留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钢绞线网增强ECC与混凝土刻槽式界面粘结性能试验

朱俊涛 刘亚文 王娟 李可

朱俊涛, 刘亚文, 王娟, 等. 钢绞线网增强ECC与混凝土刻槽式界面粘结性能试验[J]. 复合材料学报, 2023, 40(5): 2913-2925. doi: 10.13801/j.cnki.fhclxb.20220721.001
引用本文: 朱俊涛, 刘亚文, 王娟, 等. 钢绞线网增强ECC与混凝土刻槽式界面粘结性能试验[J]. 复合材料学报, 2023, 40(5): 2913-2925. doi: 10.13801/j.cnki.fhclxb.20220721.001
ZHU Juntao, LIU Yawen, WANG Juan, et al. Experimental on bond properties of grooved interface between high-strength steel wire mesh reinforced ECC and concrete[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2913-2925. doi: 10.13801/j.cnki.fhclxb.20220721.001
Citation: ZHU Juntao, LIU Yawen, WANG Juan, et al. Experimental on bond properties of grooved interface between high-strength steel wire mesh reinforced ECC and concrete[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2913-2925. doi: 10.13801/j.cnki.fhclxb.20220721.001

钢绞线网增强ECC与混凝土刻槽式界面粘结性能试验

doi: 10.13801/j.cnki.fhclxb.20220721.001
基金项目: 国家自然科学基金(51708511);住房和城乡建设部科学技术计划项目(2019-K-059);河南省青年骨干教师项目(2020GGJS003)
详细信息
    通讯作者:

    李可,博士,副教授,研究方向为新型建筑复合材料性能及结构应用 E-mail:irwinlike@163.com

  • 中图分类号: TB332;TU528.58

Experimental on bond properties of grooved interface between high-strength steel wire mesh reinforced ECC and concrete

Funds: National Natural Science Foundation of China (51708511); Ministry of Housing and Urban Rural Development Science and Technology Program (2019-K-059); Young Backbone Teacher Project of Henan Province (2020GGJS003)
  • 摘要: 为研究刻槽构造对钢绞线网增强工程用水泥基复合材料(High strength steel wire mesh reinforced engineered cementitious composites,HSSWM-ECC)与混凝土界面粘结性能的影响,考虑刻槽数量、刻槽深度、钢绞线直径、纵向钢绞线配筋率及ECC抗拉强度等因素,对设计制作的12组36个梁铰式试件进行了界面粘结性能试验。结果表明:HSSWM-ECC与混凝土界面粘结破坏形态有界面剥离破坏和钢绞线断裂破坏两种;在刻槽参与受力总宽度20 mm及槽深5 mm范围内,增加刻槽数量和刻槽深度均能有效提高界面粘结性能;而纵向钢绞线配筋率和ECC抗拉强度与界面粘结性能指标(粘结应力及对应滑移量)呈线性相关性。基于刻槽界面粘结机制分析,建立了考虑界面键槽特征(刻槽数量、槽深)及HSSWM-ECC层强度特征(钢绞线配筋率、钢绞线直径、ECC抗拉强度等)的刻槽处理界面抗剪承载力预测模型。经验证分析,该界面受剪承载力计算模型与试验结果吻合良好。

     

  • 图  1  钢绞线网增强工程用水泥基复合材料(HSSWM-ECC)-混凝土试件详图

    Figure  1.  Detail of high-strength steel wire mesh reinforced engineered cementitious composites (HSSWM-ECC)-concrete specimens

    图  2  ECC拉伸应力-应变试验曲线

    Figure  2.  Tensile stress-strain test curves of ECC

    图  3  试验加载装置及测点布置图

    LVDT—Linear variable differential transformer

    Figure  3.  Test loading device and measurement point location

    图  4  梁式试件受力模型

    Figure  4.  Force model of the beam test specimen

    图  5  HSSWM-ECC与混凝土粘结试件破坏模式

    Figure  5.  Failure modes of HSSWM-ECC-concrete specimens

    图  6  HSSWM-ECC与混凝土粘结试件典型荷载-滑移曲线

    Figure  6.  Typical load-slip curves of HSSWM-ECC-concrete specimens

    图  7  HSSWM-ECC-混凝土粘结试件粘结范围内各测点应变分布情况

    Figure  7.  Strain distribution of measured points along bond length of HSSWM-ECC-concrete specimens

    图  8  N组HSSWM-ECC-混凝土粘结试件荷载-滑移曲线

    Figure  8.  Load-slip curves of HSSWM-ECC-concrete specimens in group N

    图  9  HSSWM-ECC-混凝土粘结试件界面承载力、最大滑移量与刻槽数量的关系曲线

    Fu—Interfacial bearing capacity; su—Maximum slip

    Figure  9.  Relationship curves of bearing capacity, maximum slip of HSSWM-ECC-concrete specimens and the number of grooves

    图  10  H组HSSWM-ECC-混凝土粘结试件荷载-滑移曲线

    Figure  10.  Load-slip curves of HSSWM-ECC-concrete specimens in group H

    图  11  HSSWM-ECC-混凝土粘结试件界面承载力、最大滑移量与刻槽深度的关系曲线

    Figure  11.  Relationship curves of bearing capacity, maximum slip of HSSWM-ECC-concrete specimens and the height of grooves

    图  12  D组HSSWM-ECC-混凝土粘结试件荷载-滑移曲线

    Figure  12.  Load-slip curves of HSSWM-ECC-concrete specimens in group D

    图  13  HSSWM-ECC-混凝土粘结试件界面承载力、最大滑移量与钢绞线(HSSWR)直径的关系曲线

    Figure  13.  Relationship curves of bearing capacity, maximum slip of HSSWM-ECC-concrete specimens and the diameter of high-strength steel wire rope (HSSWR)

    图  14  R组HSSWM-ECC-混凝土粘结试件荷载-滑移曲线

    Figure  14.  Load-slip curves of HSSWM-ECC-concrete specimens in group R

    图  15  HSSWM-ECC-混凝土粘结试件界面承载力、最大滑移量与钢绞线配筋率关系曲线

    Figure  15.  Relationship curves of bearing capacity, maximum slip of HSSWM-ECC-concrete specimens and the ratio of HSSWR

    图  16  T组HSSWM-ECC-混凝土粘结试件荷载-滑移曲线

    Figure  16.  Load-slip curves of HSSWM-ECC-concrete specimens in group T

    图  17  HSSWM-ECC-混凝土粘结试件界面承载力、最大滑移量与ECC抗拉强度关系曲线

    Figure  17.  Relationship curves of bearing capacity, maximum slip of HSSWM-ECC-concrete specimens and ECC tensile strength

    图  18  HSSWM-ECC-混凝土粘结试件界面粘结机制

    Figure  18.  Interfacial bonding mechanism of HSSWM-ECC-concrete specimens

    图  19  HSSWM-ECC-混凝土粘结试件综合调整系数KG回归分析

    FG—Test value of mechanical bite force provided by grooves; KG—Comprehensive adjustment coefficient of mechanical bite force

    Figure  19.  Regression analysis of adjustment coefficient KG of HSSWM-ECC-concrete specimens

    表  1  HSSWM-ECC-混凝土试件设计参数

    Table  1.   Design parameters of HSSWM-ECC-concrete specimens

    Group numberSpecimen numberGroove numberGroove height/mmHSSWR diameter/mmHSSWR ratio/%ECC type
    A A0 0 0 2.4 0.627 Type 1
    N N3 3 5 2.4 0.627 Type 1
    N4 4 5 2.4 0.627 Type 1
    N5 5 5 2.4 0.627 Type 1
    H H3 4 3 2.4 0.627 Type 1
    H7 4 7 2.4 0.627 Type 1
    D D3.2 4 5 3.2 0.878 Type 1
    D4.5 4 5 4.5 0.855 Type 1
    R R3 4 5 2.4 0.376 Type 1
    R7 4 5 2.4 0.877 Type 1
    T T2 4 5 2.4 0.627 Type 2
    T3 4 5 2.4 0.627 Type 3
    Notes: A—Control group; N—Groove number changed group; H—Groove height changed group; D—Strand diameter changed group; R—Longitudinal strand ratio changed group; T—ECC tensile strength changed group.
    下载: 导出CSV

    表  2  ECC配合比

    Table  2.   Mix proportion of ECC wt%

    ECC Cement Sand Fly ash Micro silica Water Water reducer Thickener Polyvinyl alcohol (PVA) fiber
    Type 1 1 0.4 3 0.073 1.02 0.0407 0 0.072
    Type 2 1 0.4 3 0.073 1.02 0.0407 0.00182 0.072
    Type 3 1 0.4 3 0.073 1.15 0.0407 0 0.072
    下载: 导出CSV

    表  3  ECC力学性能结果

    Table  3.   Mechanical properties results of ECC

    ECCCracking strength/MPaCracking strain/%Tensile strength/MPaUltimate tensile strain/%Compressive strength/MPa
    Type 11.8420.0312.5163.58731.2
    Type 21.6060.0552.1073.51226.5
    Type 32.3150.0433.2823.72425.4
    下载: 导出CSV

    表  4  HSSWR力学性能结果

    Table  4.   Mechanical properties results of HSSWR

    Diameter/mmMeasured area/mm2Elastic modulus/GPaUltimate tensile strength/MPaUltimate tensile strain/%
    2.42.82110.3481566.533.195
    3.24.95103.8051581.303.787
    4.59.64 97.7821564.824.108
    下载: 导出CSV

    表  5  HSSWM-ECC与混凝土粘结试件试验结果

    Table  5.   Test results of HSSWM-ECC-concrete specimens

    Specimen numberFu/kNτa,p/MPaσs,p/MPasu/mmFailure mode
    A0-1 4.24 0.39 300.71 0.0645 A
    A0-2 4.42 0.41 313.48 0.0620 A
    A0-3 3.68 0.34 260.99 0.0558 A
    N3-1 10.21 0.95 724.11 0.1365 B
    N3-2 11.64 1.08 825.40 0.1442 B
    N3-3 11.96 1.11 848.55 0.1576 B
    N4-1 15.18 1.41 1076.60 0.1190 B
    N4-2 14.27 1.32 1012.06 0.0830 B
    N4-3 14.85 1.38 1053.19 0.1070 B
    N5-1 15.69 1.45 1112.77 0.0970 B
    N5-2 B
    N5-3 14.94 1.38 1059.57 0.0850 B
    H3-1 10.63 0.98 754.07 0.1726 B
    H3-2 10.66 0.99 756.03 0.1651 B
    H3-3 9.72 0.90 689.36 0.1789 B
    H7-1 15.31 1.42 1085.82 0.0920 B
    H7-2 14.90 1.38 1056.74 0.1043 B
    H7-3 13.86 1.28 982.98 0.1279 B
    D3.2-1 14.71 1.36 743.16 0.1093 B
    D3.2-2 16.52 1.53 834.34 0.1155 B
    D3.2-3 16.98 1.57 857.59 0.1263 B
    D4.5-1 14.49 1.34 751.56 0.1171 C
    D4.5-2 14.73 1.36 763.78 0.1252 C
    D4.5-3 15.32 1.42 794.61 0.1535 C
    R3-1 11.44 1.06 1352.01 0.1213 D
    R3-2 12.23 1.13 1445.21 0.1281 D
    R3-3 10.75 1.00 1271.05 0.1451 D
    R7-1 16.63 1.54 842.55 0.0863 B
    R7-2 17.71 1.64 897.34 0.0825 B
    R7-3 16.47 1.53 834.57 0.0950 B
    T2-1 12.41 1.15 880.40 0.1117 C
    T2-2 13.54 1.25 960.51 0.1240 C
    T2-3 13.16 1.22 933.56 0.1290 C
    T3-1 16.51 1.53 1170.59 0.0882 B
    T3-2 16.20 1.50 1148.97 0.0844 B
    T3-3 15.68 1.45 1111.80 0.0914 B
    Notes: Fu—Ultimate load; τa,p—Interface peak bond stress; σs,p—Peak nominal tension of longitudinal HSSWR; su—Maximum slip; A—Peeling failure in interface; B—Peeling failure in concrete layer; C—Peeling failure in HSSWM-ECC layer; D—Strand fracture damage.
    下载: 导出CSV

    表  6  HSSWM-ECC-混凝土粘结试件界面承载力预测模型验证结果

    Table  6.   Validation results of bearing capacity prediction model of HSSWM-ECC-concrete specimens

    Group numberSpecimen numberTest data/kNCalculated value/kNTest data/Calculated value
    D4.5D4.5-114.4913.951.039
    D4.5-214.7313.951.056
    D4.5-315.3213.951.098
    T2T2-112.4113.010.954
    T2-213.5413.011.041
    T2-313.1613.011.012
    N5N5-115.6916.480.952
    N5-2
    N5-314.9416.480.907
    H7H7-115.3115.810.968
    H7-214.9015.810.942
    H7-313.8615.810.876
    下载: 导出CSV
  • [1] MA H, YI C, WU C. Review and outlook on durability of engineered cementitious composite (ECC)[J]. Construction and Building Materials,2021,287(2):122719.
    [2] SHOJI D, HE Z, ZHANG D, et al. The greening of engi-neered cementitious composites (ECC): A review[J]. Construction and Building Materials,2022,327:126701. doi: 10.1016/j.conbuildmat.2022.126701
    [3] 王玉清, 孙亮, 刘曙光, 等. 不同纤维掺量下聚乙烯醇纤维/水泥复合材料徐变性能试验[J]. 复合材料学报, 2020, 37(1):205-213.

    WANG Yuqing, SUN Liang, LIU Shuguang, et al. Experimental study on creep performance of polyvinyl alcohol fiber/engineered cementitious composites with different fiber contents[J]. Acta Materiae Compositae Sinica,2020,37(1):205-213(in Chinese).
    [4] LI K, LIU W K, ZHANG K, et al. Bond behavior of stainless steel wire ropes embedded in engineered cementitious composites[J]. Construction and Building Materials,2021,281(4):122622.
    [5] ZHU J T, ZHANG K, WANG X L, et al. Bond-slip performance between high-strength steel wire rope meshes and engineered cementitious composites[J]. Journal of Materials in Civil Engineering,2022,34(5):04022048. doi: 10.1061/(ASCE)MT.1943-5533.0004184
    [6] 李可, 赵佳丽, 李志强, 等. 高强钢绞线网增强ECC抗弯加固无损RC梁试验[J]. 复合材料学报, 2022, 39(7): 3428-3440.

    LI Ke, ZHAO Jiali, LI Zhiqiang, et al. Experiment on non-damaged RC beams strengthened by high-strength steel wire strand meshes reinforced ECC in bending[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3428-3440(in Chinese).
    [7] 李可, 王宇, 李志强, 等. 高强钢绞线网增强ECC加固无损RC梁受弯承载力研究[J]. 建筑结构学报, 2022, 43(12): 82-90.

    LI Ke, WANG Yu, LI Zhiqiang, et al. Research on flexural bearing capacity of non-damaged RC beams strengthened by high strength steel wire strand meshes reinforced ECC[J]. Journal of Building Structures, 2022, 43(12): 82-90(in Chinese).
    [8] 潘毅, 刘茜, 任宇, 等. 基于不同黏结材的CFRP链-混凝土界面黏结性能试验研究[J]. 土木工程学报, 2021, 54(1):26-37, 96. doi: 10.15951/j.tmgcxb.2021.01.003

    PAN Yi, LIU Qian, REN Yu, et al. Experimental study on the bond behavior of CFRP strand sheet-concrete with different types of bond agents[J]. China Civil Engineering Journal,2021,54(1):26-37, 96(in Chinese). doi: 10.15951/j.tmgcxb.2021.01.003
    [9] FENG S, XIAO H, MA M, et al. Experimental study on bonding behaviour of interface between UHPC and concrete substrate[J]. Construction and Building Materials,2021,311:125360. doi: 10.1016/j.conbuildmat.2021.125360
    [10] TIAN J, WU X, WANG W W, et al. Experimental study and mechanics model of ECC-to-concrete bond interface under tensile loading[J]. Composite Structures,2022,285:115203. doi: 10.1016/j.compstruct.2022.115203
    [11] MANSOUR W, FAYED S. Effect of interfacial surface preparation technique on bond characteristics of both NSC-UHPFRC and NSC-NSC composites[J]. Structures,2021,29:147-166. doi: 10.1016/j.istruc.2020.11.010
    [12] 张阳, 吴洁, 邵旭东, 等. 超高性能混凝土-普通混凝土界面抗剪性能试验研究[J]. 土木工程学报, 2021, 54(7):81-89. doi: 10.15951/j.tmgcxb.2021.07.006

    ZHANG Yang, WU Jie, SHAO Xudong, et al. Experiment on interfacial shear properties between ultra-high performance concrete and normal strength concrete[J]. China Civil Engineering Journal,2021,54(7):81-89(in Chinese). doi: 10.15951/j.tmgcxb.2021.07.006
    [13] AL-MADANI M K, AL-OSTA M A, AHMAD S, et al. Interfacial bond behavior between ultra high performance concrete and normal concrete substrates[J]. Construction and Building Materials,2022,320:126229. doi: 10.1016/j.conbuildmat.2021.126229
    [14] CHEN C, LI X, WANG X, et al. Effect of transverse groove on bond behavior of FRP-concrete interface: Experimental study, image analysis and design[J]. Composites Part B: Engineering,2019,161:205-219. doi: 10.1016/j.compositesb.2018.10.072
    [15] 周建庭, 胡天祥, 杨俊, 等. 键槽构造UHPC-NC界面黏结性能试验研究[J]. 材料导报, 2021, 35(16):16050-16057, 16064. doi: 10.11896/cldb.20070033

    ZHOU Jianting, HU Tianxiang, YANG Jun, et al. Experimental investigation on bonding behavior of UHPC-NC interface in keyway structure[J]. Materials Reports,2021,35(16):16050-16057, 16064(in Chinese). doi: 10.11896/cldb.20070033
    [16] 张凯. 高强钢绞线网增强ECC与混凝土界面黏结性能研究[D]. 郑州: 郑州大学, 2021.

    ZHANG Kai. Study on bonding performance between high-strength steel wire mesh reinforced ECC and concrete[D]. Zhengzhou: Zhengzhou University, 2021(in Chinese).
    [17] 中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2019.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test methods of concrete physical and mechanical properties: GB/T 50081—2019[S]. Beijing: China Architecture & Building Press, 2019(in Chinese).
    [18] 中华人民共和国工业和信息化部. 高延性纤维增强水泥基复合材料力学性能试验方法: JC/T 2461—2018[S]. 北京: 中国建材工业出版社, 2018.

    Ministry of Industry and Information Technology of the People's Republic of China. Standard test method for the mechanical properties of ductile fiber reinforced cementitious composites: JC/T 2461—2018[S]. Beijing: China Building Materials Industry Press, 2018(in Chinese).
    [19] MOSTOFINEJAD D, AREFIAN B. Generic assessment of effective bond length of FRP-concrete joint based on the initiation of debonding: Experimental and analytical investigation[J]. Composite Structures,2021,277:114625. doi: 10.1016/j.compstruct.2021.114625
    [20] ZHANG P, HU Y, PANG Y Y, et al. Experimental study on the interfacial bond behavior of FRP plate-high-strength concrete under seawater immersion[J]. Construction and Building Materials,2020,259:119799. doi: 10.1016/j.conbuildmat.2020.119799
  • 加载中
图(19) / 表(6)
计量
  • 文章访问数:  866
  • HTML全文浏览量:  418
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-17
  • 修回日期:  2022-06-16
  • 录用日期:  2022-07-08
  • 网络出版日期:  2022-07-22
  • 刊出日期:  2023-05-15

目录

    /

    返回文章
    返回