留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

稻壳灰橡胶混凝土抗冻融性能及微观结构

王恒 徐义华 姚韦靖 庞建勇 刘雨姗

王恒, 徐义华, 姚韦靖, 等. 稻壳灰橡胶混凝土抗冻融性能及微观结构[J]. 复合材料学报, 2023, 40(5): 2951-2959. doi: 10.13801/j.cnki.fhclxb.20220712.002
引用本文: 王恒, 徐义华, 姚韦靖, 等. 稻壳灰橡胶混凝土抗冻融性能及微观结构[J]. 复合材料学报, 2023, 40(5): 2951-2959. doi: 10.13801/j.cnki.fhclxb.20220712.002
WANG Heng, XU Yihua, YAO Weijing, et al. Freeze-thaw cycle and microstructure of rice husk ash rubber concrete[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2951-2959. doi: 10.13801/j.cnki.fhclxb.20220712.002
Citation: WANG Heng, XU Yihua, YAO Weijing, et al. Freeze-thaw cycle and microstructure of rice husk ash rubber concrete[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2951-2959. doi: 10.13801/j.cnki.fhclxb.20220712.002

稻壳灰橡胶混凝土抗冻融性能及微观结构

doi: 10.13801/j.cnki.fhclxb.20220712.002
基金项目: 国家自然科学基金(面上项目)(2108085ME158);安徽省高等学校自然科学研究项目(重点项目)(KJ2020A0297)
详细信息
    通讯作者:

    庞建勇,博士,教授,博士生导师,研究方向为水泥混凝土材料 E-mail:pangjyong@163.com

  • 中图分类号: TU528;TB332

Freeze-thaw cycle and microstructure of rice husk ash rubber concrete

Funds: National Natural Science Foundation of China (2108085ME158); Natural Science Research Project of Universities in Anhui (KJ2020A0297)
  • 摘要: 为研究稻壳灰橡胶混凝土(RRC)的抗冻融性能,对比分析在氯盐环境下冻融循环后,普通混凝土(Normal concrete,NC)、橡胶混凝土(Rubber concrete,RC)和RRC的质量损失、相对动弹模量损失、强度损失及微观结构特征,同时对相对动弹模量与相对抗压强度的关系进行拟合分析。结果发现:随冻融循环次数增加,稻壳灰橡胶混凝土表面坑蚀愈明显,内部孔隙增多,微裂缝发展并贯通,宏观强度显著降低,相对动弹模量与抗压强度有良好相关性,拟合结果较优。橡胶的高弹性和稻壳灰极高的火山灰效应有效缓解了冻胀力带来的损伤,各冻融阶段RRC的损伤程度均明显优于NC,其中以稻壳灰掺量(占胶凝材料质量比)为10%、橡胶掺量(等体积取代砂)为10%时的RRC力学性能与抗冻融性能综合最优,经历120次冻融循环后,其抗压强度损失率较NC降低了18%。

     

  • 图  1  橡胶 (a) 及稻壳灰 (b) 实拍

    Figure  1.  Actual rubber (a) and rice husk ash (b) shootings

    图  2  10%橡胶掺量的稻壳灰橡胶混凝土(RRC)冻融循环表观现象

    Figure  2.  Rice husk ash rubber concrete (RRC) freezing-thawing cycle appearance with 10% rubber content

    图  3  RRC试块冻融循环次数与质量损失率的关系

    Figure  3.  Relationship between freeze-thaw cycles and mass loss rate of RRC test block

    图  4  RRC试块冻融循环次数与相对动弹性模量的关系

    Figure  4.  Relationship between the number of freeze-thaw cycles and the relative dynamic elastic modulus of RRC test block

    图  5  RRC试块冻融循环次数与相对抗压强度的关系

    Figure  5.  Relationship between the number of freeze-thaw cycles and compressive strength of RRC test block

    图  6  RRC试块冻融循环后相对弹性模量与相对抗压强度的拟合关系

    Figure  6.  Fitting relationship between relative elastic modulus and compressive strength of RRC test block after freeze-thaw cycle

    图  7  B2组RRC冻融循环微观形貌

    Figure  7.  Microstructure of freeze-thaw cycle of B2 group RRC

    图  8  120次冻融循环后B0组RC和B2组RRC的微观形貌

    CH—Calcium hydroxide; C-S-H—Calcium silicate hydrate

    Figure  8.  Microstructure of B0 group RC and B2 group RRC after 120 freeze-thaw cycles

    图  9  120次冻融循环后B2组RRC的微观形貌

    Figure  9.  Microstructure of B2 group RRC after 120 freeze-thaw cycles

    表  1  稻壳灰化学成分

    Table  1.   Chemical constituents of rice husk ash

    CompositionSiO2K2OCaOFe2O3MgO
    Content/wt%85.62.512.440.560.51
    下载: 导出CSV

    表  2  试验配合比

    Table  2.   Test mixture ratio kg/m3

    MixNotationWaterCementSandGravelRice-husk-ashRubberWater reduce
    C NC 180 450 560 1210 0 0 4
    A0 5%R/NC 180 450 479.04 1210 0 22.5 4
    A1 5%RHA-5%R/NC 180 427.5 479.04 1210 22.5 22.5 4
    A2 10%RHA-5%R/NC 180 405 479.04 1210 45 22.5 4
    A3 15%RHA-5%R/NC 193.5 382.5 479.04 1210 67.5 22.5 4
    A4 20%RHA-5%R/NC 207 360 479.04 1210 90 22.5 4
    B0 10%R/NC 180 450 398.10 1210 0 45 4
    B1 5%RHA-10%R/NC 180 427.5 398.10 1210 22.5 45 4
    B2 10%RHA-10%R/NC 180 405 398.10 1210 45 45 4
    B3 15%RHA-10%R/NC 193.5 382.5 398.10 1210 67.5 45 4
    B4 20%RHA-10%R/NC 207 360 398.10 1210 90 45 4
    Notes: NC—Normal concrete; RHA—Rice-husk-ash concrete; R—Rubber; In iRHA-jR/NC, i represents the mass fraction of rice husk ash to cementitious material, j represents the mass ratio of rubber to cemetitious material.
    下载: 导出CSV

    表  3  混凝土性能测试结果

    Table  3.   Test results of concrete performance

    MixSlump/mm28 days apparent density/(kg·m−3)28 days tensile strength/MPa28 days compressive strength/MPa
    C1722.4764.2146.68
    A01902.4453.9340.35
    A11852.4354.3247.43
    A21802.4224.7149.92
    A31872.3564.0841.02
    A41852.3163.7236.03
    B02102.3973.1133.15
    B12052.3694.0536.51
    B21952.3484.2240.26
    B32002.3303.8334.57
    B41982.3023.4126.55
    下载: 导出CSV

    表  4  RRC试块冻融循环后相对弹性模量Ed与相对抗压强度F的拟合结果

    Table  4.   Fitting results of relative elastic modulus Ed and compressive strength F of RRC test block after freezing-thawing cycle

    Concrete numberFitting formulaCorrelation coefficient R2
    C$ F=9.208\times {1}{{0}}^{{-5}}{\mathrm{e}}^{0.0831{E}_{\mathrm{d}}}+0.620 $0.99
    A0$ F=-0.622+0.016{E}_{\mathrm{d}} $0.98
    A1$ F=-0.574+0.016{E}_{\mathrm{d}} $0.95
    A2$ F=-0.763+0.018{E}_{\mathrm{d}} $0.97
    A3$ F=-0.682+0.017{E}_{\mathrm{d}} $0.98
    A4$ F=-1.085+0.021{E}_{\mathrm{d}} $0.97
    B0$ F=3.885\times {1}{{0}}^{{-5}}{\mathrm{e}}^{0.089{E}_{\mathrm{d}}}+0.725 $0.92
    B1$ F=4.886\times {1}{{0}}^{{-13}}{\mathrm{e}}^{0.270{E}_{\mathrm{d}}}+0.755 $0.98
    B2$ F=2.865\times 1{0}^{{-9}}{\mathrm{e}}^{0.180{E}_{\mathrm{d}}}+0.818 $0.98
    B3$ F=3.670\times 1{0}^{-3}{\mathrm{e}}^{0.047{E}_{\mathrm{d}}}+0.584 $0.95
    B4$ F=8.276\times 1{0}^{{-4}}{\mathrm{e}}^{0.0605{E}_{\mathrm{d}}}+0.646 $0.95
    下载: 导出CSV
  • [1] SALAS A, DELVASTO S, RMD GUTIERREZ, et al. Compari-son of two processes for treating rice husk ash for use in high performance concrete[J]. Cement & Concrete Research,2009,39(9):773-778.
    [2] 胡云珍, 刘凤侠. 稻壳灰在水泥混凝土中的综合应用研究[J]. 材料导报, 2014, 28(S1):348-350, 357.

    HU Yunzhen, LIU Fengxia. Comprehensive application of rice husk ash in cement concrete[J]. Materials Reports,2014,28(S1):348-350, 357(in Chinese).
    [3] 汪知文, 李碧雄. 稻壳灰应用于水泥混凝土的研究进展[J]. 材料导报, 2020, 34(9):9003-9011. doi: 10.11896/cldb.19050098

    WANG Zhiwen, LI Bixiong. Research progress on application of rice husk ash in cement concrete[J]. Materials Reports,2020,34(9):9003-9011(in Chinese). doi: 10.11896/cldb.19050098
    [4] 王茹, 王高勇, 张韬, 等. 稻壳灰在丁苯聚合物/水泥复合胶凝材料凝结硬化过程中的作用[J]. 硅酸盐学报, 2017, 45(335):190-195.

    WANG Ru, WANG Gaoyong, ZHANG Tao, et al. The role of rice husk ash in the setting and hardening process of styrene-butadiene polymer/cement composite cementitious materials[J]. Journal of the Chinese Ceramic Society,2017,45(335):190-195(in Chinese).
    [5] 胡维新, 黄伟, 秦鸿根. 硅藻土、超细稻壳灰、硅灰对双重多孔混凝土性能的影响[J]. 工业建筑, 2014, 44(10):113-116. doi: 10.13204/j.gyjz201410023

    HU Weixin, HUANG Wei, QIN Honggen. Effect of diatomite, superfine rice husk ash and silica fume on properties of double porous concrete[J]. Industrial Construction,2014,44(10):113-116(in Chinese). doi: 10.13204/j.gyjz201410023
    [6] 叶光, NGUYEN V T. 稻壳灰抑制超高性能混凝土的自收缩机理分析(英文)[J]. 硅酸盐学报, 2012, 40(2):212-216.

    YE Guang, NGUYEN V T. Analysis of self-shrinkage mecha-nism of super high performance concrete inhibited by rice husk ash[J]. Journal of the Chinese Ceramic Society,2012,40(2):212-216(in Chinese).
    [7] 欧阳东, 陈楷. 低温焚烧稻壳灰的显微结构及其化学活性[J]. 硅酸盐学报, 2003, 31(11):1121-1124. doi: 10.3321/j.issn:0454-5648.2003.11.020

    OUYANG Dong, CHEN Kai. Microstructure and chemical activity of rice husk ash burned at low temperature[J]. Journal of the Chinese Ceramic Society,2003,31(11):1121-1124(in Chinese). doi: 10.3321/j.issn:0454-5648.2003.11.020
    [8] 冯庆革, 杨绿峰, 陈正, 等. 高活性稻壳灰混凝土的强度特性和孔结构研究[J]. 武汉理工大学学报, 2005(2):17-20. doi: 10.3321/j.issn:1671-4431.2005.02.006

    FENG Qingge, YANG Lvfeng, CHEN Zheng, et al. Study on strength and pore structure of high activity rice husk gray concrete[J]. Journal of Wuhan University of Technology,2005(2):17-20(in Chinese). doi: 10.3321/j.issn:1671-4431.2005.02.006
    [9] ZHANG M H, LASTRA R, MALHOTRA V M. Rice-husk ash paste and concrete: Some aspects of hydration and the microstructure of the interfacial zone between the aggregate and paste[J]. Cement and Concrete Research,1996,26(6):963-977. doi: 10.1016/0008-8846(96)00061-0
    [10] FARIED A, SERAG. The effect of using nano rice husk ash of different burning degrees on ultra-high-performance concrete properties[J]. Construction and Building Materials,2021,290:123279. doi: 10.1016/j.conbuildmat.2021.123279
    [11] 沈卫国, 张涛, 李进红, 等. 橡胶集料对聚合物改性多孔混凝土性能的影响[J]. 建筑材料学报, 2010, 13(4):509-514. doi: 10.3969/j.issn.1007-9629.2010.04.019

    SHEN Weiguo, ZHANG Tao, LI Jinhong, et al. Effect of rubber aggregate on properties of polymer modified porous concrete[J]. Journal of Building Materials,2010,13(4):509-514(in Chinese). doi: 10.3969/j.issn.1007-9629.2010.04.019
    [12] 刘艳荣, 葛树奎, 韩瑜. 废旧轮胎橡胶粉改性水泥基材料研究概况[J]. 材料导报, 2014, 28(24):422-426.

    LIU Yanrong, GE Shukui, HAN Yu. Research progress of scrap rubber powder modified cement-based composites[J]. Materials Reports,2014,28(24):422-426(in Chinese).
    [13] 庞建勇, 陈宇, 黄鑫, 等. 高应力等幅循环加载对橡胶混凝土力学及表现特性的影响[J]. 长江科学院院报, 2020, 37(10):142-148. doi: 10.11988/ckyyb.2019087548

    PANG Jianyong, CHEN Yu, HUANG Xin, et al. Impact of equal-amplitude cyclic high stress loading on mechanical and deformation properties of rubber concrete[J]. Journal of Yangtze River Scientific Research Institute,2020,37(10):142-148(in Chinese). doi: 10.11988/ckyyb.2019087548
    [14] 张亚梅, 赵志远, 陈胜霞, 等. 橡胶粉对混凝土在水和NaCl溶液中抗冻性的影响[J]. 东南大学学报(自然科学版), 2006, 36(S2):248-252.

    ZHANG Yamei, ZHAO Zhiyuan, CHEN Shengxia, et al. Impact of rubber powder of frost resistance of concrete in water and NaCl solution[J]. Journal of Southeast University (Natural Science Edition),2006,36(S2):248-252(in Chinese).
    [15] 徐金花, 冯夏庭, 陈四利. 橡胶集料对混凝土抗冻性的影响[J]. 东北大学学报(自然科学版), 2012, 33(6):895-898. doi: 10.12068/j.issn.1005-3026.2012.06.033

    XU Jinhua, FENG Xiating, CHEN Sili. Effects of rubber aggregate on the frost resistance of concrete[J]. Journal of Northeastern University (Natural Science),2012,33(6):895-898(in Chinese). doi: 10.12068/j.issn.1005-3026.2012.06.033
    [16] 杨若冲, 谈至明, 黄晓明, 等. 掺聚合物的橡胶混凝土路用性能研究[J]. 中国公路学报, 2010, 23(4):15-19. doi: 10.3969/j.issn.1001-7372.2010.04.003

    YANG Ruochong, TAN Zhiming, HUANG Xiaoming, et al. Research of performance of rubberized concrete incorporated with polymer[J]. China Journal of Highway Transport,2010,23(4):15-19(in Chinese). doi: 10.3969/j.issn.1001-7372.2010.04.003
    [17] 吴鹏程, 杨全兵, 徐俊辉, 等. 低危害除冰盐对水泥混凝土盐冻破坏的影响及其机理[J]. 建筑材料学报, 2020, 23(2):317-321, 327.

    WU Pengcheng, YANG Quanbing, XU Junhui, et al. Effects of a low-harm deicing salt on the salt-frost scaling of concrete and its mechanism[J]. Journal of Building Materials,2020,23(2):317-321, 327(in Chinese).
    [18] ZHU R N, PANG J Y, WANG T Y, et al. Experimental research on chloride erosion resistance of rubber concrete[J]. Advance in Civil Engineering,2020:3972405.
    [19] ZHU X B, MIAO C W, LIA J P, et al. Influence of crumb rubber on frost resistance of concrete and effect mecha-nism[J]. Procedia Engineering,2012,27:206-213. doi: 10.1016/j.proeng.2011.12.445
    [20] 姚韦靖, 刘雨姗, 王婷雅, 等. 橡胶/混凝土盐冻循环后性能劣化及微观结构[J]. 复合材料学报, 2021, 38(12):4294-4304. doi: 10.13801/j.cnki.fhclxb.20210202.005

    YAO Weijing, LIU Yushan, WANG Tingya, et al. Performance degradation and microstructure of rubber/concrete after salt freezing cycle[J]. Acta Materiae Compositae Sinca,2021,38(12):4294-4304(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210202.005
    [21] ZHANG B F, FENG Y, XIE J H, et al. Rubberized geopolymer concrete: Dependence of mechanical properties and freeze-thaw resistance on replacement ratio of crumb rubber[J]. Construction and Building Materials,2021,310:125248. doi: 10.1016/j.conbuildmat.2021.125248
    [22] CHEOLWOO P, ANDRES S, CHUL-WOO C, et al. Freeze-thaw resistance of concrete using acid-leached rice husk ash[J]. KSCE Journal of Civil Engineering,2014,18(4):1133-1139. doi: 10.1007/s12205-014-0172-4
    [23] 冯庆革, 杨义, 童张法, 等. 掺高活性稻壳灰混凝土的抗冻融特性(英文)[J]. 硅酸盐学报, 2008(237):136-139.

    FENG Qingge, YANG Yi, TONG Zhangfa, et al. Freeze-thaw resistance of concrete with high activity rice husk ash[J]. Journal of the Chinese Ceramic Society,2008(237):136-139(in Chinese).
    [24] 姚韦靖, 庞建勇. 玻化微珠保温混凝土高温后性能劣化及微观结构[J]. 复合材料学报, 2019, 36(12):2932-2941.

    YAO Weijing, PANG Jianyong. Performance degradation and microscopic structure of glazed hollow bead insulation normal concrete after exposure to high temperature[J]. Acta Materiae Compositae Sinca,2019,36(12):2932-2941(in Chinese).
    [25] HONG C R. Effect of steel plates on estimation of the compressive strength of concrete via ultrasonic testing[J]. Materials,2020,13(4):887. doi: 10.3390/ma13040887
    [26] 全国水泥制品标准化技术委员会. 高强高性能混凝土用矿物外加剂: GB/T 18736—2017[S]. 北京: 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会, 2017.

    National Technical Committee for Standardization of Cement Products. Mineral admixtures for high strength and high performance concrete: GB/T 18736—2017[S]. Beijing: General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, China National Standardization Administration, 2017(in Chinese).
    [27] 中华人民共和国住房和城乡建设部. 普通混凝土配合比设计规程: JGJ 55−2011[S]. 北京: 中国建筑工业出版社, 2011.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Specification for mix proportion design of ordinary concrete: JGJ 55−2011[S]. Beijing: China Architectural & Building Press, 2011(in Chinese).
    [28] 严捍东, 陈秀峰. 橡胶集料及其对水泥基材料物理力学性能的影响[J]. 材料导报, 2007, 21(11):104-106, 114. doi: 10.3321/j.issn:1005-023X.2007.11.026

    YAN Handong, CHEN Xiufeng. Review of rubber aggregate and its effects on physical and mechanical properties of cement based materials[J]. Materials Reports,2007,21(11):104-106, 114(in Chinese). doi: 10.3321/j.issn:1005-023X.2007.11.026
    [29] 杨全兵. 混凝土盐冻破坏机理(Ⅱ): 冻融饱水度和结冰压[J]. 建筑材料学报, 2012, 15(6):741-746. doi: 10.3969/j.issn.1007-9629.2012.06.002

    YANG Quanbing. One of mechanisms on the deicer-frost scaling of concrete (Ⅱ): Degree of saturation and ice-formation pressure during freezing-thawing cycles[J]. Journal of Building Materials,2012,15(6):741-746(in Chinese). doi: 10.3969/j.issn.1007-9629.2012.06.002
    [30] 杨全兵. NaCl溶液结冰压的影响因素研究[J]. 建筑材料学报, 2005(5):495-498. doi: 10.3969/j.issn.1007-9629.2005.05.005

    YANG Quanbing. Study on influence factors of ice pressure in NaCl solution[J]. Journal of Building Materials,2005(5):495-498(in Chinese). doi: 10.3969/j.issn.1007-9629.2005.05.005
    [31] 杨全兵. 混凝土盐冻破坏机理(Ⅰ)—毛细管饱水度和结冰压[J]. 建筑材料学报, 2007, 10(5):522-527. doi: 10.3969/j.issn.1007-9629.2007.05.004

    YANG Quanbing. Mechanisms of deicer frost scaling of concrete (Ⅰ)—Capillary-uptake degree of saturation and ice-formation pressure[J]. Journal of Building Materials,2007,10(5):522-527(in Chinese). doi: 10.3969/j.issn.1007-9629.2007.05.004
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  808
  • HTML全文浏览量:  398
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-05
  • 修回日期:  2022-06-19
  • 录用日期:  2022-07-02
  • 网络出版日期:  2022-07-13
  • 刊出日期:  2023-05-15

目录

    /

    返回文章
    返回