Influence of basalt fiber characteristic parameters on uniaxial tensile properties of concrete
-
摘要: 考虑玄武岩纤维体积分数和长径比两个主要因素,通过直接拉伸试验,研究玄武岩纤维对混凝土轴心受拉破坏形态、应力-应变全曲线、受拉荷载变形性能和韧性的影响。结果表明:玄武岩纤维增强混凝土单轴受拉破坏呈明显的塑性特征,玄武岩纤维显著增强了混凝土在轴心受拉荷载作用下的韧性;与普通混凝土(NC)相比,随着玄武岩纤维增强因子的提高,轴心受拉应力-应变全曲线特征点和断裂能均呈先增大后减小的趋势;基于轴心受拉应力-应变全曲线分析,提出关于纤维体积分数和长径比的玄武岩纤维混凝土轴心受拉应力-应变本构模型,可供玄武岩纤维混凝土结构和构件的非线性分析和工程设计参考。对比分析拉压比、折压比和单轴拉伸破坏断裂能3种韧性指标,发现断裂能可以准确评价玄武岩纤维增强混凝土(BFRC)受拉韧性,BFRC韧性较NC最大提升率为43.0%。
-
关键词:
- 玄武岩纤维增强混凝土 /
- 纤维增强因子 /
- 应力-应变全曲线 /
- 本构模型 /
- 韧性
Abstract: Considering the two main factors of basalt fiber volume fraction and aspect ratio, the axial tensile failure mode, full stress-strain curve, tensile load deformation performance and toughness of basalt fiber concrete reinforced were studied through direct tensile test. The results show that the uniaxial tensile failure of basalt fiber reinforced concrete shows obvious plastic characteristics, and basalt fiber significantly enhances the toughness of concrete under axial tensile load. Compared with ordinary concrete, with the increase of basalt fiber reinforcement factor, the characteristic points and fracture energy of the full axial tensile stress-strain curve increase first and then decrease. Based on the full axial tensile stress-strain curve analysis, the axial tensile stress-strain constitutive model of basalt fiber reinforced concrete about fiber volume fraction and length diameter ratio was proposed, which can be used as a reference for nonlinear analysis and engineering design of basalt fiber reinforced concrete structures and components. The tensile compression ratio, flexural compression ratio and uniaxial tensile failure fracture energy were compared and analyzed. It is found that fracture energy can accurately evaluate the tensile toughness of basalt fiber reinforced concrete (BFRC), and the maximum increase rate of BFRC toughness compared with normal concrete (NC) is 43.0%. -
表 1 水泥和硅灰(SF)的主要化学成分和物理性能
Table 1. Main chemical composition and physical properties of cement and silica fume (SF)
Index SiO2/
%Al2O3/
%Fe2O3/
%CaCl2/
%MgCl2/
%Na2O/
%MgO/
%K2O/
%CaO/
%MnO/
%Specific
gravity/
(kg·m−3)Specific
surface
area/(m2·kg−1)Loss on
ignition/%Cement 20.88 2.86 4.66 − − 0.48 1.66 0.26 69.04 0.16 3120 334 1.50 SF 94.26 0.78 0.66 − − 0.58 0.64 2.65 0.43 − 2310 18954 2.28 表 2 骨料的物理性质
Table 2. Physical properties of aggregates
Index Apparent
density/
(kg·m−3)Bulk density/
(kg·m−3)Moisture
content/%24 h water
absorption/%Crushing
indexNeedle and
flake particle
content/%Clay lump/% Fineness
modulusNA 2660 1430 0.63 1.19 11.70 2.24 0.60 − S 2720 1450 1.20 2.80 − − 0.12 2.6 表 3 BF的物理性能
Table 3. Physical properties of BF
Length/
mmElongation/
%Tensile
strength/
MPaElastic modulus/
GPaDensity/
(kg·m−3)15-24 3.1 2400-3800 79-93 2650 表 4 混凝土的配合比
Table 4. Mixture proportion of the concrete
kg/m3 NA S Cement SF Water SP 1211 682 364 27 195 1.5 Note: SP—Superplasticizer. 表 5 试件编号
Table 5. Specimen number
Specimen number Vf/% l/d Specimen number Vf/% l/d 0.05%BF(1000)/C 0.05 1000 0.05%BF(1200)/C 0.05 1200 0.10%BF(1000)/C 0.10 1000 0.10%BF(1200)/C 0.10 1200 0.15%BF(1000)/C 0.15 1000 0.15%BF(1200)/C 0.15 1200 0.20%BF(1000)/C 0.20 1000 0.20%BF(1200)/C 0.20 1200 0.25%BF(1000)/C 0.25 1000 0.25%BF(1200)/C 0.25 1200 0.30%BF(1000)/C 0.30 1000 0.30%BF(1200)/C 0.30 1200 0.35%BF(1000)/C 0.35 1000 0.35%BF(1200)/C 0.35 1200 0.05%BF(1400)/C 0.05 1400 0.05%BF(1600)/C 0.05 1600 0.10%BF(1400)/C 0.10 1400 0.10%BF(1600)/C 0.10 1600 0.15%BF(1400)/C 0.15 1400 0.15%BF(1600)/C 0.15 1600 0.20%BF(1400)/C 0.20 1400 0.20%BF(1600)/C 0.20 1600 0.25%BF(1400)/C 0.25 1400 0.25%BF(1600)/C 0.25 1600 0.30%BF(1400)/C 0.30 1400 0.30%BF(1600)/C 0.30 1600 0.35%BF(1400)/C 0.35 1400 0.35%BF(1600)/C 0.35 1600 Notes: Vf—Volume fraction of the fiber; l/d—Length diameter ratio of the fiber; C—Concrete. 表 6 混凝土受拉应力-应变曲线的经典模型
Table 6. Classical model of stress-strain curve of concrete under tension compression
Curve segmentation Equation Rising section $ {y}{=}{Ax}{+}{B}{{x}}^{{2}}{+}{C}{{x}}^{{3}} $ $ {y}{=}{{a}}_{{0}}{+}{{a}}_{{1}}{x}{+}{{a}}_{{2}}{{x}}^{{2}}{+}{{a}}_{{3}}{{x}}^{{4}} $ $ {y}{=}\dfrac{{ax}}{{b}{{x}}^{{c}}{+1}} $ ${y}{=}\dfrac{ {x} }{ {\alpha}{ {x} }^{ {\beta} }{+}{\gamma} }$ $ {y}{=}\dfrac{{x}}{{\alpha}{{(1-}{x}{)}}^{{\beta}}{+}{x}} $ $ {y}{=1.2}{x}{-0.2}{{x}}^{{6}} $ Descending section $ {y}{=}\dfrac{{1}}{{{x}}^{{m}}} $ ${y}{=}{A}{ { {\rm{e} } } }^{ {-}{k}{ {x} }^{ { \lambda } } }$ $ {y}{=}\dfrac{{x}}{{\alpha}{{(1-}{x}{)}}^{{\beta}}{+}{x}} $ $ {y}{=}\dfrac{{x}}{{\alpha}{{(}{x}{-1)}}^{{2}}{+}{x}} $ Notes: x—Strain; y—Stress; A, B, C, a0, a1, a2, a3, a, b, c, k, m, α, β, γ—Parameters corresponding to the classical models of different tensile stress-strain full curve equations. 表 7 BFRC轴心受拉应力-应变全曲线方程参数
Table 7. Parameters of BFRC axial tensile stress-strain full curve equation
Specimen number a1 R2 αt R2 NC 1.3245 99.7 42.9808 97.0 0.05%BF(1200)/C 1.4304 99.7 39.4512 91.2 0.10%BF(1200)/C 1.5147 99.1 34.5624 88.2 0.15%BF(1200)/C 1.6001 99.6 32.6244 87.7 0.20%BF(1200)/C 1.5159 99.3 22.0344 96.5 0.25%BF(1200)/C 1.4627 99.4 17.3553 99.3 0.30%BF(1200)/C 1.3436 99.5 19.5491 96.5 0.35%BF(1200)/C 1.2447 99.3 14.5079 98.3 Notes: a1—Rising section parameters of full curve equation; αt—Falling section parameters of full curve equation; R2—Goodness of fit. 表 8 不同BF体积分数BFRC的k值和T值
Table 8. k and T values of BFRC with different BF volume fractions
Specimen number kOA/GPa |kAB|/GPa |kBC|/GPa T/(N·m) NC 24.18 61.49 13.43 5.37 0.05vol%BF(1200)/C 24.46 72.13 14.56 5.74 0.10vol%BF(1200)/C 25.58 94.67 16.14 6.18 0.15vol%BF(1200)/C 25.83 104.67 19.54 7.08 0.20vol%BF(1200)/C 26.67 101.00 20.80 7.68 0.25vol%BF(1200)/C 26.63 101.87 23.90 7.18 0.30vol%BF(1200)/C 25.60 70.94 12.60 6.39 0.35vol%BF(1200)/C 25.63 57.50 11.60 5.82 -
[1] 刘加平, 汤金辉, 韩方玉. 现代混凝土增韧防裂原理及应用[J]. 土木工程学报, 2021, 54(10):47-54, 63. doi: 10.15951/j.tmgcxb.2021.10.007LIU Jiaping, TANG Jinhui, HAN Fangyu. Toughening and crack prevention of modern concrete: Mechanisms and applications[J]. China Civil Engineering Journal,2021,54(10):47-54, 63(in Chinese). doi: 10.15951/j.tmgcxb.2021.10.007 [2] WANG Y, WU H C, LI V C. Concrete reinforcement with recycled fibers[J]. Journal of Materials in Civil Engineering,2000,12(4):314-319. doi: 10.1061/(ASCE)0899-1561(2000)12:4(314) [3] SHI X J, PARK P, REW Y, et al. Constitutive behaviors of steel fiber reinforced concrete under uniaxial compression and tension[J]. Construction and Building Materials, 2020, 233(10): 117316. [4] CHIKHALIKAR S M, TANDE S N. An experimental investigation on characteristics properties of fibre reinforced concrete containing waste glass powder as pozzolana[C]//37th Conference on Our World in Concrete and Structures. Singapore: 2012. [5] BRANSTON J, DAS S, KENNO S Y, et al. Mechanical behaviour of basalt fibre reinforced concrete[J]. Construction and Building Materials,2016,124:878-886. doi: 10.1016/j.conbuildmat.2016.08.009 [6] CORY H, HATEM M, ADEL S, et al. Use of basalt fibers for concrete structures[J]. Construction and Building Materials,2015,96(15):37-46. [7] ZHU D J, LIU S, YAO Y M, et al. Effects of short fiber and pre-tension on the tensile behavior of basalt textile reinforced concrete[J]. Cement and Concrete Composites,2019,96:33-45. doi: 10.1016/j.cemconcomp.2018.11.015 [8] ARSLAN M E. Effects of basalt and glass chopped fibers addition on fracture energy and mechanical properties of ordinary concrete: Cmod measurement[J]. Construction & Building Materials,2016,114(1):383-391. [9] SIM J, PARK C, MOON D Y. Characteristics of basalt fiber as a strengthening material for concrete structures[J]. Composites Part B: Engineering,2005,36(6):504-512. [10] SUN X, GAO Z, CAO P, et al. Mechanical properties tests and multiscale numerical simulations for basalt fiber reinforced concrete[J]. Construction and Building Materials,2019,202:58-72. doi: 10.1016/j.conbuildmat.2019.01.018 [11] WANG D L, JU Y Z, SHEN H, et al. Mechanical properties of high performance concrete reinforced with basalt fiber and polypropylene fiber[J]. Construction and Building Materials,2019,197:464-473. doi: 10.1016/j.conbuildmat.2018.11.181 [12] RAMESH B, ESWARI S. Mechanical behaviour of basalt fibre reinforced concrete: An experimental study[J]. Materials Today: Proceedings, 2021, 43(2): 2317-2322. [13] ELSHAFIE S, WHITTLESTON G. A review of the effect of basalt fiber lengths and proportions on the mechanical properties of concrete[J]. International Journal of Research in Engineering and Technology,2015,4(1):458-465. doi: 10.15623/ijret.2015.0401069 [14] 王意. 玄武岩纤维混凝土力学性能试验研究[D]. 成都: 西南交通大学, 2018.WANG Yi. Experimental study on mechanical properties of basalt fiber reinforced concrete[D]. Chengdu: Southwest Jiaotong University, 2018(in Chinese). [15] MEHRAN K, ABDUL R, MAJID A. Efficiency of silica-fume content in plain and natural fiber reinforced concrete for concrete road[J]. Construction and Building Materials,2020,244:118382. doi: 10.1016/j.conbuildmat.2020.118382 [16] WANG Y G, HHGHES P, NIU H C, et al. A new method to improve the properties of recycled aggregate concrete: Composite addition of basalt fiber and nano-silica[J]. Journal of Cleaner Production,2019,236(11):117602. [17] HASAN D, AKR Z. Influence of basalt fiber on physical and mechanical properties of treated recycled aggregate concrete[J]. Construction and Building Materials,2020,254:119216. doi: 10.1016/j.conbuildmat.2020.119216 [18] FANG S E, HONG H S, ZHANG P H. Mechanical property tests and strength formulas of basalt fiber reinforced recycled aggregate concrete[J]. Materials,2018,11(10):1851. doi: 10.3390/ma11101851 [19] 詹奇淇, 詹炳根. 玄武岩纤维增强泡沫混凝土韧性及抗压强度试验研究[J]. 合肥工业大学学报(自然科学版), 2020, 43(5):667-672.ZHAN Qiqi, ZHAN Binggen. Experimental study on toughness and compressive strength of basalt fiber reinforced foamed concrete[J]. Journal of Hefei University of Technology (Natural Science),2020,43(5):667-672(in Chinese). [20] DIAS D P, THAUMATURGO C. Fracture toughness of geopolymeric concretes reinforced with basalt fibers[J]. Cement & Concrete Composites,2005,27(1):49-54. [21] 郑遵畅. 玄武岩纤维活性粉末混凝土基本性能试验研究[D]. 北京: 北京交通大学, 2013.ZHENG Zunchang. Experimental study for the basic performance of the basalt fiber reactive powder concrete[D]. Beijing: Beijing Jiaotong University, 2013(in Chinese). [22] 赵高锦, 赵卓, 陈歆, 等. 玄武岩纤维混凝土应力-应变全曲线试验研究[J]. 水利与建筑工程学报, 2019, 17(1):103-107. doi: 10.3969/j.issn.1672-1144.2019.01.018ZHAO Gaojin, ZHAO Zhuo, CHEN Xin, et al. Experiments on complete stress-strain curves of basalt fiber reinforced concrete[J]. Journal of Water Resources and Architectural Engineering,2019,17(1):103-107(in Chinese). doi: 10.3969/j.issn.1672-1144.2019.01.018 [23] 于跟社, 邓宗才, 王珏, 等. 玄武岩纤维高性能混凝土轴拉和抗冲击韧性试验研究[J]. 混凝土与水泥制品, 2022(3):56-60. doi: 10.19761/j.1000-4637.2022.03.056.05YU Genshe, DENG Zongcai, WANG Jue, et al. Experimental study on axial tensile and impact toughness of basalt fiber reinforced high performance concrete[J]. China Concrete and Cement Products,2022(3):56-60(in Chinese). doi: 10.19761/j.1000-4637.2022.03.056.05 [24] 中国国家标准化管理委员会. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2019.Standardization Administration of the People's Republic of China. Standard for test methods of concrete physical and mechanical properties: GB/T 50081—2019[S]. Beijing: China Architecture & Building Press, 2019. [25] 贺晶晶, 师俊平, 张勇, 等. 玄武岩纤维改善混凝土拉伸性能分析[J]. 复合材料科学与工程, 2021(331):39-43.HE Jingjing, SHI Junping, ZHANG Yong, et al. Analysis on tensile properties of BFRC[J]. Composites Science and Engineering,2021(331):39-43(in Chinese). [26] 罗章. 中应变率下钢纤维混凝土的本构关系研究[D]. 长沙: 中南大学, 2004.LUO Zhang. Study on the constitutive relationship of steel fiber reinforced concrete under intermediate strain rate[D]. Changsha: Central South University, 2004(in Chinese). [27] 徐礼华, 梅国栋, 黄乐, 等. 钢-聚丙烯混杂纤维混凝土轴心受拉应力-应变关系研究[J]. 土木工程学报, 2014, 47(7):35-45.XU Lihua, MEI Guodong, HUANG Le, et al. Study on uniaxial tensile stress-strain relationship of steel-polypropylene hybrid fiber reinforced concrete[J]. China Civil Engineering Journal,2014,47(7):35-45(in Chinese). [28] 过镇海, 张秀琴, 张达成, 等. 混凝土应力-应变全曲线的试验研究[J]. 建筑结构学报, 1982(1):1-12.GUO Zhenhai, ZHANG Xiuqin, ZHANG Dacheng, et al. Experimental investigation of the complete stress-strain curve of concrete[J]. Journal of Building Structures,1982(1):1-12(in Chinese). [29] 卢钦旺, 桂雷, 胡晓斌. 再生混凝土轴心受拉应力-应变关系[J]. 武汉大学学报(工学版), 2020, 53(5):418-423.LU Qinwang, GUI Lei, HU Xiaobin. Relationship between axial tensile stress and strain of recycled aggregate concrete[J]. Engineering Journal of Wuhan University,2020,53(5):418-423(in Chinese). [30] NARAYANAN R, DARWISHI Y S. Use of steel fibers as shear reinforcement[J]. ACI Structural Journal,1987,84(3):216-227. [31] LIU F, DING W, QIAO Y. Experimental investigation on the tensile behavior of hybrid steel-PVA fiber reinforced concrete containing fly ash and slag powder[J]. Construction and Building Materials,2020,241:118000. doi: 10.1016/j.conbuildmat.2020.118000