留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Co3O4与膨胀石墨自组装的多面体复合物作为锂离子电池阳极材料

欧云 唐智勇 黄登峰 赵腾飞 刘龙飞 成娟娟

欧云, 唐智勇, 黄登峰, 等. Co3O4与膨胀石墨自组装的多面体复合物作为锂离子电池阳极材料[J]. 复合材料学报, 2023, 40(5): 2741-2748. doi: 10.13801/j.cnki.fhclxb.20220727.003
引用本文: 欧云, 唐智勇, 黄登峰, 等. Co3O4与膨胀石墨自组装的多面体复合物作为锂离子电池阳极材料[J]. 复合材料学报, 2023, 40(5): 2741-2748. doi: 10.13801/j.cnki.fhclxb.20220727.003
OU Yun, TANG Zhiyong, HUANG Dengfeng, et al. Co3O4 and expanded graphite self-assembled polyhedron composites used as anode materials for lithium ion batteries[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2741-2748. doi: 10.13801/j.cnki.fhclxb.20220727.003
Citation: OU Yun, TANG Zhiyong, HUANG Dengfeng, et al. Co3O4 and expanded graphite self-assembled polyhedron composites used as anode materials for lithium ion batteries[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2741-2748. doi: 10.13801/j.cnki.fhclxb.20220727.003

Co3O4与膨胀石墨自组装的多面体复合物作为锂离子电池阳极材料

doi: 10.13801/j.cnki.fhclxb.20220727.003
基金项目: 国家自然科学基金(11702092);湖南省自然科学基金(2020JJ5182;2020JJ4288);湖南省教育厅项目(20B225);湖南省光电惯性工程技术研究中心开放基金(HN-NUDT1904)
详细信息
    通讯作者:

    成娟娟,博士,讲师,硕士生导师,研究方向为锂二次电池 E-mail: jjcheng@hnust.edu.cn

  • 中图分类号: TB333;TQ152

Co3O4 and expanded graphite self-assembled polyhedron composites used as anode materials for lithium ion batteries

Funds: National Natural Science Foundation of China (11702092); Natural Science Foundation of Hunan Province (2020JJ5182; 2020JJ4288); Hunan Provincial Education Department Project (20B225); Hunan Engineering Research Center of Optoelectronic Inertial Technology (HN-NUDT1904)
  • 摘要: 作为锂离子电池的负极材料,Co3O4因其具有890 mA·h/g的高理论比容量而备受关注。本文通过简单的化学溶液法和热处理制备了Co3O4与膨胀石墨(EG)自组装的多面体复合材料(Co3O4-EG)。当用作锂离子电池的负极材料时,EG与Co3O4质量比为1∶3的Co3O4-EG复合材料电极在0.1 C的电流倍率下经过400次循环后的可逆容量仍高达418 mA·h/g,高于其他Co3O4-EG复合材料(质量比1∶4循环190圈后容量为273 mA·h/g,质量比1∶5循环135圈后的容量为329 mA·h/g),且所有Co3O4-EG复合材料的放电容量均高于纯Co3O4(400圈循环后容量为40 mA·h/g)。Co3O4的纳米结构、EG的优良导电性及自组装后的多面体结构的协同作用使Co3O4-EG复合材料具有优异的储锂性能。

     

  • 图  1  纯Co3O4和Co3O4-EG组分的制备示意图

    Figure  1.  Illustration of preparation for pure Co3O4 and Co3O4-EG composition

    图  2  制备的Co3O4-EG复合材料、纯Co3O4样品和EG的SEM图像:((a), (d)) EG∶Co3O4=1∶3; ((b), (e)) EG∶Co3O4=1∶4;((c), (f)) EG∶Co3O4=1∶5;(g) Co3O4;((h), (i)) EG

    Figure  2.  SEM images of the as-prepared Co3O4-EG composites, Co3O4 samples and EG: ((a), (d)) EG∶Co3O4=1∶3; ((b), (e)) EG∶Co3O4=1∶4; ((c), (f)) EG∶Co3O4=1∶5; (g) Co3O4; ((h), (i)) EG

    图  3  制备的Co3O4-EG复合材料、纯Co3O4样品和EG的XRD图谱

    Figure  3.  XRD patterns of the as-prepared Co3O4-EG composites, pure Co3O4 sample and EG

    图  4  Co3O4-EG复合材料和纯Co3O4电极在初始两个循环中的CV曲线

    Figure  4.  CV curves of Co3O4-EG composites and pure Co3O4 electrodes during the initial two cycles

    图  5  Co3O4-EG复合电极、Co3O4电极和EG电极在0.1 C倍率下的初始三圈恒流充放电曲线((a)~(e))及对应的交流阻抗图谱(f)

    Figure  5.  Initial three-cycle constant current charge-discharge curves ((a)-(e)) and corresponding AC impedance spectra (f) of Co3O4-EG composite electrode, Co3O4 electrode and EG electrode at 0.1 C

    图  6  Co3O4-EG复合材料和纯Co3O4电极的循环性能:电流倍率为0.1 C时的循环稳定性(a)和库仑效率(b);电流倍率为0.5 C时的循环稳定性(c)和库仑效率(d)

    Figure  6.  Cycling performance of the Co3O4-EG composites and pure Co3O4 electrodes: Cycling stability (a) and coulombic efficiency (b) at current rate of 0.1 C; Cycling stability (c) and coulombic efficiency (d) at current rate of 0.5 C

  • [1] 刘琦, 郝思雨, 冯东, 等. 锂离子电池负极材料研究进展[J]. 复合材料学报, 2022, 39(4):1446-1456. doi: 10.13801/j.cnki.fhclxb.20211101.002

    LIU Qi, HAO Siyu, FENG Dong, et al. Research progress of anode materials for lithium ion battery[J]. Acta Materiae Compositae Sinica,2022,39(4):1446-1456(in Chinese). doi: 10.13801/j.cnki.fhclxb.20211101.002
    [2] 赵婷婷, 李小强, 张亚梅, 等. CoFe2O4@C复合纳米纤维膜作为自支撑锂离子电池负极[J]. 复合材料学报, 2022, 39(9):4431-4440.

    ZHAO Tingting, LI Xiaoqiang, ZHANG Yamei, et al. CoFe2O4@C composite nanofiber films as self-standing anodes for lithium-ion batteries[J]. Acta Materiae Compositae Sinica,2022,39(9):4431-4440(in Chinese).
    [3] HAN J S, DUAN L Q, HE L Y, et al. Template-assisted synthesis of porous Co3O4 nanosheet with excellent electrochemical performance for rechargeable lithium-ion batteries[J]. Journal of Nanoparticle Research,2021,23(11):1-10.
    [4] ZHAO Y C, LIU C G, YI R W, et al. Facile preparation of Co3O4 nanoparticles incorporating with highly conductive MXene nanosheets as high-performance anodes for lithium-ion batteries[J]. Electrochimica Acta,2020,345:136203. doi: 10.1016/j.electacta.2020.136203
    [5] SUN J, WANG H, LI Y, et al. Porous Co3O4 column as a high-performance lithium anode material[J]. Journal of Porous Materials,2021,28(3):889-894. doi: 10.1007/s10934-021-01041-z
    [6] DAI Y, FANG X, YANG T, et al. Construction of the peanut-like Co3O4 as anode materials for high-performance lithium-ion batteries[J]. Ionics,2020,26(3):1261-1265. doi: 10.1007/s11581-019-03312-x
    [7] ZHANG C, WANG H, NIE Y, et al. MOF-derived Co3O4 microspheres with pagoda cauliflower shape as anode materials for stable life Li-ion battery[J]. Functional Materials Letters,2020,13(6):2050029. doi: 10.1142/S1793604720500290
    [8] WEN J, XU L, WANG J, et al. Lithium and potassium storage behavior comparison for porous nanoflaked Co3O4 anode in lithium-ion and potassium-ion batteries[J]. Journal of Power Sources,2020,474:228491. doi: 10.1016/j.jpowsour.2020.228491
    [9] HOU C, WANG B, MURUGADOSS V, et al. Recent advances in Co3O4 as anode materials for high-performance lithium-ion batteries[J]. Engineered Science, 2020, 11(5): 19-30.
    [10] ZHANG X T, CHEN X Z, LUO G, et al. Co3O4-based fluffy tubes structure used as anode material for lithium-ion battery[J]. Materials Letters,2022,309:131427.
    [11] MULE A R, NARSIMULU D, KAKARLA A K, et al. Three-dimensional porous Co3O4 hexagonal plates grown on nickel foam as a high-capacity anode material for lithium-ion batteries[J]. Applied Surface Science,2021,551:148924.
    [12] XIE H, YANG G, CAI Z, et al. High performance of Co3O4@carbon composites as anodes for lithium-ion batteries[J]. Journal of Chemical Technology and Biotechnology,2022,97:2109-2113. doi: 10.1002/jctb.7082
    [13] AYALA J, RAMIREZ D, MYERS J C, et al. Performance and morphology of centrifugally spun Co3O4/C composite fibers for anode materials in lithium-ion batteries[J]. Journal of Materials Science,2021,56(28):16010-16027. doi: 10.1007/s10853-021-06285-3
    [14] TAN L, LAN X, HU R, et al. Stable lithium storage at subzero temperatures for high-capacity Co3O4@graphene composite anodes[J]. Chemnanomat,2021,7(1):61-70. doi: 10.1002/cnma.202000547
    [15] WANG Y, ZHANG X, MENG F, et al. Stabilizing Co3O4 nanorods/N-doped graphene as advanced anode for lithium-ion batteries[J]. Frontiers of Materials Science,2021,15(2):216-226. doi: 10.1007/s11706-021-0552-x
    [16] WU D, WANG C, WU H, et al. Synthesis of hollow Co3O4 nanocrystals in situ anchored on holey graphene for high rate lithium-ion batteries[J]. Carbon,2020,163:137-144. doi: 10.1016/j.carbon.2020.03.007
    [17] GUAN R, DONG G, LI Z, et al. MOFs-derived Co3O4/MWCNTs composite as high-performance anode materials for Li-ion batteries[J]. Materials Letters,2022,307:13099.
    [18] SHAO J, XIAO J, WANG Y, et al. Cobalt oxide nanocubes encapsulated in graphene aerogel as integrated anodes for lithium-ion batteries[J]. ChemistrySelect,2020,5(17):5323-5329. doi: 10.1002/slct.202001273
    [19] HUANG Y, FANG Y, LU X F, et al. Co3O4 hollow nanoparticles embedded in mesoporous walls of carbon nanoboxes for efficient lithium storage[J]. Angewandte Chemie-International Edition,2020,59(45):19914-19918. doi: 10.1002/anie.202008987
    [20] LUO P, ZHENG C, HE J W, et al. Structural engineering in graphite-based metal-ion batteries[J]. Advanced Functional Materials,2022,32(9):2107277. doi: 10.1002/adfm.202107277
    [21] OU J, WU S, WANG H. Hydrothermal preparation of homogeneous cobalt oxide nanomaterials as stable anodes for superior lithium ion batteries[J]. Acta Metallurgica Sinica (English Letters),2021,34(3):383-389. doi: 10.1007/s40195-020-01177-y
    [22] MULE A R, NARSIMULU D, KAKARLA A K, et al. Three-dimensional porous Co3O4 hexagonal plates grown on nickel foam as a high-capacity anode material for lithium-ion batteries[J]. Applied Surface Science,2021,551:148942. doi: 10.1016/j.apsusc.2021.148942
    [23] TANG F, SUN Y G, DAI G X, et al. Template-free synthesis of Co-based oxides nanotubes as potential anodes for lithium-ion batteries[J]. Journal of Alloys and Compounds,2022,895:162611. doi: 10.1016/j.jallcom.2021.162611
    [24] ZHU J, TU W, PAN H, et al. Self-templating synthesis of hollow Co3O4 nanoparticles embedded in N, S-dual-doped reduced graphene oxide for lithium ion batteries[J]. ACS Nano, 2020, 14(5): 5780-5787.
    [25] DWIVEDI P K, PARTE G, THRIPURANTHAKA M, et al. High efficiency lithium storage in 3D composite foam of Co3O4 nanoparticles integrated carbon nanohorns[J]. Materials Science and Engineering: B,2021,263:114839. doi: 10.1016/j.mseb.2020.114839
    [26] ZHONG W, HUANG X, LIN Y, et al. Compact Co3O4/Co in-situ nanocomposites prepared by pulsed laser sintering as anode materials for lithium-ion batteries[J]. Journal of Energy Chemistry,2021,58:386-390. doi: 10.1016/j.jechem.2020.10.013
    [27] WU Z S, REN W, WEN L, et al. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performancel[J]. ACS Nano, 2010, 4(6): 3187-3194.
    [28] JING M, ZHOU M, LI G, et al. Graphene-embedded Co3O4 rose-spheres for enhanced performance in lithium ion batteriesl[J]. ACS Applied Materials & Interfaces, 2017, 9(11): 9662-9668.
    [29] CHEN K X, HUANG R, GU F L, et al. A novel hollow Co3O4@N-doped carbon nanobubble film composite for high-performance anode of lithium-ion batteriesl[J]. Composites Part B: Engineering, 2021, 224: 109247.
    [30] ZHAO Y, MA C, LI Y, et al. Self-adhesive Co3O4/expanded graphite paper as high-performance flexible anode for Li-ion batteriesl[J]. Carbon, 2015, 95: 494-496.
  • 加载中
图(6)
计量
  • 文章访问数:  717
  • HTML全文浏览量:  372
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-05
  • 修回日期:  2022-06-27
  • 录用日期:  2022-07-11
  • 网络出版日期:  2022-07-28
  • 刊出日期:  2023-05-15

目录

    /

    返回文章
    返回