留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

静水压下含缺陷中厚复合材料圆柱耐压壳的极限强度

李永胜 王纬波 李泓运 屈平 张建

李永胜, 王纬波, 李泓运, 等. 静水压下含缺陷中厚复合材料圆柱耐压壳的极限强度[J]. 复合材料学报, 2023, 40(5): 2639-2652. doi: 10.13801/j.cnki.fhclxb.20220718.001
引用本文: 李永胜, 王纬波, 李泓运, 等. 静水压下含缺陷中厚复合材料圆柱耐压壳的极限强度[J]. 复合材料学报, 2023, 40(5): 2639-2652. doi: 10.13801/j.cnki.fhclxb.20220718.001
LI Yongsheng, WANG Weibo, LI Hongyun, et al. Ultimate strength of imperfect moderate thick composite cylindrical pressure shell under hydrostatic pressure[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2639-2652. doi: 10.13801/j.cnki.fhclxb.20220718.001
Citation: LI Yongsheng, WANG Weibo, LI Hongyun, et al. Ultimate strength of imperfect moderate thick composite cylindrical pressure shell under hydrostatic pressure[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2639-2652. doi: 10.13801/j.cnki.fhclxb.20220718.001

静水压下含缺陷中厚复合材料圆柱耐压壳的极限强度

doi: 10.13801/j.cnki.fhclxb.20220718.001
基金项目: 国家自然科学基金(52071160);国家重点研发计划项目(2016 YFC0304300)
详细信息
    通讯作者:

    李永胜,硕士,高级工程师,研究方向为舰船高性能复合材料应用及船舶振动噪声控制  E-mail: liyongsheng@cssrc.com.cn

  • 中图分类号: TB332

Ultimate strength of imperfect moderate thick composite cylindrical pressure shell under hydrostatic pressure

Funds: National Natural Science Foundation of China (52071160); National Key R&D Program of China (2016 YFC0304300)
  • 摘要: 为探究静水压下含缺陷中厚复合材料圆柱耐压壳的极限强度,以湿法缠绕工艺制备中厚玻璃纤维增强树脂基复合材料(GFRP)圆柱耐压壳结构模型,对其初挠度进行测试,并开展静水压破坏试验,分析了结构的极限承载能力、应变响应和破坏模式。基于实测初挠度及破坏模式,建立含缺陷复合材料圆柱壳的非线性分析有限元模型,同时考虑壳体几何缺陷及承压过程中的复合材料面内损伤,编制ABAQUS接口子程序USDFLD,对模型的损伤过程进行数值模拟,获得静水压下含缺陷中厚复合材料圆柱壳的渐进失效过程,并与试验结果对比验证。研究表明:在静水压下中厚GFRP圆柱壳结构在破坏前载荷几乎呈线性增加,最终破坏模式为材料的压缩破坏,整体屈曲破坏模式不明显。考虑结构的几何缺陷和材料损伤演化后,采用非线性有限元模拟得到的壳体极限强度与试验结果吻合良好,可以作为预测含缺陷中厚复合材料圆柱壳极限强度的方法。采用该方法对影响中厚复合材料圆柱耐压壳极限强度的关键参数进行了研究,为深海复合材料耐压壳的研究设计提供参考。

     

  • 图  1  玻璃纤维增强树脂复合材料(GFRP)圆柱壳设计示意图

    $\phi $—Diameter

    Figure  1.  Schematic of glass fiber reinforced resin polymer (GFRP) cylindrical shell

    图  2  圆柱壳初挠度测点

    F—Transverse section

    Figure  2.  Initial deflection measuring point of cylindrical shell

    图  3  GFRP圆柱壳初挠度测试结果

    Figure  3.  Test results of initial deflection of GFRP cylindrical shell

    图  4  圆柱壳应变测点

    L—Length of the cylindrical shell; F0—Left section of the cylindrical shell; F1-F5—Five sections of the cylindrical shell equally divided along the axial direction; E3-E18—Strain gauges in axial and circumferential directions

    Figure  4.  Strain measuring point of cylindrical shell

    图  5  中厚GFRP圆柱耐压壳试验模型

    Figure  5.  Moderate thick GFRP cylindrical pressure hull model

    图  6  GFRP圆柱壳静水压-时程曲线

    Figure  6.  Hydrostatic pressure to time curve of GFRP cylindrical hull test

    图  7  GFRP圆柱壳在不同位置处的破坏模式

    Figure  7.  Failure modes of GFRP cylindrical hull at different locations

    图  8  GFRP圆柱壳应变-静水压力曲线

    Figure  8.  Strain-hydrostatic pressure curves of GFRP cylindrical hull

    图  9  GFRP圆柱壳一阶特征屈曲模态

    U—Buckling deformation

    Figure  9.  First order characteristic buckle mode of GFRP cylindrical hull

    图  10  引入不同阶次屈曲模态缺陷下GFRP圆柱壳的非线性屈曲压力曲线比较

    Figure  10.  Comparison of nonlinear buckling pressure curves of GFRP cylindrical hull by introducing different orders of buckling modes

    图  11  缺陷不同加载位置

    Figure  11.  Different loading location of imperfection

    图  12  中厚GFRP耐压壳在静水压下的复合材料损伤演化过程

    Figure  12.  Damage evolution of composite material of moderate thick GFRP cylindrical pressure hull

    图  13  GFRP圆柱壳渐进损伤情况下静水压力与弧长p的关系

    Figure  13.  Relationship between hydrostatic pressure and arc length p under progressive damage of GFRP cylindrical shell

    图  14  静水压下中厚GFRP圆柱壳破坏模式的试验结果与数值模拟结果对比

    Figure  14.  Comparison of experimental and numerical simulation results of failure mode of moderate thickness GFRP cylindrical shell under hydrostatic pressure

    图  15  不同几何缺陷下GFRP圆柱壳静水压力与弧长p的关系

    Im_0.1%R, Im_0.3%R, Im_0.5%R, Im_0.8%R, Im_1.0%R—Geometric defects of size 0.1%R, 0.3%R, 0.5%R, 1%R; R—Radius of the cylindrical shell

    Figure  15.  Relationship between hydrostatic pressure and arc length p of GFRP cylindrical shell under different magnitude of geometrical defects

    图  16  不同缠绕角下GFRP圆柱壳静水压力与弧长p 的关系

    Figure  16.  Relationship between hydrostatic pressure and arc length p of GFRP cylindrical shell under different winding angles

    图  17  不同半径与厚度比R/t下GFRP圆柱壳静水压力与弧长p的曲线

    Figure  17.  Relationship between hydrostatic pressure and arc length p of GFRP cylindrical shell under different radius to thickness ratio R/t

    表  1  应变测点位置信息

    Table  1.   Location information of strain measuring points

    Axial numberLocation-angleCircumferential numberLocation-angle
    E5L/6-90oE6L/6-90o
    E7L/3-90oE8L/6-90o
    E9L/2-180oE10L/2-180o
    E11L/2-180oE12L/2-180o
    E13L/2-225oE14L/2-225o
    E15L/2-247.5oE16L/2-247.5o
    E170-270oE180-270o
    下载: 导出CSV

    表  2  GFRP力学参数

    Table  2.   Material properties of GFRP

    Engineering constantValueStrength constantValue
    E1/GPa41Xt/MPa1140
    E2/GPa10.4Xc/MPa620
    G12/GPa4.3Yt/MPa39
    G23/GPa3.5Yc/MPa128
    v120.28Sxy/MPa89
    Notes: E1, E2—Elastic modulus in fiber direction, in-plane transverse modulus; G12, G23—Shear modulus in fiber direction and in-plane transverse direction, in-plane transverse direction and out-of-plane transverse direction, respectively; v12—Poisson's ratio of fiber direction and in-plane transverse direction; Xt, Xc, Yt, Yc—Tension strength and compression strength in fiber direction and in-plane transverse direction, respectively; Sxy—Shear strength of fiber direction and in-plane transverse direction.
    下载: 导出CSV

    表  3  基于单点扰动载荷法(SPLA)的GFRP圆柱壳屈曲压力和载荷下降系数(KDF)

    Table  3.   Buckling load and load drop factor (KDF) of GFRP cylindrical shell based on single point disturbance loading method (SPLA)

    PointPerfect model/MPaBuckling load/MPaKDF
    118.5515.880.856
    218.5515.750.849
    318.5515.700.846
    418.5515.750.849
    518.5515.880.856
    下载: 导出CSV

    表  4  基于失效模式的GFRP复合材料面内性能退化方法

    Table  4.   In-plane property degradation of GFRP composites based on the failure mode

    Failure modeField variableProperty degradation (In-plane)
    FV1FV2FV3E1E2v12G12
    No failure000E1E2v12G12
    Matrix cracking100E1(5%-10%)E20G12
    Fiber-matrix shear010E1(5%-10%)E20(5%-10%)G12
    Fiber failure0010.14E1(5%-10%)E20(5%-10%)G12
    Notes: FV1—Field variable 1, represents matrix cracking failure if it equals to 1; FV2—Field variable 2, represents fiber-matrix shear failure if it equals to 1; FV3—Field variable 3, represents fiber failure if it equals to 1.
    下载: 导出CSV
  • [1] SMITH C S. Design of submersible pressure hulls in composite materials[J]. Marine Structures,1991,4(2):141-182.
    [2] CRAVEN R, GRAHAM D, DALZEL-JOB J. Conceptual design of a composite pressure hull[J]. Ocean Engineer- ing,2016,128:153-162. doi: 10.1016/j.oceaneng.2016.10.031
    [3] HOM K. Composite materials for pressure hull structures[J]. Ocean Engineering,1969,1(3):315-322.
    [4] DAVIES P, CHOQUESUE D, BIGOURDAN B, et al. Compo-site cylinders for deep sea applications: An overview[J]. Journal of Pressure Vessel Technology Transportation, 2016, 138: 060904.
    [5] 谭智铎. 7000米级深海滑翔机复合材料耐压舱结构设计研究[D]. 沈阳: 东北大学, 2015.

    TAN Zhiduo. Research on structure design of composite pressure hulls for 7000 depth glider[D]. Shenyang: Northeastern University, 2015(in Chinese).
    [6] SIMITSES G J. Buckling of moderately thick laminated cylindrical shells: A review[J]. Composites Part B: Engineering,1996,27B:581-587.
    [7] SIMITSES G J, KARDOMATES G A. Imperfection sensitivity of moderately thick composite cylindrical shells[J]. Composites Science & Technology,2000,22(4):259-276.
    [8] MESSAGER T. Buckling of imperfect laminated cylinders under hydrostatic pressure[J]. Composite Structures,2001,53:301-307. doi: 10.1016/S0263-8223(01)00014-9
    [9] TSOUVALIS N G, ZAFEIRATOU A A, PAPAZO-GLOU V J. The effect of geometric imperfections on the buckling behaviour of composite laminated cylinders under external hydrostatic pressure[J]. Composites Part B: Engineering,2003,34(3):217-226.
    [10] LI Z, SHEN K C, ZHANG X H, et al. Buckling of composite cylindrical shells with ovality and thickness variation subjected to hydrostatic pressure[J]. Defense Technology,2022(5):862-875.
    [11] 孙宇. 外压载荷下复合材料圆柱壳的缺陷敏感性研究[D]. 大连: 大连理工大学, 2017.

    SUN Yu. Imperfection sensitivity of composite cylindrical shell under external pressure[D]. Dalian: Dalian University of Technology, 2017(in Chinese).
    [12] CARVELLI V, PANZERI N, POGGI C. Buckling strength of GFRP under-water vehicles[J]. Composite Part B: Engi-neering,2001,32:89-101. doi: 10.1016/S1359-8368(00)00063-9
    [13] HUR S H, SON H J, KWEON J H, et al. Postbuckling of composite cylinders under external hydrostatic pressure[J]. Composite Structures,2008,86:114-124. doi: 10.1016/j.compstruct.2008.03.028
    [14] HAN J Y, JUNG H Y, CHO J R, et al. Buckling analysis and test of composite shells under hydrostatic pressure[J]. Journal of Materials Processing Technology,2008,201:742-745. doi: 10.1016/j.jmatprotec.2007.11.228
    [15] 沈克纯, 潘光, 施瑶, 等. 静水压力下碳纤维缠绕复合材料圆柱壳体应变特性及承载能力研究[J]. 西北工业大学学报, 2020, 38(5):937-943. doi: 10.3969/j.issn.1000-2758.2020.05.003

    SHEN Kechun, PAN Guang, SHI Yao, et al. Exploring strain characteristics and bearing capacity of a carbon filament-wound composite cylindrical shell under hydrostaic pressure[J]. Journal of Northwestern Polytechnical University,2020,38(5):937-943(in Chinese). doi: 10.3969/j.issn.1000-2758.2020.05.003
    [16] CAI B P, LIU Y H, LIU Z K, et al. Reliability-based load and resistance factor design of composite pressure vessel under external hydrostatic pressure[J]. Composite Structures,2011,93(11):2844-2852. doi: 10.1016/j.compstruct.2011.05.020
    [17] DVORAK G J, PROCHAZKA P. Thick-walled composite cylinders with optimal fiber prestress[J]. Composites Part B: Engineering,1996,27(6):643-649. doi: 10.1016/S1359-8368(96)00001-7
    [18] National Aeronautics and Space Administration. Buckling of thin-walled circular cylinders: NASA SP-8007[S]. Washington: NASA Special Publication, 1965.
    [19] SINGER J. Buckling experiments: Experimental methods in buckling of thin-walled structures[J]. Applied Mechanics Reviews,2002,56(1):1215-1220.
    [20] CHO Y S, OH D H, PAIK J K. An empirical formula for predicting the collapse strength of composite cylindrical-shell structures under external pressure loads[J]. Ocean Engineering,2019,172(15):191-198.
    [21] 周承倜. 弹性稳定理论[M]. 成都: 四川人民出版社, 1981: 119-124.

    ZHOU Chengti. Theory of elastic stability[M]. Chengdu: Sichuan Pepole's Publishing House, 1981: 119-124(in Chinese).
    [22] 张建, 周通, 王纬波, 等. 模态缺陷条件下复合材料柱形壳屈曲特性[J]. 复合材料学报, 2017, 34(3):588-596. doi: 10.13801/j.cnki.fhclxb.20160523.004

    ZHANG Jian, ZHOU Tong, WANG Weibo, et al. Buckling of a composite cylindrical shell considering mode imperfections[J]. Acta Materiae Compositae Sinica,2017,34(3):588-596(in Chinese). doi: 10.13801/j.cnki.fhclxb.20160523.004
    [23] European Committee for Standardization. Strength and stability of shell structures: EN 1993-1-6[S]. BSI: EN Special Publication, 2007.
    [24] HÜHNE C, ROLFES R, BREITBACH E, et al. Robust design of composite cylindrical shells under axial compression—Simulation and validation[J]. Thin-Walled Structures,2008,46(7):947-962.
    [25] 王博, 田阔, 郝鹏, 等. 多级加筋板结构承载性能与缺陷敏感度研究[J]. 固体火箭技术, 2014, 37(3): 408-412.

    WANG Bo, TIAN Kuo, HAO Peng, et al. Load-carrying capacity and imperfection-sensitivity analysis of hierarchical stiffened panels[J]. Journal of Solid Rocket Technology, 2014, 37(3): 408-412(in Chinese).
    [26] WANG B, DU K F, HAO P, et al. Numerically and experimentally predicted knockdown factors for stiffened shells under axial compression[J]. Thin-Walled Structures,2016,109:13-24. doi: 10.1016/j.tws.2016.09.008
    [27] WAGNER H N R, HÜHNE C, NIEMANN S. Robust knockdown factors for the design of axially loaded cylindrical and conical composite shells–Development and validation[J]. Compo-site Structures,2017,173:281-303.
    [28] WAGNER H N R, HÜHNE C, NIEMANN S, et al. Robust design criterion for axially loaded cylindrical shells-simulation and validation[J]. Thin-Walled Structures,2017,115:154-162. doi: 10.1016/j.tws.2016.12.017
    [29] WANG B, DU K F, HAO P, et al. Experimental validation of cylindrical shells under axial compression for improved knockdown factors[J]. International Journal of Solids and Structures,2019,164:37-51. doi: 10.1016/j.ijsolstr.2019.01.001
    [30] 张晓军, 刘文婷, 范士锋. 纤维缠绕复合材料结构渐进失效分析与可靠性评估[M]. 西安: 西北工业大学出版社, 2018.

    ZHANG Xiaojun, LIU Wenting, FAN Shifeng. Progressive failure analysis and reliability evaluation of filament wounded composite structures[M]. Xi'an: Nortwestern Polytechnical University Press, 2018(in Chinese).
    [31] HASHIN Z. Failure criteria for unidirectional fiber compo-sites[J]. Journal of Applied Mechanics,1980,47(2):329-334. doi: 10.1115/1.3153664
    [32] HASHIN Z, ROTEM A. A fatigue failure criteria for fiber reinforced materials[J]. Journal of Composite Materials,1973(7):448-464.
    [33] CHANG F K, CHANG K Y. A progressive damage model for laminated composites containing stress concentrations[J]. Journal of Applied Mechanics,1987,21(9):834-855.
    [34] 卫宇璇, 张明, 刘佳, 等. 基于模态缺陷的变刚度复合材料圆柱壳屈曲特性[J]. 吉林大学学报(工学版), 2022, 52(1):91-100. doi: 10.13229/j.cnki.jdxbgxb20200715

    WEI Yuxuan, ZHANG Ming, LIU Jia, et al. Buckling performance of variable stiffness composite cylindrical shells based on mode imperfections[J]. Journal of Jilin University (Engineering and Technology Edition),2022,52(1):91-100(in Chinese). doi: 10.13229/j.cnki.jdxbgxb20200715
    [35] 中国船级社. 潜水系统和潜水器入级规范[S]. 北京: 人民交通出版社, 2018.

    CCS. Classification specification for submersible systems and submersibles[S]. Beijing: China Communications Press, 2018.
    [36] QATU M S, SULLIVAN R W, WANG W. Recent research advances on the dynamic analysis of composite shells: 2000-2009[J]. Composite Structures,2010,93(1):14-31. doi: 10.1016/j.compstruct.2010.05.014
    [37] LEE G C, KWEON J H, CHOI J H. Optimization of compo-site sandwich cylinders for underwater vehicle application[J]. Composite Structures,2013,96(4):691-697.
    [38] 李彬, 庞永杰, 程妍雪, 等. 基于铺层参数的复合材料耐压壳协同优化设计[J]. 上海交通大学学报, 2017, 51(3):308-315. doi: 10.16183/j.cnki.jsjtu.2017.03.010

    LI Bin, PANG Yongjie, CHENG Yanxue, et al. Collaborative optimization for composite material pressure hull based on lamination parameters[J]. Journal of Shanghai Jiaotong University,2017,51(3):308-315(in Chinese). doi: 10.16183/j.cnki.jsjtu.2017.03.010
    [39] IMRAN M, SHI D Y, TONG L L, et al. Design optimization of egg-shaped composite submersible pressure hull for minimum buoyancy factor[J]. Defence Technology,2021,17(6):1817-1832. doi: 10.1016/j.dt.2020.11.002
  • 加载中
图(17) / 表(4)
计量
  • 文章访问数:  852
  • HTML全文浏览量:  586
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-19
  • 修回日期:  2022-06-13
  • 录用日期:  2022-06-29
  • 网络出版日期:  2022-07-19
  • 刊出日期:  2023-05-15

目录

    /

    返回文章
    返回