留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多向冷冻法制备的高灵敏度柔性电容式压力传感器

王菲菲 彭海益 姚晓刚

王菲菲, 彭海益, 姚晓刚. 基于多向冷冻法制备的高灵敏度柔性电容式压力传感器[J]. 复合材料学报, 2023, 40(5): 2680-2687. doi: 10.13801/j.cnki.fhclxb.20220705.004
引用本文: 王菲菲, 彭海益, 姚晓刚. 基于多向冷冻法制备的高灵敏度柔性电容式压力传感器[J]. 复合材料学报, 2023, 40(5): 2680-2687. doi: 10.13801/j.cnki.fhclxb.20220705.004
WANG Feifei, PENG Haiyi, YAO Xiaogang. High-sensitive flexible capacitive pressure sensor based on multi-directional freezing method[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2680-2687. doi: 10.13801/j.cnki.fhclxb.20220705.004
Citation: WANG Feifei, PENG Haiyi, YAO Xiaogang. High-sensitive flexible capacitive pressure sensor based on multi-directional freezing method[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2680-2687. doi: 10.13801/j.cnki.fhclxb.20220705.004

基于多向冷冻法制备的高灵敏度柔性电容式压力传感器

doi: 10.13801/j.cnki.fhclxb.20220705.004
详细信息
    通讯作者:

    彭海益,博士,研究方向为高性能微波介质陶瓷、新型有机/无机功能复合材料及器件 E-mail: penghaiyi@mail.sic.ac.cn;

    姚晓刚,博士,副研究员,研究方向为高性能微波介质陶瓷、新型有机/无机功能复合材料及器件 E-mail: yaoxiaogang@mail.sic.ac.cn

  • 中图分类号: TB332

High-sensitive flexible capacitive pressure sensor based on multi-directional freezing method

  • 摘要: 近年来柔性电容压力传感器因兼具优异的力学性能和良好的灵敏性,广泛应用于医学诊断、电子皮肤、人工智能等重要领域。本文围绕提升电容式柔性传感器的灵敏度为目标,设计了一种基于多向冷冻工艺构筑的三维交联网络结构多壁碳纳米管(MWCNTs)/聚二甲基硅烷(PDMS)海绵为介质层的柔性电容式压力传感器,并对该传感器的制造过程、传感机制、响应性能和人体适用性进行表征。结果表明:通过多向冷冻法可成功构建三维网络结构MWCNTs/PDMS海绵介质层,且此介质层组装的柔性电容式压力传感器具有较高灵敏度(~1.94 kPa−1)、低检测限(~4 Pa)、快响应时间(~250 ms)、良好稳定性及人体适用性。该柔性传感器在可穿戴电子产品中具有良好的应用前景。

     

  • 图  1  多壁碳纳米管(MWCNTs)/聚二甲基硅烷(PDMS)海绵介质层电容式压力传感器制备流程图

    Figure  1.  Preparation of capacitive pressure sensor with multi-wall carbon nanotubes (MWCNTs)/polydimethylsilane (PDMS) spongy dielectric layer

    图  2  MWCNTs在羧甲基纤维素(CMC)溶液中的分散情况

    Figure  2.  Dispersion of MWCNTs in carboxymethyl cellulose (CMC) solution

    图  3  不同浓度的MWCNTs骨架断面SEM图像

    Figure  3.  SEM images of skeleton sections of MWCNTs at different concentrations

    图  4  不同MWCNTs添加量介质层介电常数随频率变化曲线

    Figure  4.  Dielectric constant of the dielectric layer with different addition of MWCNTs varied with frequency

    图  5  MWCNTs/PDMS海绵介质层传感器的灵敏度

    C—Real-time capacitance value; C0—Initial capacitance value

    Figure  5.  Sensitivity of MWCNTs/PDMS sponge layer sensor

    图  6  MWCNTs/PDMS传感器的响应性能:(a) 不同压力下的响应;(b) 响应时间;(c) 最低响应限度;(d) 循环稳定性

    Figure  6.  MWCNTs/PDMS sensor response performance: (a) Response under different pressures;(b) Response time; (c) Minimum response limit; (d) Stability of the sensor

    图  7  MWCNTs/PDMS海绵传感器触觉传感性能:(a) 传感器的触摸响应;(b) 手指点击和按压鼠标上传感器响应;(c) 抓取不同质量纸杯的传感器响应

    Figure  7.  Sensing performance of the MWCNTs/PDMS sensor in forms: (a) Touching response; (b) Finger clicking and pressing; (c) Grasping a paper cup filling with different mass

    图  8  MWCNTs/PDMS传感器的触觉传感性能:(a) 指关节弯曲;(b) 肘关节弯曲;(c) 膝盖弯曲

    Figure  8.  Tactile sensing performance of the MWCNTs/PDMS sensor: (a) Knuckle bending; (b) Elbow bending; (c) Knee bending

  • [1] KIM J, CHOU E F, LE J, et al. Soft wearable pressure sensors for beat-to-beat blood pressure monitoring[J]. Advanced Healthcare Materials,2019,8(13):1900109. doi: 10.1002/adhm.201900109
    [2] NA C H, YUN K S. Capacitive force sensor with wide dynamic range using wrinkled micro structures as dielectric layer[J]. Journal of Nanoscience and Nanotechnology,2019,19(10):6663-6667. doi: 10.1166/jnn.2019.17094
    [3] LI T, LUO H, QIN L, et al. Flexible capacitive tactile sensor based on micropatterned dielectric layer[J]. Small,2016,12(36):5042-5048. doi: 10.1002/smll.201600760
    [4] KIM Y, JANG S, OH J H. Fabrication of highly sensitive capacitive pressure sensors with porous PDMS dielectric layer via microwave treatment[J]. Microelectronic Engi-neering,2019,215:111002. doi: 10.1016/j.mee.2019.111002
    [5] LIU M, YU L Y, SINDHU V, et al. Incorporation of liquid fillers into silicone foams to enhance the electro-mechanical properties[J]. International Journal of Smart and Nano Materials,2020,11(1):11-23. doi: 10.1080/19475411.2020.1727061
    [6] CHEN Z, WANG Z, LI X, et al. Flexible piezoelectric-induced pressure sensors for static measurements based on nanowires/graphene heterostructures[J]. ACS Nano,2017,11(5):4507-4513. doi: 10.1021/acsnano.6b08027
    [7] TRASE I, XU Z, CHEN Z, et al. Thin-film bidirectional transducers for haptic wearables[J]. Sensors and Actuators A: Physical,2020,303:111655. doi: 10.1016/j.sna.2019.111655
    [8] CHHETRY A, SHARMA S, YOON H, et al. Enhanced sensi-tivity of capacitive pressure and strain sensor based on CaCu3Ti4O12 wrapped hybrid sponge for wearable applications[J]. Advanced Functional Materials,2020,30(31):1910020. doi: 10.1002/adfm.201910020
    [9] 李瑞青, 李思明, 陈天骄, 等. 基于可膨胀微球/聚二甲基硅氧烷复合介电层的柔性电容式压力传感器[J]. 复合材料学报, 2021, 38(7):2152-2161. doi: 10.13801/j.cnki.fhclxb.20201110.005

    LI Ruiqing, LI Siming, CHEN Tianjiao, et al. Flexible capacitive pressure sensor based on expandable microsphere/polydimethylsiloxane composite dielectric layer[J]. Acta Materiae Compositae Sinica,2021,38(7):2152-2161(in Chinese). doi: 10.13801/j.cnki.fhclxb.20201110.005
    [10] ZHAO Q, YANG L, CHEN K, et al. Ultra-high discharged energy density in PVDF based composites through inducing MnO2 particles with optimized geometric structure[J]. Nano Energy,2019,65:104007. doi: 10.1016/j.nanoen.2019.104007
    [11] JUNG Y, LEE W, JUNG K, et al. A highly sensitive and flexible capacitive pressure sensor based on a porous three-dimensional PDMS/microsphere composite[J]. Polymers,2020,12(6):1412. doi: 10.3390/polym12061412
    [12] FU M, ZHANG J, JIN Y, et al. A highly sensitive, reliable, and high-temperature-resistant flexible pressure sensor based on ceramic nanofibers[J]. Advanced Science,2020,7(17):2000258. doi: 10.1002/advs.202000258
    [13] PRAKASH B S, VARMA K B R. Dielectric behavior of CCTO/epoxy and Al-CCTO/epoxy composites[J]. Compo-sites Science and Technology,2007,67(11-12):2363-2368. doi: 10.1016/j.compscitech.2007.01.010
    [14] GE G, CAI Y, DONG Q, et al. A flexible pressure sensor based on rGO/polyaniline wrapped sponge with tunable sensitivity for human motion detection[J]. Nanoscale,2018,10(21):10033-10040. doi: 10.1039/C8NR02813C
    [15] YOON S G, CHANG S T. Microfluidic capacitive sensors with ionic liquid electrodes and CNT/PDMS nanocomposites for simultaneous sensing of pressure and temperature[J]. Journal of Materials Chemistry C,2017,5(8):1910-1919. doi: 10.1039/C6TC03994D
    [16] ZHANG Y L, GUO X, WANG W, et al. Highly sensitive, low hysteretic and flexible strain sensor based on ecoflex-AgNWs-MWCNTs flexible composite materials[J]. Ieee Sensors Journal,2020,20(23):14118-14125. doi: 10.1109/JSEN.2020.3008159
    [17] MA L Q, SHUAI X T, HU Y G, et al. A highly sensitive and flexible capacitive pressure sensor based on a micro-arrayed polydimethylsiloxane dielectric layer[J]. Journal of Materials Chemistry C,2018,6(48):13232-13240. doi: 10.1039/C8TC04297G
    [18] ZHANG Y, LIU S, MIAO Y, et al. Highly stretchable and sensitive pressure sensor array based on icicle-shaped liquid metal film electrodes[J]. ACS Applied Materials & Interfaces,2020,12(25):27961-27970. doi: 10.1021/acsami.0c04939
    [19] LI M, LIANG J, WANG X, et al. Ultra-sensitive flexible pressure sensor based on microstructured electrode[J]. Sensors,2020,20(2):371. doi: 10.3390/s20020371
    [20] WEI P Q, GUO X L, QIU X B, et al. Flexible capacitive pressure sensor with sensitivity and linear measuring range enhanced based on porous composite of carbon conductive paste and polydimethylsiloxane[J]. Nanotechnology, 2019, 30(45): 455501.
    [21] HAN T, NAG A, SIMORANGKIR R B V B, et al. Multifunctional flexible sensor based on laser-induced graphene[J]. Sensors,2019,19(16):3477. doi: 10.3390/s19163477
    [22] JIN T, PAN Y, JEON G J, et al. Ultrathin nanofibrous membranes containing insulating microbeads for highly sensi-tive flexible pressure sensors[J]. ACS Applied Materials & Interfaces,2020,12(11):13348-13359. doi: 10.1021/acsami.0c00448
    [23] SUN X X, WANG K P, ZHANG B X, et al. Hierarchically porous cellulose monolith prepared by combination of ice-template method and non-solvent-induced phase separation method[J]. Chemistry Letters,2017,46(6):792-794. doi: 10.1246/cl.170155
    [24] DEVILLE S, MEILLE S, SEUBA J. A meta-analysis of the mechanical properties of ice-templated ceramics and metals[J]. Science & Technology of Advanced Materials,2015,16(4):43501.
    [25] XU Z, ZHANG Y, LI P. Strong, conductive, lightweight, neat graphene aerogel fibers with aligned pores[J]. ACS Nano,2012,6(8):7103-7113. doi: 10.1021/nn3021772
    [26] LU Y, SUN Q, YANG D, et al. Fabrication of mesoporous lignocellulose aerogels from wood via cyclic liquid nitrogen freezing-thawing in ionic liquid solution[J]. Journal of Materials Chemistry,2012,22(27):13548-13557. doi: 10.1039/c2jm31310c
    [27] HE Z, CHEN W, LIANG B, et al. Capacitive pressure sensor with high sensitivity and fast response to dynamic interaction based on graphene and porous nylon networks[J]. ACS Applied Materials & Interfaces,2018,10(15):12816-12823. doi: 10.1021/acsami.8b01050
    [28] MIAO P, WANG J, ZHANG C, et al. Graphene nanostructure-based tactile sensors for electronic skin applications[J]. Nano-Micro Letters,2019,11(1):1-37. doi: 10.1007/s40820-018-0235-z
    [29] QIU J, GUO X, CHU R, et al. Rapid-response, low detection limit, and high-sensitivity capacitive flexible tactile sensor based on three-dimensional porous dielectric layer for wearable electronic skin[J]. ACS Applied Materials & Interfaces,2019,11(43):40716-40725. doi: 10.1021/acsami.9b16511
    [30] KWON D, LEE T I, SHIM J, et al. Highly sensitive, flexible, and wearable pressure sensor based on a giant piezocapacitive effect of three-dimensional microporous elastomeric dielectric layer[J]. ACS Applied Materials & Interfaces,2016,8(26):16912-16922.
  • 加载中
图(8)
计量
  • 文章访问数:  974
  • HTML全文浏览量:  400
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-05
  • 修回日期:  2022-06-23
  • 录用日期:  2022-06-26
  • 网络出版日期:  2022-07-07
  • 刊出日期:  2023-05-15

目录

    /

    返回文章
    返回