留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

膨胀石墨/硫-氟化气相沉积碳纤维双层正极

马朝勇 欧云 姚琛琪 唐智勇 刘龙飞 王艳 成娟娟

马朝勇, 欧云, 姚琛琪, 等. 膨胀石墨/硫-氟化气相沉积碳纤维双层正极[J]. 复合材料学报, 2023, 40(5): 2722-2730. doi: 10.13801/j.cnki.fhclxb.20220705.002
引用本文: 马朝勇, 欧云, 姚琛琪, 等. 膨胀石墨/硫-氟化气相沉积碳纤维双层正极[J]. 复合材料学报, 2023, 40(5): 2722-2730. doi: 10.13801/j.cnki.fhclxb.20220705.002
MA Chaoyong, OU Yun, YAO Chenqi, et al. Expanded graphite/sulfur-fluorinated vapor-deposited carbon fiber bilayer cathode[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2722-2730. doi: 10.13801/j.cnki.fhclxb.20220705.002
Citation: MA Chaoyong, OU Yun, YAO Chenqi, et al. Expanded graphite/sulfur-fluorinated vapor-deposited carbon fiber bilayer cathode[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2722-2730. doi: 10.13801/j.cnki.fhclxb.20220705.002

膨胀石墨/硫-氟化气相沉积碳纤维双层正极

doi: 10.13801/j.cnki.fhclxb.20220705.002
基金项目: 湖南省教育厅科技项目(20 B225);湖南省自然科学基金项目(2020 JJ4288;2021 JJ30257);国家自然科学基金项目(11972157);新能源储存与转换先进材料湖南省重点实验室开放基金(2018 TP1037-202002)
详细信息
    通讯作者:

    成娟娟,博士,讲师,硕士生导师,研究方向为锂硫电池 E-mail: jjcheng@hnust.edu.cn

  • 中图分类号: TB332

Expanded graphite/sulfur-fluorinated vapor-deposited carbon fiber bilayer cathode

Funds: Science and Technology Project of Hunan Provincial Department of Education (20 B225); Natural Science Foundation of Hunan Province (2020 JJ4288; 2021 JJ30257); National Natural Science Foundation of China (11972157); Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion Open Fund (2018 TP1037-202002)
  • 摘要: 对于高性能储能设备的迫切需求,使得理论能量密度达到2600 W·h/kg的锂硫电池(LSBs)变得极具吸引力。然而,低的容量可逆性和硫自身绝缘性的天然缺陷制约了其商业化进程。为了有效改善硫的导电性能,同时抑制多硫化物的穿梭效应,达到提高LSBs电化学性能的目的。本文采用逐层涂覆法在膨胀石墨(EG)/硫(S)复合正极极片表面涂覆氟化气相沉积碳纤维(FVGCF),通过首次放电至2.5 V实现FVGCF嵌锂,在EG/S正极极片表面形成LiF和FVGCF复合层。电化学性能测试和形貌表征结果表明:采用FVGCF新型正极材料具有最佳的循环寿命,EGS-FVGCF在1 C电流密度下的初始放电比容量为691.8 mA·h/g,100次循环之后剩余比容量为549.5 mA·h/g。相对于EGS涂覆的单层结构,在EGS上面涂覆FVGCF的双层电池性能具备极大应用优势,放电过程中生成的LiF能够抑制多硫化物从正极到负极的穿梭。同时,放充电后的电极形貌表征发现FVGCF层的加入减少了极片表面的裂纹,表明FVGCF层在一定程度上缓冲了硫正极的体积膨胀。这种简单易操作的复合结构为开发高性能LSBs提供了一定参考。

     

  • 图  1  电池结构示意图

    PP—Polypropylene; FVGCF—Fluorinated vapor-deposited carbon fiber

    Figure  1.  Battery structure diagram

    图  2  FVGCF (a)、膨胀石墨(EG)/硫(S)化合物(EGS) (b)、EGS/FVGCF (c)、EGS-FVGCF双层平面(d)与截面(e)的SEM图像

    Figure  2.  SEM images of FVGCF (a), expanded graphite (EG)/sulfur (S) composite (EGS) (b), EGS/FVGCF (c), EGS-FVGCF bilayers in plane (d) and cross-section (e)

    图  3  EGS/FVGCF复合材料、EGS、EGS/FVGCF和EGS-FVGCF放电后极片的XRD图谱

    Figure  3.  XRD patterns for EGS/FVGCF composite, EGS, EGS/FVGCF and EGS-FVGCF electrodes after discharge

    图  4  EGS-FVGCF、EGS、EGS/FVGCF正极的电池电化学性能特性;(a)首次放充电曲线;(b) EGS-FVGCF在0.2 C电流密度的第1、10、50、100次循环放/充电曲线;(c) 0.1 mV·s−1扫描速率下的循环伏安曲线;(d)阻抗曲线;(e) 0.2 C电流密度下100次循环性能;(f) 1 C电流密度下循环100圈性能及相应库伦效率

    Figure  4.  Battery electrochemical performance characteristics of EGS-FVGCF, EGS, EGS/FVGCF cathodes: (a) First discharge and charge curves; (b) EGS-FVGCF at the 1st, 10th, 50th and 100th cycle discharge/charge curves at 0.2 C current density; (c) Cyclic voltammetry curve at 0.1 mV·s−1 scan rate; (d) Impedance curve; (e) 100 cycle performance at 0.2 C current density; (f) 100 cycle performance and corresponding coulombic efficiency at 1 C current density

    图  5  进行1次放充电的EGS (a)、EGS/FVGCFF (b)和EGS-FVGCF (c)的SEM图像

    Figure  5.  SEM images of EGS (a), EGS/FVGCFF (b) and EGS-FVGCF (c) subjected to one charge and discharge

    表  1  本文与文献报道的部分上集流体材料性能对比

    Table  1.   Properties of fluid materials in this study compared with those reported in the literature

    Upper current collector materialSulfurSulfur load/(mg·cm–1)Current density/(mA·g–1)Specific capacity/(mA·h·g–1)Ref.
    VGCF S 2 50 1100 (First cycle) [33]
    Fe3O4/RGO CSC/S 1.0 500 434 (400 cycles) [39]
    Carbon paper S 1.7 335 631 (200 cycles) [40]
    Fe-N-C KB/S 1.0 335 428 (500 cycles) [41]
    M-S-LTO S 1.3 335 960 (200 cycles) [42]
    Waste cotton cloth S 3.05 335 423 (200 cycles) [43]
    FVGCF EGS 1.1 1675 549.5 (100 cycles) This work
    Notes: VGCF—Vapor grown carbon fiber; RGO—Reduced graphene oxide; Fe-N-C—Fe-N-doped carbon; M—Multi-walled carbon nanotubes; LTO—Li4Ti5O12; CSC—Coconut shell charcoal; KB—Ketjen black.
    下载: 导出CSV
  • [1] TARASCON M A A J M. Building better batteries[J]. Nature,2008,451:652-657. doi: 10.1038/451652a
    [2] WANG G X, HE P G, FAN L Z. Asymmetric polymer electrolyte constructed by metal-organic framework for solid-state, dendrite-free lithium metal battery[J]. Advanced Functional Materials,2021,31(3):2007198. doi: 10.1002/adfm.202007198
    [3] LIU Y, HARIDAS A A K, LEE Y, et al. Freestanding porous sulfurized polyacrylonitrile fiber as a cathode material for advanced lithium sulfur batteries[J]. Applied Surface Science, 2019, 472(1): 135-142.
    [4] 陈宗宗, 张瑞丰. 基于Polymer-S-C/SiO2多层结构大孔电极锂硫离子电池的制备与性能[J]. 复合材料学报, 2014, 31(2): 525-531.

    CHEN Zongzong, ZHANG Ruifeng. Preparation and performance of lithium-sulfur batteries based on multilayer structure in polymer-S-C/SiO2 macroporous electrodes[J]. Acta Materiae Compositae Sinica, 2014, 31(2): 525-531(in Chinese).
    [5] 黄雅盼, 孙晓刚, 王杰, 等. 羟基化多壁碳纳米管掺杂抑制锂硫电池的穿梭效应[J]. 复合材料学报, 2019, 36(5): 1335-1341.

    HUANG Yapan, SUN Xiaogang, WANG Jie, et al. Inhibiting shuttle effect of lithium sulfur batteries by introducing hydroxylated multi-walled carbon nanotube[J]. Acta Materiae Compositae Sinica, 2019, 36(5): 1335-1341(in Chinese).
    [6] 施再发, 杨少彬, 刘景东, 等. 化学沉淀法制备S-FeS/介孔碳复合材料及其电化学性能[J]. 复合材料学报, 2015, 32(2): 341-346.

    SHI Zaifa, YANG Shaobin, LIU Jingdong, et al. Preparation of S-FeS/mesoporous carbon composites by chemical precipitation and its electrochemical properties[J]. Acta Materiae Compositae Sinica, 2015, 32(2): 341-346(in Chinese).
    [7] 闫崇, 李向南, 曹朝霞, 等. 高能球磨法制备PTFE/科琴黑-C柔性复合材料及其电化学应用[J]. 复合材料学报, 2016, 33(10): 2390-2396.

    YAN Chong, LI Xiangnan, CAO Zhaoxia, et al. Preparation of PTFE/Ketjen Black-C flexible composites by high energy ball milling method and its electrochemical application[J]. Acta Materiae Compositae Sinica, 2016, 33(10): 2390-2396(in Chinese).
    [8] HERBERT J U D. Electric dry cells and storage batteries: US Patent, US3043896[P]. 1962-07-10.
    [9] CHUNG S H, MANTHIRAM A. High-performance Li-S batteries with an ultra-lightweight MWCNT-coated separator[J]. Journal of Physical Chemistry Letters,2014,5(11):1978-1983. doi: 10.1021/jz5006913
    [10] SINGHAL R, CHUNG S H, MANTHIRAM A, et al. A free-standing carbon nanofiber interlayer for high-performance lithium-sulfur batteries[J]. Journal of Materials Chemistry A,2015,3(8):4530-4538. doi: 10.1039/C4TA06511E
    [11] CUISINIER M, CABELGUEN P E, ADAMS B D, et al. Unique behaviour of nonsolvents for polysulphides in lithium-sulphur batteries[J]. Energy & Environmental Science,2014,7(8):2697-2705.
    [12] ZHANG S S. Binder based on polyelectrolyte for high capacity density lithium/sulfur battery[J]. Journal of the Electrochemical Society,2012,159(8):A1226-A1229. doi: 10.1149/2.039208jes
    [13] LI G R, CAI W L, LIU B H, et al. A multi functional binder with lithium ion conductive polymer and polysulfide absorbents to improve cycleability of lithium-sulfur batteries[J]. Journal of Power Sources,2015,294:187-192. doi: 10.1016/j.jpowsour.2015.06.083
    [14] CHEN W, LEI T, QIAN T, et al. A new hydrophilic binder enabling strongly anchoring polysulfides for high-performance sulfur electrodes in lithium-sulfur battery[J]. Advanced Energy Materials, 2018, 8(12): 1702889.
    [15] CHENG X B, HUANG J Q, ZHANG Q. Review-Li metal anode in working lithium-sulfur batteries[J]. Journal of the Electrochemical Society,2018,165(1):A6058-A6072. doi: 10.1149/2.0111801jes
    [16] LI Z, JIANG Y, YUAN L X, et al. A highly ordered meso@microporous carbon-supported sulfur@smaller sulfur core-shell structured cathode for Li-S batteries[J]. ACS Nano,2014,8(9):9295-9303. doi: 10.1021/nn503220h
    [17] PONRAJ R, KANNAN A G, AHN J H, et al. Improvement of cycling performance of lithium-sulfur batteries by using magnesium oxide as a functional additive for trapping lithium polysulfide[J]. ACS Applied Materials & Interfaces,2016,8(6):4000-4006.
    [18] LIU H, LIU X, LI W, et al. Porous carbon composites for next generation rechargeable lithium batteries[J]. Advanced Energy Materials, 2017, 7(24): 1700283.
    [19] QI M L, LIANG X Q, WANG F, et al. Sulfur-impregnated disordered SnO2/carbon aerogel core-shell microspheres cathode for lithium-sulfur batteries[J]. Journal of Alloys and Compounds,2019,799:345-350. doi: 10.1016/j.jallcom.2019.05.366
    [20] GONG Y, FU C, DONG A, et al. Polar ultrathin self-doping carbon nitride nanosheets with intrinsic polysulfide adsorption for high performance lithium-sulfur batteries[J]. Batteries & Supercaps,2018,1(5):192-201.
    [21] HE D, XIANG J, ZHA C, et al. The efficient redox electron transfer and powered polysulfide confinement of carbon doped tungsten nitride with multi-active sites towards high-performance lithium-polysulfide batteries[J]. Applied Surface Science,2020:525(30): 146625-146632.
    [22] LIU M, ZHOU D, JIANG H R, et al. A highly-safe lithium-ion sulfur polymer battery with SnO2 anode and acrylate-based gel polymer electrolyte[J]. Nano Energy,2016,28:97-105. doi: 10.1016/j.nanoen.2016.08.033
    [23] SUN W, OU X, YUE X, et al. A simply effective double-coating cathode with MnO2 nanosheets/graphene as functionalized interlayer for high performance lithium-sulfur batteries[J]. Electrochimica Acta,2016,207:198-206. doi: 10.1016/j.electacta.2016.04.135
    [24] ZEGEYE T A, KUO C F J, WOTANGO A S, et al. Hybrid nanostructured microporous carbon-mesoporous carbon doped titanium dioxide/sulfur composite positive electrode materials for rechargeable lithium-sulfur batteries[J]. Journal of Power Sources,2016,324:239-252. doi: 10.1016/j.jpowsour.2016.05.080
    [25] LI C, ZHANG P, DAI J, et al. Rational method for improving the performance of lithium-sulfur batteries: Coating the separator with lithium fluoride[J]. ChemElectroChem,2017,4(6):1535-1543. doi: 10.1002/celc.201700154
    [26] WU F, QIAN J, CHEN R, et al. An effective approach to protect lithium anode and improve cycle performance for Li-S batteries[J]. ACS Applied Materials & Interfaces,2014,6(17):15542-15549.
    [27] LIU Y, QIN X, ZHANG S, et al. Fe3O4-decorated porous graphene interlayer for high-performance lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces,2018,10(31):26264-26273. doi: 10.1021/acsami.8b07316
    [28] RAULO A, BANDYOPADHYAY S, AHAMAD S, et al. Bio-inspired poly(3, 4-ethylenedioxythiophene) : poly(styrene sulfonate)-sulfur@polyacrylonitrile electrospun nanofibers for lithium-sulfur batteries[J]. Journal of Power Sources,2019,431:250-258. doi: 10.1016/j.jpowsour.2019.05.055
    [29] LIANG C D, DUDNEY N J, HOWE J Y. Hierarchically structured sulfur/carbon nanocomposite material for high-energy lithium battery[J]. Chemistry of Materials,2009,21(19):4724-4730. doi: 10.1021/cm902050j
    [30] ZHANG S, UENO K, DOKKO K, et al. Recent advances in electrolytes for lithium-sulfur batteries[J]. Advanced Energy Materials,2015,5(16):1500117.
    [31] WANG Q, WEN Z, YANG J, et al. Electronic and ionic co-conductive coating on the separator towards high-performance lithiume sulfur batteries[J]. Journal of Power Sources,2016,306:347-353. doi: 10.1016/j.jpowsour.2015.11.109
    [32] YAO H, YAN K, LI W, et al. Improved lithium-sulfur batteries with a conductive coating on the separator to prevent the accumulation of inactive S-related species at the cathode-separator interface[J]. Energy & Environmental Science,2014,7(10):3381-3390. doi: 10.1039/C4EE01377H
    [33] ZHANG Y Y, LI K, LI H, et al. High sulfur loading lithium-sulfur batteries based on a upper current collector electrode with lithium-ion conductive polymers[J]. Journal of Materials Chemistry A,2017,5(1):97-101. doi: 10.1039/C6TA08264E
    [34] QIE L, MANTHIRAM A. High-energy-density lithium-sulfur batteries based on blade-cast pure sulfur electrodes[J]. ACS Energy Letters,2016,1(1):46-51. doi: 10.1021/acsenergylett.6b00033
    [35] SUN L, LI M Y, JIANG Y, et al. Sulfur nanocrystals confined in carbon nanotube network as a binder-free electrode for high-performance lithium sulfur batteries[J]. Nano Letters,2014,14(7):4044-4049. doi: 10.1021/nl501486n
    [36] ZHU X, WEN Z, GU Z, et al. Electrochemical characterization and performance improvement of lithium/sulfur polymer batteries[J]. Journal of Power Sources,2005,139(1-2):269-273. doi: 10.1016/j.jpowsour.2004.07.002
    [37] SAYAHPOUR B, HIRSH H, BAI S, et al. Revisiting discharge mechanism of CFx as a high energy density cathode material for lithium primary battery[J]. Advanced Energy Materials, 2022, 12(5): 2103196.
    [38] LEI T, XIE Y, WANG X, et al. TiO2 feather duster as effective polysulfides restrictor for enhanced electrochemical kinetics in lithium-sulfur batteries[J]. Small, 2017, 13(37): 1701013.
    [39] CHENG P, GUO P Q, LIU D Q, et al. Fe3O4/RGO modified separators to suppress the shuttle effect for advanced lithium-sulfur batteries[J]. Journal of Alloys and Compounds,2019,784:149-156. doi: 10.1016/j.jallcom.2019.01.041
    [40] LI Y, MENG L, JIN L, et al. A wet-laid carbon paper with 3D conductive structure as an interlayer for lithium-sulfur batteries[J]. Materials Research Express,2019,6(12):125547-125555.
    [41] SONG X, WANG S Q, CHEN G P, et al. Fe-N-doped carbon nanofiber and graphene modified separator for lithium-sulfur batteries[J]. Chemical Engineering Journal,2018,333:564-571. doi: 10.1016/j.cej.2017.09.186
    [42] YUAN W, QIU Z Q, WANG C, et al. Design and interface optimization of a sandwich-structured cathode for lithium-sulfur batteries[J]. Chemical Engineering Journal,2020,381:122648-122660.
    [43] JOSHI A, RAULO A, BANDYOPADHYAY S, et al. Waste cotton cloth derived flexible current collector with optimized electrical properties for high performance lithium-sulfur batteries[J]. Carbon,2022,192:429-437. doi: 10.1016/j.carbon.2022.03.018
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  663
  • HTML全文浏览量:  340
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-16
  • 修回日期:  2022-06-13
  • 录用日期:  2022-06-24
  • 网络出版日期:  2022-07-06
  • 刊出日期:  2023-05-15

目录

    /

    返回文章
    返回