留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

橡胶颗粒抑制蒸养混凝土热损伤机制

安军林 于泳 金祖权 张维东

安军林, 于泳, 金祖权, 等. 橡胶颗粒抑制蒸养混凝土热损伤机制[J]. 复合材料学报, 2023, 40(5): 2960-2971. doi: 10.13801/j.cnki.fhclxb.20220707.002
引用本文: 安军林, 于泳, 金祖权, 等. 橡胶颗粒抑制蒸养混凝土热损伤机制[J]. 复合材料学报, 2023, 40(5): 2960-2971. doi: 10.13801/j.cnki.fhclxb.20220707.002
AN Junlin, YU Yong, JIN Zuquan, et al. Mechanism of rubber particles inhibit heat damage of steam-curing concrete[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2960-2971. doi: 10.13801/j.cnki.fhclxb.20220707.002
Citation: AN Junlin, YU Yong, JIN Zuquan, et al. Mechanism of rubber particles inhibit heat damage of steam-curing concrete[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2960-2971. doi: 10.13801/j.cnki.fhclxb.20220707.002

橡胶颗粒抑制蒸养混凝土热损伤机制

doi: 10.13801/j.cnki.fhclxb.20220707.002
基金项目: 国家自然科学基金(52178222);泰山学者工程专项经费(TS20190942)
详细信息
    通讯作者:

    于泳,博士,副教授,硕士生导师,研究方向为混凝土耐久性 E-mail: shourimojie@163.com

  • 中图分类号: TB332

Mechanism of rubber particles inhibit heat damage of steam-curing concrete

Funds: National Natural Science Foundation of China (52178222); Financial Support from Mount Taishan Scholar of Shandong Province (TS20190942)
  • 摘要: 通过向蒸养混凝土中掺入橡胶颗粒制备蒸养橡胶混凝土来抑制蒸养过程中混凝土产生的热损伤。通过试验测试了蒸养橡胶混凝土的抗压强度;建立了考虑界面过渡区的橡胶混凝土随机骨料模型,基于ABAQUS,模拟研究了橡胶颗粒对降温阶段混凝土温度损伤应力的影响,从细观角度研究橡胶颗粒抑制蒸养混凝土中微裂纹发展规律,并将温度损伤应力作为初始缺陷,模拟了橡胶混凝土的抗压性能,验证了模拟结果的可靠性;通过压汞(Mercury intrusion porosimetry,MIP)测试研究了橡胶颗粒对蒸养混凝土孔结构的影响;通过超景深显微镜研究了橡胶与水泥石之间的结合情况。研究结果表明:橡胶颗粒掺入可以抑制蒸养混凝土的热损伤,减少强度损失。橡胶颗粒可以有效降低蒸养混凝土试件的总孔隙率,蒸养橡胶混凝土试件有害孔径较未掺加橡胶颗粒的普通蒸养混凝土下降了3.1%,同时改善了橡胶和水泥基体的粘结状况。

     

  • 图  1  橡胶颗粒和细骨料的粒度分布曲线

    Figure  1.  Size distribution curves of rubber particles and fine aggregate

    图  2  蒸汽养护制度

    Figure  2.  Steam-curing regime

    图  3  混凝土随机骨料模型

    Figure  3.  Random aggregate model of concrete

    图  4  粗骨料和橡胶颗粒线弹性本构关系

    Figure  4.  Linear elastic constitutive relationship between coarse aggregate and rubber particles

    图  5  混凝土塑性本构关系:(a) 单轴压缩应力-应变曲线;(b) 单轴拉伸应力-应变曲线

    Figure  5.  Plastic constitutive relation of concrete: (a) Stress-strain curve under uniaxial compression; (b) Stress-strain curve under uniaxial tension

    图  6  不同橡胶掺量的混凝土温度应力分布云图

    S—Stress

    Figure  6.  Cloud diagrams of temperature stress distribution of concrete with different rubber contents

    图  7  不同橡胶掺量的混凝土加载至最大时的应力损伤云图

    DAMAGEC—Compressive damage

    Figure  7.  Stress damage cloud diagrams of concrete with different rubber contents when loading to maximum

    图  8  RM70的累计孔径曲线

    Figure  8.  Cumulative pore size of RM70

    图  9  RM70的孔径分布曲线

    Figure  9.  Pore size distribution curves of RM70

    图  10  不同尺寸的孔径在RM70基体中的比例

    Figure  10.  Proportion of pores of different sizes in RM70

    图  11  不同养护制度下橡胶-水泥界面

    Figure  11.  Rubber-cement interface under different curing systems

    图  12  标准养护下橡胶-水泥石界面粗糙度

    Ra—Roughness average; Rz—Rauhigkeit average; RzJIS—Ten-point average roughness

    Figure  12.  Rubber-cement interface roughness under standard-curing

    图  13  蒸汽养护下橡胶-水泥石界面粗糙度

    Figure  13.  Rubber-cement interface roughness under steam-curing

    表  1  水泥的化学成分

    Table  1.   Chemical compositions of cement wt%

    SiO2Al2O3Fe2O3CaOMgOSO3
    17.075.323.2666.522.992.91
    下载: 导出CSV

    表  2  橡胶粉化学成分

    Table  2.   Chemical ingredients of crumb rubber wt%

    Rubber hydrocarbonCarbon blackAcetone extractIsopreneWaterAsh contentFiber contentMetal contentOthers
    45.225.814.212.10.80.90.50.080.42
    下载: 导出CSV

    表  3  混凝土配合比设计

    Table  3.   Mix proportions of concretes kg/m3

    SpecimenCementStoneWaterSandRubber
    RC0520810195835 0
    RC35520810195747 35
    RC70520810195696 70
    RC105520810195571105
    下载: 导出CSV

    表  4  不同养护制度不同橡胶掺量的混凝土抗压强度

    Table  4.   Compressive strength of concrete with different curing systems and different rubber contents MPa

    SpecimenCuring regime
    Standard-curingSteam-curing
    RC060.257.2
    RC3544.045.0
    RC7038.341.6
    RC10534.629.6
    下载: 导出CSV

    表  5  材料参数

    Table  5.   Material parameters

    MaterialElastic modulus/MPaPoisson's ratio
    Coarse aggregate800000.20
    Rubber 700.49
    下载: 导出CSV

    表  6  水灰比为0.375时公式计算砂浆的材料参数

    Table  6.   Formula calculates the material parameters of mortar when the water-cement ratio is 0.375

    Water-cement ratioElastic modulus/MPaPoisson's ratioCompressive strength/MPaTensile strength/MPa
    0.375240000.246.13.7
    下载: 导出CSV

    表  7  不同养护制度和橡胶掺量的混凝土模拟结果与实验结果对比

    Table  7.   Simulation results of concrete with different curing systems and rubber contents compared with the experimental results

    SpecimenRubber content/(kg·m−3)Compressive strength/MPaRelative error/%
    Experimental valueSimulation value
    RC0-1060.257.74.15
    RC35-13544.040.87.30
    RC70-17038.341.27.01
    RC105-110534.633.92.02
    RC0-2057.256.51.28
    RC35-23545.040.410.00
    RC70-27041.639.84.25
    RC105-210529.633.511.54
    Notes: RC0-1 represents the standard-curing for group RC0 specimens; RC0-2 represents the steam-curing for group RC0 specimens.
    下载: 导出CSV

    表  8  不同橡胶掺量的混凝土损伤单元的比例

    Table  8.   Proportion of damaged elements of concrete with different rubber contents %

    SpecimenCuring regime
    Standard-curingSteam-curing
    RC049.7953.05
    RC3545.6245.26
    RC7045.2145.90
    RC10550.5852.42
    下载: 导出CSV

    表  9  RM70的孔隙率和中值孔径

    Table  9.   Porosity and median pore size of RM70

    Rubber content/(kg·m−3)Porosity/%Median pore diameter/nm
    Standard-curingSteam-curingStandard-curingSteam-curing
    7012.5611.66560.87283
    下载: 导出CSV
  • [1] BI L P, LONG G C, MA C, et al. Effect of phase change composites on hydration characteristics of steam-cured cement paste[J]. Construction and Building Materials,2021,274:122030. doi: 10.1016/j.conbuildmat.2020.122030
    [2] ZOU C, LONG G C, ZENG X H, et al. Water evolution and hydration kinetics of cement paste under steam-curing condition based on low-field NMR method[J]. Construction and Building Materials,2020,271:121583.
    [3] SHI J Y, LIU B J, WU X, et al. Evolution of mechanical pro-perties and permeability of concrete during steam curing process[J]. Journal of Building Engineering,2020,32:101796. doi: 10.1016/j.jobe.2020.101796
    [4] YAN X C, JIANG L H, GUO M Z, et al. Evaluation of sulfate resistance of slag contained concrete under steam curing[J]. Construction and Building Materials,2019,195:231-237. doi: 10.1016/j.conbuildmat.2018.11.073
    [5] ANDREU G C, MIREN E, CHI S P. Influence of steam curing on the pore structures and mechanical properties of fly-ash high performance concrete prepared with recycled aggregates[J]. Cement and Concrete Composites,2016,71:77-84. doi: 10.1016/j.cemconcomp.2016.05.010
    [6] SHI J Y, LIU B J, WU X, et al. Effect of steam curing on surface permeability of concrete: Multiple transmission media[J]. Journal of Building Engineering,2020,32:101475. doi: 10.1016/j.jobe.2020.101475
    [7] ZOU C, LONG G C, ZENG X H, et al. Hydration and multiscale pore structure characterization of steam-cured cement paste investigated by X-ray CT[J]. Construction and Building Materials,2021,282:122629. doi: 10.1016/j.conbuildmat.2021.122629
    [8] 贺智敏, 龙广成, 谢友均, 等. 蒸养混凝土的表层伤损效应[J]. 建筑材料学报, 2014, 17(6):994-1000, 1008. doi: 10.3969/j.issn.1007-9629.2014.06.010

    HE Zhimin, LONG Guangcheng, XIE Youjun, et al. Surface layer degradation effect of steam-cured concrete[J]. Jour-nal of Building Materials,2014,17(6):994-1000, 1008(in Chinese). doi: 10.3969/j.issn.1007-9629.2014.06.010
    [9] WANG M, XIE Y J, LONG G C, et al. The impact mechanical characteristics of steam-cured concrete under different curing temperature conditions[J]. Construction and Building Materials,2020,241:118042. doi: 10.1016/j.conbuildmat.2020.118042
    [10] UTSI S, JONASSON J E. Estimation of the risk for early thermal cracking for SCC containing fly ash[J]. Materials and Structures,2012,45(1-2):153-169. doi: 10.1617/s11527-011-9757-2
    [11] 李霖皓, 龙广成, 刘芳萍, 等. 混凝土在蒸养过程中的变形性能[J]. 材料导报, 2019, 33(8):1322-1327. doi: 10.11896/cldb.17120058

    LI Linhao, LONG Guangcheng, LIU Fangping, et al. Deformation behavior of concrete during steam curing[J]. Materials Reports,2019,33(8):1322-1327(in Chinese). doi: 10.11896/cldb.17120058
    [12] 贺炯煌, 马昆林, 龙广成, 等. 蒸汽养护过程中混凝土力学性能的演变[J]. 硅酸盐学报, 2018, 46(11):1584-1592.

    HE Jionghuang, MA Kunlin, LONG Guangcheng, et al. Mechanical properties evolution of concrete in steam-curing process[J]. Journal of the Chinese Ceramic Society,2018,46(11):1584-1592(in Chinese).
    [13] 姚志昕. 混凝土蒸养过程中的应力应变场及其对开裂的影响[D]. 广州: 华南理工大学, 2019.

    YAO Zhixin. Stress and strain field and its effect on stress and strain field of concrete during steam curing and its effect on cracking[D]. Guangzhou: South China University of Technology, 2019(in Chinese).
    [14] 钱荷雯, 王燕谋. 湿热处理混凝土过程中预养期的物理化学作用[J]. 硅酸盐学报, 1964, 3(3):217-222.

    QIAN Hewen, WANG Yanmou. Physicochemical action during preconditioning period of concrete treated by moisture and heat[J]. Journal of the Chinese Ceramic Society,1964,3(3):217-222(in Chinese).
    [15] OROSZ K, HEDLUND H, CWIRZEN A. Effects of variable curing temperatures on autogenous deformation of blended cement concretes[J]. Construction and Building Materials,2017,149:474-480. doi: 10.1016/j.conbuildmat.2017.05.143
    [16] SHI J Y, LIU B J, ZHOU F, et al. Effect of steam curing regimes on temperature and humidity gradient, permeabi-lity and microstructure of concrete[J]. Construction and Building Materials,2021,281:122562. doi: 10.1016/j.conbuildmat.2021.122562
    [17] YU Y, JIN Z Q, SHAO S S, et al. Evolution of temperature stress and tensile properties of concrete during steam-curing process[J]. Construction and Building Materials,2021,305:124691. doi: 10.1016/j.conbuildmat.2021.124691
    [18] XIANG Y, XIE Y J, LONG G C, et al. Hydration phase and pore structure evolution of hardened cement paste at elevated temperature[J]. Journal of Central South University,2021,28(6):1665-1678. doi: 10.1007/s11771-021-4725-7
    [19] 赵秋红, 董硕, 朱涵, 等. 钢纤维橡胶混凝土循环受压应力-应变关系[J]. 建筑材料学报, 2022, 25(8): 789-797.

    ZHAO Qiuhong, DONG Shuo, ZHU Han, et al. Stress-strain relations steel fiber reinforced rubberized concrete under uniaxial cyclic compression[J]. Journal of Building Materials, 2022, 25(8): 789-797(in Chinese).
    [20] 赵秋红, 刘凯, 王菲, 等. GFRP筋橡胶集料混凝土梁受弯性能[J]. 复合材料学报, 2021, 38(5):1611-1622.

    ZHAO Qiuhong, LIU Kai, WANG Fei, et al. Analyses on flexural behavior of GFRP-reinforced crumb rubber concrete beams[J]. Acta Materiae Compositae Sinica,2021,38(5):1611-1622(in Chinese).
    [21] BALA A, GUPTA S. Thermal resistivity, sound absorption and vibration damping of concrete composite doped with waste tire rubber: A review[J]. Construction and Building Materials,2021,299:123939. doi: 10.1016/j.conbuildmat.2021.123939
    [22] 中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2019.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test methods of concrete physical and mechanical properties: GB/T 50081—2019[S]. Beijing: China Architecture & Building Press, 2019(in Chinese).
    [23] 史鑫宇, 姚燕, 王玲, 等. 基于单轴拉压模拟的CDP模型参数影响[J]. 建筑结构, 2021, 51(S2): 999-1007.

    SHI Xinyu, YAO Yan, WANG Ling, et al. The influence of CDP model parameters based on the numerical simulation of uniaxial loading test[J]. Building Structure, 2021, 51(S2): 999-1007(in Chinese).
    [24] 刘诚, 聂鑫, 汪家继, 等. 混凝土宏观本构模型研究进展[J]. 建筑结构学报, 2022, 43(1):29-41. doi: 10.14006/j.jzjgxb.2019.0842

    LIU Cheng, NIE Xin, WANG Jiaji, et al. State-of-the-art of macroscopic constitutive models of concrete[J]. Journal of Building Structures,2022,43(1):29-41(in Chinese). doi: 10.14006/j.jzjgxb.2019.0842
    [25] DU X L, JIN L. Meso-scale numerical investigation on cracking of cover concrete induced by corrosion of reinforcing steel[J]. Engineering Failure Analysis,2014,39:21-33. doi: 10.1016/j.engfailanal.2014.01.011
    [26] JIN L, JIANG X A, DU X L. Novel size-effect law for shear strength of CFRP-strengthened lightweight concrete deep beams without stirrups[J]. Journal of Composites for Construction,2022,26(1):04021065. doi: 10.1061/(ASCE)CC.1943-5614.0001172
    [27] WRIGGERS P, MOFTAH S O. Mesoscale models for concrete: Homogenisation and damage behavior[J]. Finite Elements in Analysis and Design,2006,42(7):623-636. doi: 10.1016/j.finel.2005.11.008
    [28] 杜修力, 金浏, 张仁波. 压缩荷载作用下混凝土中氯离子扩散行为细观模拟[J]. 建筑材料学报, 2016, 19(1):65-71. doi: 10.3969/j.issn.1007-9629.2016.01.011

    DU Xiuli, JIN Liu, ZHANG Renbo. Meso-scale simulation of chloride diffusivity in concrete subjected to compressive stress[J]. Journal of Building Materials,2016,19(1):65-71(in Chinese). doi: 10.3969/j.issn.1007-9629.2016.01.011
    [29] 汪奔, 王弘, 张志强, 等. 基于网格生成的随机凹凸型混凝土骨料细观建模方法[J]. 计算力学学报, 2017, 34(5):591-596.

    WANG Ben, WANG Hong, ZHANG Zhiqiang, et al. Mesoscopic modeling method of concrete aggregates with arbitrary shapes based on mesh generation[J]. Chinese Journal of Computational Mechanics,2017,34(5):591-596(in Chinese).
    [30] WALRAVEN J C. Theory and experiments on the mechanical behavior of cracks in plain and reinforced concrete subjected to shear loading[J]. Heron,1981,26(1A):26-35.
    [31] NAGAI K, SATO Y, UEDA T. Mesoscopic simulation of failure of mortar and concrete by 2D RBSM[J]. Journal of Advanced Concrete Technology,2004,2(3):359-374. doi: 10.3151/jact.2.359
    [32] 陈惠苏, 孙伟, STROEVEN P. 水泥基复合材料界面对材料宏观性能的影响[J]. 建筑材料学报, 2005, 8(1):51-62. doi: 10.3969/j.issn.1007-9629.2005.01.010

    CHEN Huisu, SUN Wei, STROEVEN P. Review on the study of effect of ITZ on the macro properties of cementitious composites[J]. Journal of Building Materials,2005,8(1):51-62(in Chinese). doi: 10.3969/j.issn.1007-9629.2005.01.010
    [33] 薛刚, 孙立所, 许胜, 等. 橡胶混凝土抗压性能及细观破坏机理研究[J]. 沈阳建筑大学学报(自然科学版), 2020, 36(6):1082-1090.

    XUE Gang, SUN Lisuo, XU Sheng, et al. Study on compres-sive properties and meso failure mechanism of rubber concrete[J]. Journal of Shenyang Jianzhu University (Natural Science),2020,36(6):1082-1090(in Chinese).
    [34] 水中和, 曹蓓蓓. 水泥混凝土材料热膨胀性能研究[C]//第九届全国水泥和混凝土化学及应用技术会议论文汇编(上卷). 广州: 第九届全国水泥和混凝土化学及应用技术年会, 2005: 449-455.

    SHUI Zhonghe, CAO Beibei. Study on thermal expansion properties of cement concrete materials[C]//The 9th National Conference on Chemistry and Applied Technology of Cement and Concrete (Vol. 1). Guangzhou: The 9th National Annual Conference of Cement and Concrete Che-mistry and Applied Technology, 2005: 449-455(in Chinese).
    [35] 金浏, 杨旺贤, 余文轩, 等. 骨料粒径对混凝土动态拉伸强度及尺寸效应影响分析[J]. 振动与冲击, 2020, 39(9):24-34. doi: 10.13465/j.cnki.jvs.2020.09.004

    JIN Liu, YANG Wangxian, YU Wenxuan, et al. Influence of aggregate size on the dynamic tensile strength and size effect of concrete[J]. Journal of Vibration and Shock,2020,39(9):24-34(in Chinese). doi: 10.13465/j.cnki.jvs.2020.09.004
    [36] LIU W D, GAO Y, HUANG X M. Effects of aggregate size and specimen scale on asphalt mixture cracking using a micromechanical simulation approach[J]. Journal of Wuhan University of Technology,2017,32(6):1503-1510. doi: 10.1007/s11595-017-1775-7
    [37] 贺智敏. 蒸养混凝土的热损伤效应及其改善措施研究[D]. 长沙: 中南大学, 2012.

    HE Zhimin. Heat damage effects of steam curing on concrete and corresponding improvement measures[D]. Changsha: Central South University, 2012(in Chinese).
    [38] 吴中伟. 混凝土科学技术近期发展方向的探讨[J]. 硅酸盐学报, 1979, 7(3):262-270. doi: 10.14062/j.issn.0454-5648.1979.03.010

    WU Zhongwei. An approach to the recent trends of concrete science and technology[J]. Journal of the Chinese Ceramic Society,1979,7(3):262-270(in Chinese). doi: 10.14062/j.issn.0454-5648.1979.03.010
  • 加载中
图(13) / 表(9)
计量
  • 文章访问数:  659
  • HTML全文浏览量:  279
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-05
  • 修回日期:  2022-06-14
  • 录用日期:  2022-06-28
  • 网络出版日期:  2022-07-10
  • 刊出日期:  2023-05-15

目录

    /

    返回文章
    返回