碳纳米纤维表面网络修饰及其锌离子电池应用

卢小杰, 徐晶, 杨科, 闫俊, 陈磊, 刘雍

卢小杰, 徐晶, 杨科, 等. 碳纳米纤维表面网络修饰及其锌离子电池应用[J]. 复合材料学报, 2023, 40(5): 2731-2740. DOI: 10.13801/j.cnki.fhclxb.20220728.002
引用本文: 卢小杰, 徐晶, 杨科, 等. 碳纳米纤维表面网络修饰及其锌离子电池应用[J]. 复合材料学报, 2023, 40(5): 2731-2740. DOI: 10.13801/j.cnki.fhclxb.20220728.002
LU Xiaojie, XU Jing, YANG Ke, et al. Surface network modification of carbon nanofibers and its application in zinc ion batteries[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2731-2740. DOI: 10.13801/j.cnki.fhclxb.20220728.002
Citation: LU Xiaojie, XU Jing, YANG Ke, et al. Surface network modification of carbon nanofibers and its application in zinc ion batteries[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2731-2740. DOI: 10.13801/j.cnki.fhclxb.20220728.002

碳纳米纤维表面网络修饰及其锌离子电池应用

基金项目: 中国博士后科学基金(2019 T120189);中国博士后基金一等资助项目(2018 M640240)
详细信息
    通讯作者:

    陈磊,博士,副教授,博士生导师,研究方向为功能与智能纺织品 E-mail: chenlei@tiangong.edu.cn

  • 中图分类号: TB3333

Surface network modification of carbon nanofibers and its application in zinc ion batteries

Funds: China Postdoctoral Science Foundation (2019 T120189); China Postdoctoral Foundation (2018 M640240)
  • 摘要: 可充电水系锌锰电池以高安全、低成本和对环境友好的特性在大规模储能领域有广泛的应用前景,但由于锰氧化合物自身导电差且在电池充放电过程中发生歧化反应在水中溶解,导致电池容量低、循环稳定性差。本文采用双针头对纺静电纺丝技术,结合预氧化、高温退火工艺,通过掺杂碳纳米管(CNTs)和导电炭黑(Super-P)对碳纳米纤维表面进行修饰,制备出具有凸起结构和导电网络的碳纳米纤维(CSCNFs)复合材料,再结合电化学沉积工艺,在纤维表面负载α-MnO2活性物质制备得到MnO2@CSCNFs阴极。其中,CNTs和Super-P协同构建了具有节点结构的导电网络通道,实现高效电子-离子协同传输。以MnO2@CSCNFs为阴极的电化学性能得到明显改善,初始容量达到784.8 mA·h·g−1,100圈循环后仍保持500 mA·h·g−1的放电比容量,2 A·g−1的大电流密度下仍保持290.8 mA·h·g−1的放电比容量,且当电流密度恢复到0.1 A·g−1时容量回复率高达96.33%。
    Abstract: Rechargeable water zinc-manganese battery has a wide application prospect in large-scale energy storage due to its high safety, low cost and environmental friendliness. However, due to poor conductivity of manganese oxide and dissolving in water due to disproportionation reaction during battery charging and discharging, the battery has low capacity and poor cycle stability. In this paper, the carbon nanofiber (CSCNFs) composite material with raised structure and conductive network was prepared by double-needle pair spinning electrostatic spinning technology, combined with pre-oxidation and high temperature annealing process, and the surface of carbon nanofiber was modified by doping carbon nanotube (CNTs) and conductive carbon black (Super-P). MnO2@CSCNFs cathode was prepared by loading α-MnO2 active substance on the fiber surface. CNTs and Super-P doping were modified on the surface of carbon nanofibers. Among them, CNTs and Super-P cooperated to construct conductive network channels with node structure to realize efficient electron-ion cooperative transport. With the cathode of MnO2@CSCNFs zinc ion battery kinetics and electrochemical performance is significantly improved, the initial capacity reaches 784.8 mA·h·g−1, and after 100 cycle remain discharge specific capacity of 500 mA·h·g−1. The discharge specific capacity of 290.8 mA·h·g−1 is maintained at a high current density of 2 A·g−1, and the capacity recovery rate is up to 96.33% when the current density is restored to 0.1 A·g−1.
  • 目前,全世界因直接或间接损伤等意外事故造成骨折的情况屡见不鲜[1]。骨折恢复期较长,可采取内固定的治疗方式,通过植入钢板、螺钉等医疗用具将断裂处固定以促进骨愈合。当前用作骨折内固定的材料主要有金属材料和可吸收聚合物类材料[2-5]。其中,聚乳酸(Polylactic acid,PLA)的成本相对较低,且可生物降解、细胞相容性好,得到了广泛关注。

    相对于金属材料,PLA在力学性能,如韧性等方面表现较差。然而,在骨愈合材料领域,对弯曲强度和剪切强度通常存在严格的要求[6]。陈倩等[7]通过接枝细菌纤维素对PLA改性,并用溶液浇筑法制备复合薄膜。结果显示,接枝物质量分数为0.6wt%时,断裂伸长率对比未改性提升了175%。而通过制备单向排列和随机分布的玻璃纤维(Glass fiber,GF)增强PLA复合螺钉,Felfel等[8]将纯PLA螺钉进行对比,发现弯曲强度提升近100%,剪切强度和刚度也有所增加。进一步的,Felfel等[9]发现,单向排列的GF/PLA复合材料的弯曲模量和抗压强度均优于随机排列分布。Leksakul等[10]选取了羟基磷灰石(Hydroxyapatite,HAp)和PLA制备了用于手腕骨折碎片板,其拉伸强度和弯曲强度分别可达到44.02 MPa和63.97 MPa,达到了人体手部骨骼的下限。

    作为骨折内固定材料,要避免出现因降解过度从而导致愈合过程受到影响。如Hasan等[11]将短切GF和PLA制备复合材料,结果发现体外降解28天后弯曲强度下降了50%。在此基础上,Hasan等[12]利用偶联剂KH550对GF和PLA进行改性,制备单向纤维垫后热压成型的方式得到复合材料,在降解28天后,处理过的试样初始强度和弹性模量的损失率分别为42.8%和35.3%,未处理的试样则是降低了66%和48%。而Ekinci等[13]采取熔融长丝法制备了PLA单层薄膜,经过体外降解实验时发现,降解时间超过30天后,杨氏模量下降了21%,极限抗拉强度下降了22%。Ahmed等[14]通过对比是否热处理连续GF纤维,发现未经热处理工序制备的复合材料在去离子水中降解6周后质量损失为14%,热处理后质量损失为10%。本实验采取四步法三维五向编织工艺,将连续GF和PLA纤维复合制备成预制体,并通过偶联剂KH550对预制体进行改性,采取热压成型工艺制备复合材料。并进行质量损失率、吸水率、降解介质pH值测定、结晶度、力学性能、微观形貌的变化分析,以期对骨折内固定GF/PLA复合材料提供理论参考。

    聚乳酸纤维,直径为0.3 mm,密度为1.25 g/cm3,由南通新帝克单丝科技股份有限公司提供。玻璃纤维,线密度为130 tex,密度为2.4 g/cm3,由山东未来新材料有限公司提供。

    本实验采取四步法三维五向编织方式制备预制体,三维五向结构由于轴纱的存在,相对于三维四向结构来说有着更优异的抗弯性及抗冲击性[15]。预制体具体尺寸为260 mm×15 mm×9 mm,花结长度(6±0.5) mm,编织角20°±3°。GF质量分数分别为30wt%、35wt%和40wt%。

    将硅烷偶联剂KH550 (分析纯,山东优索化工科技有限公司)分散在无水乙醇(分析纯,天津市汇杭化工科技有限公司)溶剂中,配制成体积分数为5vol%的溶液。再将GF质量分数为40wt%的预制体浸入溶液中进行表面处理,浸泡1.5 h后,放在烘箱中以40℃干燥处理15 h,得到5 mod试样(5 mod试样即KH550对GF质量分数40wt%的改性试样)。KH550可以提升PLA的力学性能,同时改善PLA基质与GF之间的界面,延缓磷酸盐缓冲溶液(Phosphate buffered saline,PBS)对复合材料的侵蚀,达到降低降解速率的目的[16]

    通过差示扫描量热仪(DSC200 F3,德国耐驰公司)对PLA的熔融温度及熔融行为进行热分析。实验条件:样品质量2 mg,在氮气流速50 mL/min氛围下,从0℃升温至230℃,升温速率为10℃/min。

    结合图1(a)所示PLA纤维的DSC曲线,通过四柱液压机(YRD32-200 T,山东鲁迪重工机械有限公司),采取图1(b)中所示实验条件,分别对1.2.1部分制备的预制体及1.2.2部分表面处理后的预制体进行热压复合。所用模具为自行设计,分上、中、下三模,整体密封良好,可将预制体完整包覆。

    图  1  (a) 聚乳酸(PLA)纤维DSC曲线;(b) 玻璃纤维(GF)/PLA复合材料热压成型工艺曲线
    Figure  1.  (a) DSC curve of polylactic acid (PLA) fiber; (b) Hot press molding process curves of glass fiber (GF)/PLA composite

    在37℃下进行体外降解实验,探究GF/PLA复合材料降解性能。称取(10±0.3) g BL601 A型PBS倒入2 L的容量瓶中,再注入超纯水至2 L,混合均匀后测量溶液pH值为7.2~7.4。根据国家医药行业标准YY/T 0474—2004[17],用作降解介质体积和实验对象质量,两者比例应大于30∶1,以保证实验对象可完全浸泡于介质中。实验用复合材料尺寸分别为80 mm×15 mm×4 mm、25 mm×8 mm×4 mm。实验条件为常温,取样时间设置为1、4、7、14、21和28天。

    复合材料吸水率W1和质量保持率W2见下式:

    W1 = m2m1m2×100%
    (1)
    W2 = m1m3m1×100%
    (2)

    其中:m1为降解实验前干燥处理的试样质量;m2为降解实验后的试样湿重;m3为降解实验后干燥质量。

    降解实验结束后,用pH计测量降解介质的pH值。

    通过差示扫描量热仪对复合材料进行结晶度测试,实验条件:样品质量10 mg,在氮气流速50 mL/min氛围下,从室温升至230℃,并持续5 min以消除热历史后,降温至0℃,最后升温至230℃。升温和降温速率均为10℃/min。结晶度计算见下式:

    Xc=ΔHmΔHccλΔH0×100%
    (3)

    其中:Xc为PLA的结晶度(%);ΔHm为PLA 的熔融焓(J/g);ΔHcc为PLA 的冷结晶焓(J/g);λ为PLA 的质量分数(wt%);ΔH0为 PLA完全结晶的熔融焓,其值为93.6 J/g。

    试样尺寸80 mm×15 mm×4 mm。降解实验结束后取出试样,并在40℃环境下干燥15 h。干燥后用万能材料试验机(AG-250 KNE,日本岛津公司)进行三点弯曲实验,标准采取GB/T 1449—2005[18],跨距为64 mm,加载速度2 mm/min。

    试样尺寸为25 mm×8 mm×4 mm。降解实验结束后取出试样,并在40℃环境下干燥15 h。干燥后用万能材料试验机进行剪切实验,标准采取ASTM/D 2344—2016[19],跨距为16 mm,加载速度1 mm/min。

    用冷场发射扫描电子显微镜(Regulus 8100,日本日立公司)观察不同降解时间下复合材料表面微观形貌变化情况。

    图2为GF/PLA复合材料质量保持率及吸水率。在降解初期,4种复合材料均降解缓慢,此时GF与PLA整体结合紧密,水分子难以侵蚀PLA基质。降解第4天,5 mod试样质量出现下降,吸水率迅速上升。此时水分子扩散至PLA的无定型区,破坏PLA中的酯键,使其发生断裂[20-21]。随着降解的持续,试样的质量保持率及吸水率曲线趋势平缓,直至无定型区降解完成,水分子从结晶区边缘向结晶区中心拓展,其速度慢于无定型区,最终降解达到稳定状态[22]。由于GF具有疏水性,当GF质量分数高时,复合材料降解难度增大。GF质量分数为30wt%,试样降解过程中质量损失明显,吸水率上升幅度较大,从而影响试样整体力学性能,对后期应用不利。

    图  2  GF/PLA复合材料降解过程中质量损失率(a)及吸水率(b)
    5 mod sample is the modified sample of KH550 with 40wt%GF
    Figure  2.  Quality retention rate (a) and water absorption rate (b) during the degradation of GF/PLA composite materials

    由于人体pH呈现弱碱性,作为骨愈合的医用材料,需要检测降解过程是否会影响pH值的变化[23-24]图3为复合材料降解过程中pH值的变化过程,降解实验后,GF质量分数为30wt%、35wt%、40wt%时pH值分别下降至6.85、6.91、7.01。GF质量分数低时,PLA水解严重,造成pH值下降过多。PLA在水解时生成乳酸及其低聚物,这些产物在降解介质中电离生成H+,使pH值降低。5 mod试样pH值无较大变化,基本稳定在人体可接受的pH范围,改性后复合材料界面结合良好,PLA水解减少。其中KH550水解产生的OH可与PLA水解产生的H+反应,使pH值略有下降[25]

    图  3  GF/PLA复合材料降解过程中pH值变化
    Figure  3.  pH value change during degradation of GF/PLA composite materials

    图4为复合材料降解后结晶度的变化曲线,可见GF质量分数的增加促进了结晶度的提高。高分子结晶过程涉及大分子链缠结转变为亚稳态折叠链片晶的演变。而分子链结构简单且对称会促进复合材料结晶度的提高。GF作为异相成核剂,其表面形态和化学性质能够有效地吸引和定向PLA分子,提高结晶能力。同时,GF的存在还将促进PLA晶体的长大过程。GF作为一种高度有序结构的增强相,对晶体生长起到模板和导向作用。PLA分子在GF纤维表面有序排列,并沿着纤维方向形成更加完整且尺寸较大的晶体结构,这种有序的晶体生长过程对复合材料结晶度起到正向作用。KH550的引入进一步提升了结晶度。KH550的引入使GF和PLA的界面间形成更多的异相成核位点,促进了PLA分子在GF表面的有序排列。同时增大了GF的比表面积,有助于PLA晶体的生长过程,提高复合材料的结晶度[26-27]

    图  4  GF/PLA复合材料降解过程中结晶度变化
    Figure  4.  Changes in crystallinity during the degradation of GF/PLA composite materials

    人体骨愈合过程中复合材料受力复杂,需要增加材料的抗弯性,以应对各种情况下的力学需求。图5为复合材料弯曲强度变化曲线。降解实验后,GF质量分数为30wt%、35wt%、40wt%时弯曲强度分别下降了32.3%、28.13%、16.16%。由于纯PLA的弯曲强度和韧性相对较差,GF的引入可以显著改善成型后复合材料力学性能,同时缓解PLA的降解速度。5 mod试样弯曲强度下降22.9%,改性后的复合材料界面性能较好,在降解初期弯曲性能得到保持。随着降解过程进行,界面之间遭到不同程度破坏,PLA发生水解,复合材料基体遭到破坏,弯曲性能迅速下降。

    图  5  GF/PLA复合材料降解过程中弯曲强度变化
    Figure  5.  Flexural strength change during degradation of GF/PLA composite materials

    短梁剪切强度通常用来评估复合材料界面之间的黏结程度。图6为复合材料短梁剪切性能变化曲线。经过降解实验后,GF质量分数为30wt%、35wt%、40wt%时剪切强度分别下降了53.74%、51.1%、47.18%。可见GF质量分数的增加延缓了PLA降解速度。5 mod试样剪切强度下降了56.11%,初始状态剪切强度最佳。在降解第4天时剪切强度下降了22.9%,分析认为,改性使GF的疏水性下降,水分子进入界面结合处破坏GF/PLA结合程度,导致剪切性能下降[28]

    图  6  GF/PLA复合材料降解过程中剪切强度变化
    Figure  6.  Shear strength change during degradation of GF/PLA composite materials

    图7(a)为未进行降解实验时,GF质量分数为40wt%的SEM图像,可见GF表面光滑,PLA附着略少,纤维间隙较大。图7(b)为5 mod试样,偶联剂的引入使PLA较多的黏附在GF纤维表面,改善了界面性能,初始剪切强度优异。KH550中的乙氧基水解后生成羟基,与GF表面的羟基发生缩合反应,同时KH550另一侧的伯胺与PLA分子链充分缠结,促进了GF/PLA的黏附状态。

    图  7  GF/PLA复合材料的SEM图像:(a) 40wt%GF;(b) 5 mod
    Figure  7.  SEM images of GF/PLA composite materials: (a) 40wt%GF; (b) 5 mod

    图8为试样降解第7天的SEM图像。可见,4种试样均出现了孔洞,但GF质量分数为30wt%的试样出现了细小的沟壑,GF质量分数为40wt%的试样孔洞较少,GF质量分数的增加抑制了PLA复合材料的降解。5 mod试样表面同样出现孔洞,与其力学性能变化曲线一致。图9为降解第14天的SEM图像。GF质量分数为30wt%和35wt%的试样均出现孔隙变深,孔径增加的现象,而GF质量分数40wt%的试样表面孔洞较少。5 mod试样表面出现沟壑形态。图10为降解第21天的SEM图像,此时复合材料的降解更明显,GF质量分数为30wt%的试样出现了PLA的鳞片层,由于GF质量分数低导致PLA水解严重,无法保持宏观形貌。GF质量分数40wt%的试样开始出现沟壑。5 mod试样水解严重,此时孔隙加深,裂痕增大。图11为降解第28天的SEM图像,此时4种试样均降解严重,GF质量分数为40wt%的试样裂痕较少,GF增加改善了复合材料的稳定性。而5 mod试样降解严重,裂痕现象明显。结合质量保持率及吸水率分析,水分子破坏了复合材料界面,导致力学性能大幅度降低。

    图  8  GF/PLA复合材料降解第7天的SEM图像:(a) 30wt%GF;(b) 35wt%GF;(c) 40wt%GF;(d) 5 mod
    Figure  8.  SEM images of GF/PLA composite degradation at 7 days: (a) 30wt%GF; (b) 35wt%GF; (c) 40wt%GF; (d) 5 mod
    图  9  GF/PLA复合材料降解第14天的SEM图像:(a) 30wt%GF;(b) 35wt%GF;(c) 40wt%GF;(d) 5 mod
    Figure  9.  SEM images of GF/PLA composite degradation at 14 days: (a) 30wt%GF; (b) 35wt%GF; (c) 40wt%GF; (d) 5 mod
    图  10  GF/PLA复合材料降解第21天的SEM图像:(a) 30wt%GF;(b) 35wt%GF;(c) 40wt%GF;(d) 5 mod
    Figure  10.  SEM images of GF/PLA composite degradation at 21 days: (a) 30wt%GF; (b) 35wt%GF; (c) 40wt%GF; (d) 5 mod
    图  11  GF/PLA复合材料降解第28天的SEM图像:(a) 30wt%GF;(b) 35wt%GF;(c) 40wt%GF;(d) 5 mod
    Figure  11.  SEM images of GF/PLA composite degradation at 28 days: (a) 30wt%GF; (b) 35wt%GF; (c) 40wt%GF; (d) 5 mod

    (1) 本文采取三维编织工艺制备了玻璃纤维(GF)/聚乳酸(PLA)混编预制体,其中GF质量分数分别为30wt%、35wt%和40wt%,并对GF质量分数为40wt%的预制体用偶联剂KH550进行改性。采用热压成型方式将预制体制备成复合材料。探究降解过程对复合材料质量保持率、吸水率、降解介质(磷酸缓冲盐溶液(PBS)) pH值、结晶度、弯曲强度和剪切强度影响及微观形貌分析。

    (2) 较高的GF质量分数在复合材料中,表现出较低的质量损失,这表明GF对PLA的降解具有抑制作用。此外,KH550的引入改善了复合材料的疏水性能。低GF质量分数导致降解介质的pH值明显下降,而经过改性后,pH值下降幅度较小。

    (3) GF有助于提高PLA的结晶度,KH550改性后,复合材料的结晶度进一步提升。KH550中的氨基基团和硅氧烷基团与PLA和GF发生反应,形成更牢固的分子间作用力。

    (4) GF质量分数为30wt%、35wt%和40wt%时,复合材料的弯曲强度分别下降了32.3%、28.13%和16.16%,剪切强度分别下降了53.74%、51.1%和47.18%。说明GF的增加有助于延缓因降解介质腐蚀造成的力学损伤。结合微观形貌观察,GF质量分数为30wt%的试样在降解第7天时出现了细小沟壑,而降解第28天时复合材料表面破坏严重。相比,GF质量分数为40wt%的试样则受降解影响较轻,印证了力学强度和剪切强度的测试结果。

  • 图  1   MnO2@碳纳米纤维(CSCNFs)复合材料制备流程图

    SCNFs—Super-P doped carbon nanofiber membrane; CCNFs—Carbon nanotube (CNTs) doped carbon nanofiber membrane; Super-P—Conductive carbon black; PAN—Polyacrylonitrile; PVP—Polyvinylpyrrolidone

    Figure  1.   Preparation flow chart of MnO2@carbon nanofiber (CSCNFs) composite

    图  2   CCNFs、SCNFs、CSCNFs碳化前((a)~(c))及高温退火后((a1)~(c1))的SEM图像;((a2)~(c2)) MnO2@CCNFs、MnO2@SCNFs、MnO2@CSCNFs的SEM图像

    Figure  2.   SEM images of CCNFs, SCNFs and CSCNFs before carbonization ((a)-(c)) and after high temperature annealing ((a1)-(c1)); ((a2)-(c2)) SEM images of MnO2@CCNFs, MnO2@SCNFs and MnO2@CSCNFs

    图  3   (a) MnO2@CSCNFs的SEM图像;(b)图3(a)对应区域的Mn元素分布图;CSCNFs (c)和MnO2@CSCNFs (d)的TEM图像

    Figure  3.   (a) SEM image of MnO2@CSCNFs; (b) Mn element distribution map of corresponding region in Fig. 3(a); TEM images of CSCNFs (c) and MnO2@CSCNFs (d)

    图  4   (a) CNFs、CSCNFs和MnO2@CSCNF的XRD图谱;(b) MnO2@CNFs和MnO2@CSCNFs氮气吸附-脱附等温曲线;(c) MnO2@CSCNFs复合材料XPS图谱;(d) MnO2@CSCNFs复合材料Mn2p图谱;(e) CNFs和CSCNFs的Raman图谱

    ID/IG—Intensity ratio between D and G bands

    Figure  4.   (a) XRD patterns of CNFs, CSCNFs and MnO2@CSCNFs; (b) Nitrogen adsorption-desorption isotherm curves of MnO2@CNFs and MnO2@CSCNFs; (c) XPS survey spectrum of MnO2@CSCNFs; (d) Mn2p XPS spectrum of MnO2@CSCNFs; (e) Raman spectra of CNFs and CSCNFs

    图  5   (a) MnO2@CSCNFs复合阴极的CV曲线;(b) 0.1 A·g−1电流密度下MnO2@CCNFs、MnO2@SCNFs和MnO2@CSCNFs的充放电曲线;(c) MnO2@CCNFs、MnO2@SCNFs、MnO2@CSCNFs在不同电流密度下的倍率性能曲线;(d) 0.1 A·g−1电流密度下MnO2@CCNFs、MnO2@SCNFs、MnO2@CSCNFs自支撑阴极前100次循环曲线;(e) 1 A·g−1电流密度下1000圈循环曲线;(f) 2 A·g−1电流密度下MnO2@CSCNFs的2000圈循环曲线;(g) 电池容量性能比较

    Figure  5.   (a) CV curves of MnO2@CSCNFs; (b) Charge-discharge curves of MnO2@CCNFs, MnO2@SCNFs and MnO2@CSCNFs at 0.1 A·g−1 current density; (c) Rate performance curves of MnO2@CCNFs, MnO2@SCNFs and MnO2@CSCNFs at different current densities; (d) Cycle performance of MnO2@CCNFs, MnO2@SCNFs and MnO2@CSCNFs at 0.1 A·g−1 current density; (e) 1000 cycle curve at 1 A·g−1 current density; (f) 2000 cycle curve at 2 A·g−1 current density of MnO2@CSCNFs; (g) Battery capacity performance comparison diagram

    图  6   2 A·g−1电流密度下2000圈循环后MnO2@CSCNFs的SEM图像

    Figure  6.   SEM image of MnO2@CSCNFs after 2000 cycles at 2 A·g−1 current density

    图  7   (a) MnO2@CSCNFs电极在不同扫速下的CV曲线;(b) 不同峰位lgi-lgv的拟合曲线;(c) 在不同扫速下MnO2@CSCNFs电极电荷存储过程中电容控制的容量百分比;(d) 峰值电流(ip)和扫描速率(v1/2)之间的线性关系;(e) MnO2@CSCNFs电极的恒流间歇滴定(GITT)曲线;(f) MnO2@CSCNFs电极的离子扩散系数

    v—Scan rate; D—Diffusion coefficient of ions; k—Specific value of peak currents (ip) and scan rates (v1/2)

    Figure  7.   (a) CV curves of MnO2@CSCNFs cathode at different scan rates; (b) lgi-lgv plots at specific peak currents; (c) Percentages of the capacitive response in the charge storage process of the MnO2@CSCNFs cathode at different scan rates; (d) Linear relationship between peak currents (ip) and scan rates (v1/2); (e) Constant current batch titration (GITT) curves of MnO2@CSCNFs cathode; (f) Corresponding ion diffusion coefficients of MnO2@CSCNFs cathode

  • [1]

    ZHOU H J, SONG C L, SI L P, et al. The development of catalyst materials for the advanced lithium-sulfur battery[J]. Catalysts,2020,10(6):682-698. DOI: 10.3390/catal10060682

    [2] 夏傲, 曾啸雄, 宜珏, 等. Ag/MnO2复合电极材料的制备及其电化学性能[J]. 复合材料学报, 2022, 39(5):2269-2279.

    XIA Ao, ZENG Xiaoxiong, YI Jue, et al. Preparation and electrochemical properties of Ag/MnO2 composite electrode materials[J]. Acta Materiae Compositae Sinica,2022,39(5):2269-2279(in Chinese).

    [3]

    BORCHERS N, CLARK S, HORSTMANN B, et al. Innovative zinc-based batteries[J]. Journal of Power Sources,2021,484:229309. DOI: 10.1016/j.jpowsour.2020.229309

    [4]

    HARUDIN N, OSMAN Z, MAJID S R, et al. Improved electrochemical properties of MgMn2O4 cathode materials by Sr doping for Mg ion cells[J]. Ionics,2020,26(8):3947-3958. DOI: 10.1007/s11581-020-03531-7

    [5]

    LUO M H, YU H X, HU F Y, et al. Metal selenides for high performance sodium ion batteries[J]. Chemical Engineering Journal,2020,380:122557. DOI: 10.1016/j.cej.2019.122557

    [6]

    SMITH B D, WILLS R G A, CRUDEN A J. Aqueous Al-ion cells and supercapacitors–A comparison[J]. Energy Reports,2020,6:166-173.

    [7] 黄兰香, 罗旭峰. 用于可充电水性锌离子电池的先进Ti3C2@ε-MnO2电极[J]. 复合材料学报, 2022, 39(10):4631-4641.

    HUANG Lanxiang, LUO Xufeng. Advanced Ti3C2@ε-MnO2 cathode as rechargeable aqueous zinc-ion batteries[J]. Acta Materiae Compositae Sinica,2022,39(10):4631-4641(in Chinese).

    [8]

    LIU X, EUCHNER H, ZARRABEITIA M, et al. Operando pH measurements decipher H+/Zn2+ intercalation chemistry in high-performance aqueous Zn/δ-V2O5 batteries[J]. ACS Energy Letters,2020,5(9):2979-2986. DOI: 10.1021/acsenergylett.0c01767

    [9]

    ZHANG W H, ZHAI X L, ZHANG Y S, et al. Application of manganese-based materials in aqueous rechargeable zinc-ion batteries[J]. Frontiers in Energy Research,2020,8:00195. DOI: 10.3389/fenrg.2020.00195

    [10]

    FAN X Y, YANG H, NI K F, et al. Electrochemical controllable synthesis of MnO2 as cathode of rechargeable zinc-ion battery[J]. Functional Materials Letters,2020,13(3):2050011. DOI: 10.1142/S1793604720500113

    [11]

    LEE S Y, WU L J, POYRAZ A S, et al. Lithiation mechanism of tunnel-structured MnO2 electrode investigated by in situ transmission electron microscopy[J]. Advanced Materials,2017,29(43):1703186. DOI: 10.1002/adma.201703186

    [12]

    CAI Y, CHUA R, HUANG S Z, et al. Amorphous manganese dioxide with the enhanced pseudocapacitive performance for aqueous rechargeable zinc-ion battery[J]. Chemical Engineering Journal,2020,396:125221. DOI: 10.1016/j.cej.2020.125221

    [13]

    HUANG L X, LUO X F, CHEN C, et al. A high specific capacity aqueous zinc-manganese battery with a ε-MnO2 cathode[J]. Ionics,2021,27(9):3933-3941. DOI: 10.1007/s11581-021-04160-4

    [14]

    LIU W B, ZHANG X Y, HUANG Y F, et al. β-MnO2 with proton conversion mechanism in rechargeable zinc ion battery[J]. Journal of Energy Chemistry,2021,56:365-373. DOI: 10.1016/j.jechem.2020.07.027

    [15]

    ZHAO L, DONG L B, LIU W B, et al. Binary and ternary manganese dioxide composites cathode for aqueous zinc-ion battery[J]. ChemistrySelect,2018,3(44):12661-12665. DOI: 10.1002/slct.201802954

    [16]

    TANG X N, ZHU S K, NING J, et al. Charge storage mechanisms of manganese dioxide-based supercapacitors: A review[J]. New Carbon Materials,2021,36(4):702-708. DOI: 10.1016/S1872-5805(21)60082-3

    [17]

    WEI X B, YUAN H C, WANG H J, et al. The metal-organic framework mediated synthesis of bell string-like hollow ZnS-C nanofibers to enhance sodium storage performance[J]. Materials Chemistry Frontiers,2021,5(12):4712-4724. DOI: 10.1039/D1QM00423A

    [18]

    MASSA-ANGKUL N, KNIJNENBURG J T N, KASEMSIRI P, et al. Electrophoretic deposition of carbon nanotubes onto zinc substrates for electrode applications[J]. Sains Malaysiana,2020,49(11):2811-2820. DOI: 10.17576/jsm-2020-4911-20

    [19]

    BORUAH B D, MATHIESON A, PARK S K, et al. Vanadium dioxide cathodes for high-rate photo-rechargeable zinc-ion batteries[J]. Advanced Energy Materials,2021,11(13):2100115. DOI: 10.1002/aenm.202100115

    [20]

    CANG R B, YE K, ZHU K, et al. Organic 3D interconnected graphene aerogel as cathode materials for high-performance aqueous zinc ion battery[J]. Journal of Energy Chemistry,2020,45:52-58. DOI: 10.1016/j.jechem.2019.09.026

    [21]

    ZHOU J H, XIE M, WU F, et al. Ultrathin surface coating of nitrogen-doped graphene enables stable zinc anodes for aqueous zinc-ion batteries[J]. Advanced Materials,2021,33(33):2101649. DOI: 10.1002/adma.202101649

    [22]

    YU H, CHEN L, LI W X, et al. Root-whisker structured 3D CNTs-CNFs network based on coaxial electrospinning: A free-standing anode in lithium-ion batteries[J]. Journal of Alloys and Compounds,2021,863:158481. DOI: 10.1016/j.jallcom.2020.158481

    [23]

    LI Z X, LIU L, LI L D, et al. In situ synthesis of ZnFe2O4 rough nanospheres on carbon nanofibers as an efficient titanium mesh substrate counter electrode for triiodide reduction in dye-sensitized solar cells[J]. Applied Surface Science,2021,541:148429. DOI: 10.1016/j.apsusc.2020.148429

    [24]

    PASCARIU P, HOMOCIANU M. ZnO-based ceramic nanofibers: Preparation, properties and applications[J]. Ceramics International,2019,45(9):11158-11173. DOI: 10.1016/j.ceramint.2019.03.113

    [25]

    KONG L Q, LIU H, CAO W Y, et al. PAN fiber diameter effect on the structure of PAN-based carbon fibers[J]. Fibers and Polymers,2014,15(12):2480-2488. DOI: 10.1007/s12221-014-2480-1

    [26]

    WU F, GAO X, XU X, et al. Boosted Zn storage performance of MnO2 nanosheet-assembled hollow polyhedron grown on carbon cloth via a facile wet-chemical synthesis[J]. ChemSusChem,2019,13(6):1537-1545.

    [27]

    CHEN H, DAI C, XIAO F, et al. Reunderstanding the reaction mechanism of aqueous Zn-Mn batteries with sulfate electrolytes: Role of the zinc sulfate hydroxide[J]. Advanced Materials,2022,34(15):e2109092. DOI: 10.1002/adma.202109092

    [28]

    ZHANG Y A, LIU Y P, LIU Z H, et al. MnO2 cathode materials with the improved stability via nitrogen doping for aqueous zinc-ion batteries[J]. Journal of Energy Chemistry,2022,64:23-32. DOI: 10.1016/j.jechem.2021.04.046

    [29]

    LI S, LIU Y, ZHAO X, et al. Sandwich-like heterostructures of MoS2 graphene with enlarged interlayer spacing and enhanced hydrophilicity as high-performance cathodes for aqueous zinc-ion batteries[J]. Advanced Materials,2021,33(12):e2007480. DOI: 10.1002/adma.202007480

  • 期刊类型引用(1)

    1. 鞠泽辉,王志强,张海洋,郑维,束必清. 3D打印聚乙二醇修饰木质素/聚乳酸生物复合材料的热性能与力学性能. 复合材料学报. 2024(12): 6691-6701 . 本站查看

    其他类型引用(1)

图(7)
计量
  • 文章访问数:  1021
  • HTML全文浏览量:  484
  • PDF下载量:  56
  • 被引次数: 2
出版历程
  • 收稿日期:  2022-05-30
  • 修回日期:  2022-06-25
  • 录用日期:  2022-07-07
  • 网络出版日期:  2022-07-28
  • 刊出日期:  2023-05-14

目录

/

返回文章
返回