Experimental on bond properties of grooved interface between high-strength steel wire mesh reinforced ECC and concrete
-
摘要: 为研究刻槽构造对钢绞线网增强工程用水泥基复合材料(High strength steel wire mesh reinforced engineered cementitious composites,HSSWM-ECC)与混凝土界面粘结性能的影响,考虑刻槽数量、刻槽深度、钢绞线直径、纵向钢绞线配筋率及ECC抗拉强度等因素,对设计制作的12组36个梁铰式试件进行了界面粘结性能试验。结果表明:HSSWM-ECC与混凝土界面粘结破坏形态有界面剥离破坏和钢绞线断裂破坏两种;在刻槽参与受力总宽度20 mm及槽深5 mm范围内,增加刻槽数量和刻槽深度均能有效提高界面粘结性能;而纵向钢绞线配筋率和ECC抗拉强度与界面粘结性能指标(粘结应力及对应滑移量)呈线性相关性。基于刻槽界面粘结机制分析,建立了考虑界面键槽特征(刻槽数量、槽深)及HSSWM-ECC层强度特征(钢绞线配筋率、钢绞线直径、ECC抗拉强度等)的刻槽处理界面抗剪承载力预测模型。经验证分析,该界面受剪承载力计算模型与试验结果吻合良好。Abstract: In order to study the effect of grooved interface on the bonding properties of high-strength steel wire mesh reinforced engineered cementitious composites (HSSWM-ECC) and concrete, a total of 36 specimens in 12 sets were designed and fabricated for beam tests, considering the effect of the number of grooves, depth of grooves, steel strand diameter, longitudinal strand ratio and tensile strength of ECC. The results show that the damage patterns include interfacial peeling failure and strand fracture damage. Within the range of the total grooves involved width of 20 mm and the groove depth of 5 mm, the bond behavior between HSSWM-ECC and concrete can be effectively improved by increasing the number or depth of grooves. The longitudinal strand ratio and ECC tensile strength are linearly correlated with the interface bond performance indicators (bond stress and its corresponding slip). Based on the analysis of the bonding mechanism of the grooved interface, a prediction model of the shear bearing capacity considering the groove features (number of grooves, depth of grooves) and the strength characteristics of the HSSWM-ECC layer (longitudinal strand ratio, strand diameter, ECC tensile strength) is established, which is in good agreement with the test results.
-
Key words:
- high-strength steel wire mesh /
- ECC /
- grooved interface /
- bond behavior /
- beam mode test /
- bearing capacity
-
表 1 HSSWM-ECC-混凝土试件设计参数
Table 1. Design parameters of HSSWM-ECC-concrete specimens
Group number Specimen number Groove number Groove height/mm HSSWR diameter/mm HSSWR ratio/% ECC type A A0 0 0 2.4 0.627 Type 1 N N3 3 5 2.4 0.627 Type 1 N4 4 5 2.4 0.627 Type 1 N5 5 5 2.4 0.627 Type 1 H H3 4 3 2.4 0.627 Type 1 H7 4 7 2.4 0.627 Type 1 D D3.2 4 5 3.2 0.878 Type 1 D4.5 4 5 4.5 0.855 Type 1 R R3 4 5 2.4 0.376 Type 1 R7 4 5 2.4 0.877 Type 1 T T2 4 5 2.4 0.627 Type 2 T3 4 5 2.4 0.627 Type 3 Notes: A—Control group; N—Groove number changed group; H—Groove height changed group; D—Strand diameter changed group; R—Longitudinal strand ratio changed group; T—ECC tensile strength changed group. 表 2 ECC配合比
Table 2. Mix proportion of ECC
wt% ECC Cement Sand Fly ash Micro silica Water Water reducer Thickener Polyvinyl alcohol (PVA) fiber Type 1 1 0.4 3 0.073 1.02 0.0407 0 0.072 Type 2 1 0.4 3 0.073 1.02 0.0407 0.00182 0.072 Type 3 1 0.4 3 0.073 1.15 0.0407 0 0.072 表 3 ECC力学性能结果
Table 3. Mechanical properties results of ECC
ECC Cracking strength/MPa Cracking strain/% Tensile strength/MPa Ultimate tensile strain/% Compressive strength/MPa Type 1 1.842 0.031 2.516 3.587 31.2 Type 2 1.606 0.055 2.107 3.512 26.5 Type 3 2.315 0.043 3.282 3.724 25.4 表 4 HSSWR力学性能结果
Table 4. Mechanical properties results of HSSWR
Diameter/mm Measured area/mm2 Elastic modulus/GPa Ultimate tensile strength/MPa Ultimate tensile strain/% 2.4 2.82 110.348 1566.53 3.195 3.2 4.95 103.805 1581.30 3.787 4.5 9.64 97.782 1564.82 4.108 表 5 HSSWM-ECC与混凝土粘结试件试验结果
Table 5. Test results of HSSWM-ECC-concrete specimens
Specimen number Fu/kN τa,p/MPa σs,p/MPa su/mm Failure mode A0-1 4.24 0.39 300.71 0.0645 A A0-2 4.42 0.41 313.48 0.0620 A A0-3 3.68 0.34 260.99 0.0558 A N3-1 10.21 0.95 724.11 0.1365 B N3-2 11.64 1.08 825.40 0.1442 B N3-3 11.96 1.11 848.55 0.1576 B N4-1 15.18 1.41 1076.60 0.1190 B N4-2 14.27 1.32 1012.06 0.0830 B N4-3 14.85 1.38 1053.19 0.1070 B N5-1 15.69 1.45 1112.77 0.0970 B N5-2 – – – – B N5-3 14.94 1.38 1059.57 0.0850 B H3-1 10.63 0.98 754.07 0.1726 B H3-2 10.66 0.99 756.03 0.1651 B H3-3 9.72 0.90 689.36 0.1789 B H7-1 15.31 1.42 1085.82 0.0920 B H7-2 14.90 1.38 1056.74 0.1043 B H7-3 13.86 1.28 982.98 0.1279 B D3.2-1 14.71 1.36 743.16 0.1093 B D3.2-2 16.52 1.53 834.34 0.1155 B D3.2-3 16.98 1.57 857.59 0.1263 B D4.5-1 14.49 1.34 751.56 0.1171 C D4.5-2 14.73 1.36 763.78 0.1252 C D4.5-3 15.32 1.42 794.61 0.1535 C R3-1 11.44 1.06 1352.01 0.1213 D R3-2 12.23 1.13 1445.21 0.1281 D R3-3 10.75 1.00 1271.05 0.1451 D R7-1 16.63 1.54 842.55 0.0863 B R7-2 17.71 1.64 897.34 0.0825 B R7-3 16.47 1.53 834.57 0.0950 B T2-1 12.41 1.15 880.40 0.1117 C T2-2 13.54 1.25 960.51 0.1240 C T2-3 13.16 1.22 933.56 0.1290 C T3-1 16.51 1.53 1170.59 0.0882 B T3-2 16.20 1.50 1148.97 0.0844 B T3-3 15.68 1.45 1111.80 0.0914 B Notes: Fu—Ultimate load; τa,p—Interface peak bond stress; σs,p—Peak nominal tension of longitudinal HSSWR; su—Maximum slip; A—Peeling failure in interface; B—Peeling failure in concrete layer; C—Peeling failure in HSSWM-ECC layer; D—Strand fracture damage. 表 6 HSSWM-ECC-混凝土粘结试件界面承载力预测模型验证结果
Table 6. Validation results of bearing capacity prediction model of HSSWM-ECC-concrete specimens
Group number Specimen number Test data/kN Calculated value/kN Test data/Calculated value D4.5 D4.5-1 14.49 13.95 1.039 D4.5-2 14.73 13.95 1.056 D4.5-3 15.32 13.95 1.098 T2 T2-1 12.41 13.01 0.954 T2-2 13.54 13.01 1.041 T2-3 13.16 13.01 1.012 N5 N5-1 15.69 16.48 0.952 N5-2 — — — N5-3 14.94 16.48 0.907 H7 H7-1 15.31 15.81 0.968 H7-2 14.90 15.81 0.942 H7-3 13.86 15.81 0.876 -
[1] MA H, YI C, WU C. Review and outlook on durability of engineered cementitious composite (ECC)[J]. Construction and Building Materials,2021,287(2):122719. [2] SHOJI D, HE Z, ZHANG D, et al. The greening of engi-neered cementitious composites (ECC): A review[J]. Construction and Building Materials,2022,327:126701. doi: 10.1016/j.conbuildmat.2022.126701 [3] 王玉清, 孙亮, 刘曙光, 等. 不同纤维掺量下聚乙烯醇纤维/水泥复合材料徐变性能试验[J]. 复合材料学报, 2020, 37(1):205-213.WANG Yuqing, SUN Liang, LIU Shuguang, et al. Experimental study on creep performance of polyvinyl alcohol fiber/engineered cementitious composites with different fiber contents[J]. Acta Materiae Compositae Sinica,2020,37(1):205-213(in Chinese). [4] LI K, LIU W K, ZHANG K, et al. Bond behavior of stainless steel wire ropes embedded in engineered cementitious composites[J]. Construction and Building Materials,2021,281(4):122622. [5] ZHU J T, ZHANG K, WANG X L, et al. Bond-slip performance between high-strength steel wire rope meshes and engineered cementitious composites[J]. Journal of Materials in Civil Engineering,2022,34(5):04022048. doi: 10.1061/(ASCE)MT.1943-5533.0004184 [6] 李可, 赵佳丽, 李志强, 等. 高强钢绞线网增强ECC抗弯加固无损RC梁试验[J]. 复合材料学报, 2022, 39(7): 3428-3440.LI Ke, ZHAO Jiali, LI Zhiqiang, et al. Experiment on non-damaged RC beams strengthened by high-strength steel wire strand meshes reinforced ECC in bending[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3428-3440(in Chinese). [7] 李可, 王宇, 李志强, 等. 高强钢绞线网增强ECC加固无损RC梁受弯承载力研究[J]. 建筑结构学报, 2022, 43(12): 82-90. LI Ke, WANG Yu, LI Zhiqiang, et al. Research on flexural bearing capacity of non-damaged RC beams strengthened by high strength steel wire strand meshes reinforced ECC[J]. Journal of Building Structures, 2022, 43(12): 82-90(in Chinese). [8] 潘毅, 刘茜, 任宇, 等. 基于不同黏结材的CFRP链-混凝土界面黏结性能试验研究[J]. 土木工程学报, 2021, 54(1):26-37, 96. doi: 10.15951/j.tmgcxb.2021.01.003PAN Yi, LIU Qian, REN Yu, et al. Experimental study on the bond behavior of CFRP strand sheet-concrete with different types of bond agents[J]. China Civil Engineering Journal,2021,54(1):26-37, 96(in Chinese). doi: 10.15951/j.tmgcxb.2021.01.003 [9] FENG S, XIAO H, MA M, et al. Experimental study on bonding behaviour of interface between UHPC and concrete substrate[J]. Construction and Building Materials,2021,311:125360. doi: 10.1016/j.conbuildmat.2021.125360 [10] TIAN J, WU X, WANG W W, et al. Experimental study and mechanics model of ECC-to-concrete bond interface under tensile loading[J]. Composite Structures,2022,285:115203. doi: 10.1016/j.compstruct.2022.115203 [11] MANSOUR W, FAYED S. Effect of interfacial surface preparation technique on bond characteristics of both NSC-UHPFRC and NSC-NSC composites[J]. Structures,2021,29:147-166. doi: 10.1016/j.istruc.2020.11.010 [12] 张阳, 吴洁, 邵旭东, 等. 超高性能混凝土-普通混凝土界面抗剪性能试验研究[J]. 土木工程学报, 2021, 54(7):81-89. doi: 10.15951/j.tmgcxb.2021.07.006ZHANG Yang, WU Jie, SHAO Xudong, et al. Experiment on interfacial shear properties between ultra-high performance concrete and normal strength concrete[J]. China Civil Engineering Journal,2021,54(7):81-89(in Chinese). doi: 10.15951/j.tmgcxb.2021.07.006 [13] AL-MADANI M K, AL-OSTA M A, AHMAD S, et al. Interfacial bond behavior between ultra high performance concrete and normal concrete substrates[J]. Construction and Building Materials,2022,320:126229. doi: 10.1016/j.conbuildmat.2021.126229 [14] CHEN C, LI X, WANG X, et al. Effect of transverse groove on bond behavior of FRP-concrete interface: Experimental study, image analysis and design[J]. Composites Part B: Engineering,2019,161:205-219. doi: 10.1016/j.compositesb.2018.10.072 [15] 周建庭, 胡天祥, 杨俊, 等. 键槽构造UHPC-NC界面黏结性能试验研究[J]. 材料导报, 2021, 35(16):16050-16057, 16064. doi: 10.11896/cldb.20070033ZHOU Jianting, HU Tianxiang, YANG Jun, et al. Experimental investigation on bonding behavior of UHPC-NC interface in keyway structure[J]. Materials Reports,2021,35(16):16050-16057, 16064(in Chinese). doi: 10.11896/cldb.20070033 [16] 张凯. 高强钢绞线网增强ECC与混凝土界面黏结性能研究[D]. 郑州: 郑州大学, 2021.ZHANG Kai. Study on bonding performance between high-strength steel wire mesh reinforced ECC and concrete[D]. Zhengzhou: Zhengzhou University, 2021(in Chinese). [17] 中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2019.Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test methods of concrete physical and mechanical properties: GB/T 50081—2019[S]. Beijing: China Architecture & Building Press, 2019(in Chinese). [18] 中华人民共和国工业和信息化部. 高延性纤维增强水泥基复合材料力学性能试验方法: JC/T 2461—2018[S]. 北京: 中国建材工业出版社, 2018.Ministry of Industry and Information Technology of the People's Republic of China. Standard test method for the mechanical properties of ductile fiber reinforced cementitious composites: JC/T 2461—2018[S]. Beijing: China Building Materials Industry Press, 2018(in Chinese). [19] MOSTOFINEJAD D, AREFIAN B. Generic assessment of effective bond length of FRP-concrete joint based on the initiation of debonding: Experimental and analytical investigation[J]. Composite Structures,2021,277:114625. doi: 10.1016/j.compstruct.2021.114625 [20] ZHANG P, HU Y, PANG Y Y, et al. Experimental study on the interfacial bond behavior of FRP plate-high-strength concrete under seawater immersion[J]. Construction and Building Materials,2020,259:119799. doi: 10.1016/j.conbuildmat.2020.119799