2019, 7(2): 103009.
    [18] WANG F, ZHAO J, PAN F, et al. Adsorption properties toward trivalent rare earths by alginate beads doping with silica[J]. Industrial & Engineering Chemistry Research,2013,52(9):3453-3461.
    [19] MALLAKPOUR S, TABESH F. Tragacanth gum based hydrogel nanocomposites for the adsorption of methylene blue: Comparison of linear and non-linear forms of different adsorption isotherm and kinetics models[J]. International Journal of Biological Macromolecules,2019,133:754-766. doi: 10.1016/j.ijbiomac.2019.04.129
    [20] ZHAO M H, XU Y, ZHANG C S, et al. New trends in removing heavy metals from wastewater[J]. Applied Microbiology and Biotechnology,2016,100(15):6509-6518. doi: 10.1007/s00253-016-7646-x
    [21] CAO H, WU X, SYED-HASSAN S S A, et al. Characteristics and mechanisms of phosphorous adsorption by rape straw-derived biochar functionalized with calcium from eggshell[J]. Bioresource Technology,2020 , 318:124063.
    [22] TANG Y J, YANG R, MA D, et al. Removal of methyl orange from aqueous solution by adsorption onto a hydrogel composite[J]. Polymers & Polymer Composites,2018,26(2):161-168.
    [23] SONG Z, LIAN F, YU Z, et al. Synthesis and characterization of a novel MnOx-loaded biochar and its adsorption properties for Cu2+ in aqueous solution[J]. Chemical Engineering Journal,2014,242:36-42. doi: 10.1016/j.cej.2013.12.061
    [24] PARK J O, RHEE K Y, PARK S J. Silane treatment of Fe3O4 and its effect on the magnetic and wear properties of Fe3O4/epoxy nanocomposites[J]. Applied Surface Science,2010,256(23):6945-6950. doi: 10.1016/j.apsusc.2010.04.110
    [25] WU Q H, CHEN M, CHEN K Y, et al. Fe3O4-based core/shell nanocomposites for high-performance electrochemical supercapacitors[J]. Journal of Materials Science,2016,51(3):1572-1580. doi: 10.1007/s10853-015-9480-4
    [26] TAN L C, ZHANG X F, LIU Q, et al. Synthesis of Fe3O4@TiO2 core-shell magnetic composites for highly efficient sorption of uranium (VI)[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects,2015,469:279-286.
    [27] ALQADAMI A A, KHAN M A, OTERO M, et al. A magnetic nanocomposite produced from camel bones for an efficient adsorption of toxic metals from water[J]. Journal of Cleaner Production,2018,178:293-304. doi: 10.1016/j.jclepro.2018.01.023
    [28] 高立波, 张强, 李俊漾, 等. Fe3O4@SiO2/TiO2核壳结构纳米颗粒降解TNT溶液[J]. 环境工程学报, 2014, 8(6):2413-2416.

    GAO Libo, ZHANG Qiang, LI Junyang, et al. Degradation of TNT waste solution by Fe3O4@SiO2/TiO2 magnetic core-shell nanoparticles[J]. Chinese Journal of Environmental Engineering,2014,8(6):2413-2416(in Chinese).
    [29] ZHANG Z, FANG Y, ZHUO L, et al. Reduced graphene oxide wrapped Fe3O4@TiO2 yolk-shell nanostructures as a magnetic recyclable photocatalytic antibacterial agent[J]. Journal of Alloys and Compounds,2022,904:164001.
    [30] 宋海南, 李国喜, 周建庆, 等. Fe3O4/TiO2磁性催化剂的制备及在污水治理中的应用[J]. 分子催化, 2011, 25(6):557-562.

    SONG Hainan, LI Guoxi, ZHOU Jianqing, et al. Preparation of Fe3O4/TiO2 mgnetic ctalyst and application in swage teatment[J]. Journal of Molecular Catalysis,2011,25(6):557-562(in Chinese).
    [31] LIU Z, FENG Y, LI H. Application of titanium phosphate prepared from acidic titanium dioxide wastewater to remove cerium(III) in aqueous solution[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects,2021,630:127613.
    [32] 张玲, 乌东北, 朱宝辉, 等. 磁性海藻酸钙-壳聚糖凝胶珠吸附La3+性能研究[J]. 分析化学, 2010, 38(12):1732-1736.

    ZHANG Ling, WU Dongbei, ZHU Baohui, et al. Adsorption properties of magnetic Ca-alginate-chitosan gel bead for La3+ ions[J]. Chinese Journal of Analytical Chemistry,2010,38(12):1732-1736(in Chinese).
    [33] 唐林旺, 陆柳鲜, 李雪蓉, 等. 低浓度稀土废水资源回收技术研究进展[J]. 现代矿业, 2021, 37(7):97-102. doi: 10.3969/j.issn.1674-6082.2021.07.024

    TANG Linwang, LU Liuxian, LI Xuerong, et al. Research progress and prospect of recovery technology applied in low concentration rare earth wastewater resource[J]. Modern Mining,2021,37(7):97-102(in Chinese). doi: 10.3969/j.issn.1674-6082.2021.07.024
    [34] 邹成龙, 徐志威, 聂发辉, 等. Fe3O4@SA/GO凝胶球的制备及对亚甲基蓝的吸附性能[J]. 环境工程学报, 2022, 16(1): 121-132.

    ZOU Chenglong, XU Zhiwei, NIE Fahui, et al. Preparation of Fe3O4@SA/GO gel ball and its adsorption performance towards methylene blue[J]. Chinese Journal of Environmental Engineering, 2022, 16(1): 121-132(in Chinese).
    [35] 王忠凯, 季军荣, 汤睿, 等. 双有机改性磁性膨润土对Cu(II)和Zn(II)的吸附研究[J]. 高校化学工程学报, 2022, 36(2): 276-286.

    WANG Zhongkai, JI Junrong, TANG Rui, et al. Preparation of dual organic modified magnetic bentonite for Cu(II) and Zn(II) adsorption[J]. Journal of Chemical Engineering of Chinese Universities, 2022, 36(2): 276-286(in Chinese).
    [36] 王莉, 李亮, 杨幼明. 电解质溶液对离子型稀土矿表面离子吸附的影响研究[J]. 稀土, 2021, 42(6):49-56. doi: 10.16533/J.CNKI.15-1099/TF.202106007

    WANG Li, LI Liang, YANG Youming. Study on the effect of electrolyte solution on the ions adsorption on the surface of ionic type rare earth ore[J]. Chinese Rare Earths,2021,42(6):49-56(in Chinese). doi: 10.16533/J.CNKI.15-1099/TF.202106007
    [37] 沈州, 罗仙平, 周丹, 等. 生物炭对离子型稀土矿山尾水中氨氮的吸附特性研究[J]. 中国稀土学报, 2021, 39(6):916-926.

    SHEN Zhou, LUO Xianping, ZHOU Dan, et al. Study on the adsorption characteristics of biochar on ammonia nitrogen in tailwater of ionic rare earth mines[J]. Journal of the Chinese Society of Rare Earths,2021,39(6):916-926(in Chinese).
    [38] SARUCHI, KUMAR V. Adsorption kinetics and isotherms for the removal of rhodamine B dye and Pb2+ ions from aqueous solutions by a hybrid ion-exchanger[J]. Arabian Journal of Chemistry,2019,12(3):316-329. doi: 10.1016/j.arabjc.2016.11.009
    [39] 李玲慧. Fe3O4@TiO2磁性纳米粒子的制备及吸附重金属性能研究[D]. 北京: 北京化工大学, 2017.

    LI Linghui. Preparation of Fe3O4@TiO2 magnetic nanoparticles and study on the adsorption of heavy metals[D]. Beijing: Beijing University of Chemical Technology, 2017(in Chinese).
    [40] 查汝华. 不同形貌纳米氧化物的制备及性能研究[D]. 武汉: 华中科技大学, 2015.

    ZHA Ruhua. Preparation and properties of nano-oxides with different morphologies[D]. Wuhan: Huazhong University of Science and Technology, 2015(in Chinese).
    [41] HE Z, XU X, SONG S, et al. A visible light-driven titanium dioxide photocatalyst codoped with lanthanum and iodine: An application in the degradation of oxalic acid[J]. Journal of Physical Chemistry C,2008,112(42):16431-16437. doi: 10.1021/jp803291c
    [42] JIA K, PAN B C, ZHANG Q R, et al. Adsorption of Pb2+, Zn2+, and Cd2+ from waters by amorphous titanium phosphate[J]. Journal of Colloid and Interface Science,2008,318(2):160-166. doi: 10.1016/j.jcis.2007.10.043
    [43] YU B Z, HU Z Y, ZHOU F, et al. Lanthanum(Ⅲ) and Yttrium(Ⅲ) adsorption on montmorillonite: The role of aluminum ion in solution and minerals[J]. Mineral Processing and Extractive Metallurgy Review,2020,41(2):107-116. doi: 10.1080/08827508.2019.1575215
    [44] 胡振宇, 余秉哲, 冯健, 等. 高岭土在La-Al和Y-Al二元体系中的吸附特性[J]. 矿冶工程, 2018, 38(5):87-91. doi: 10.3969/j.issn.0253-6099.2018.05.023

    HU Zhenyu, YU Bingzhe, FENG Jian, et al. Adsorption characteristics of Kaoline in La-Al and Y-Al system[J]. Mining and Metallurgical Engineering,2018,38(5):87-91(in Chinese). doi: 10.3969/j.issn.0253-6099.2018.05.023
    [45] 章昌华, 郭明, 涂伟萍, 等. PAMAM接枝稻草对Nd3+、Sm3+、La3+的吸附特性[J]. 精细化工, 2020, 37(3):584-589, 597.

    ZHANG Changhua, GUO Ming, TU Weiping, et al. Adsorption characteristics of PAMAM grafted rice straw for Nd3+, Sm3+ and La3+[J]. Fine Chemicals,2020,37(3):584-589, 597(in Chinese).
    [46] NI C Q, LIU Q M, REN Z, et al. Selective removal and recovery of La(III) using a phosphonic-based ion imprinted polymer: Adsorption performance, regeneration, and mechanism[J]. Journal of Environmental Chemical Engi-neering, 2021, 9(6): 106701.
    [47] ZHENG X, WU D, SU T, et al. Magnetic nanocomposite hydrogel prepared by ZnO-initiated photopolymerization for La(III) adsorption[J]. ACS Applied Materials & Interfaces,2014,6(22):19840-19849.
    [48] RAHMAN M M, KHAN S B, MARWANI H M, et al. SnO2-TiO2 nanocomposites as new adsorbent for efficient removal of La(III) ions from aqueous solutions[J]. Journal of the Taiwan Institute of Chemical Engineers,2014,45(4):1964-1974. doi: 10.1016/j.jtice.2014.03.018
    [49] AWWAD N S, GAD H M H, AHMAD M I, et al. Sorption of lanthanum and erbium from aqueous solution by activated carbon prepared from rice husk[J]. Colloids and Surfaces B-Biointerfaces,2010,81(2):593-599. doi: 10.1016/j.colsurfb.2010.08.002
  • 加载中
图(17) / 表(7)
计量
  • 文章访问数:  605
  • HTML全文浏览量:  359
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-16
  • 修回日期:  2022-07-04
  • 录用日期:  2022-07-08
  • 网络出版日期:  2022-08-01
  • 刊出日期:  2023-05-15

目录

    /

    返回文章
    返回