留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

富氧空位铁基复合材料的制备及其电催化析氢性能

赖嘉俊 李潇潇 曾传旺 刘超 曾金明 漆小鹏

赖嘉俊, 李潇潇, 曾传旺, 等. 富氧空位铁基复合材料的制备及其电催化析氢性能[J]. 复合材料学报, 2023, 40(5): 2827-2835. doi: 10.13801/j.cnki.fhclxb.20220704.003
引用本文: 赖嘉俊, 李潇潇, 曾传旺, 等. 富氧空位铁基复合材料的制备及其电催化析氢性能[J]. 复合材料学报, 2023, 40(5): 2827-2835. doi: 10.13801/j.cnki.fhclxb.20220704.003
LAI Jiajun, LI Xiaoxiao, ZENG Chuanwang, et al. Preparation and electrocatalytic hydrogen evolution performance of iron-based composites with rich oxygen vacancies[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2827-2835. doi: 10.13801/j.cnki.fhclxb.20220704.003
Citation: LAI Jiajun, LI Xiaoxiao, ZENG Chuanwang, et al. Preparation and electrocatalytic hydrogen evolution performance of iron-based composites with rich oxygen vacancies[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2827-2835. doi: 10.13801/j.cnki.fhclxb.20220704.003

富氧空位铁基复合材料的制备及其电催化析氢性能

doi: 10.13801/j.cnki.fhclxb.20220704.003
基金项目: 国家自然科学基金(22065015);江西省自然科学基金(20212 BAB203015)
详细信息
    通讯作者:

    漆小鹏,博士,副教授,硕士生导师,研究方向为电解水催化材料 E-mail: qxpai@163.com

  • 中图分类号: TB331;TQ426

Preparation and electrocatalytic hydrogen evolution performance of iron-based composites with rich oxygen vacancies

Funds: National Natural Science Foundation of China (22065015); Natural Science Foundation of Jiangxi Province (20212 BAB203015)
  • 摘要: 电解水制氢绿色无污染,或将成为日益紧张的能源问题与碳中和战略的重要突破方向。目前,贵金属稀缺,以Pt/C为代表的贵金属析氢(HER)催化剂不适宜长久使用。泡沫铁(IF)结构稳定、来源广泛,以IF作为基底,采取简单的浸泡方法在IF上原位生长针形片状的羟基氧化铁(FeOOH/IF),然后通过真空处理制备含有氧空位的四氧化三铁(Ov-Fe3O4/IF),进一步磷化掺杂,制备出氧空位和磷原子掺杂协同调控的四氧化三铁(P-Ov-Fe3O4/IF)纳米针。磷原子的掺杂可以优化铁原子周围电子环境,激活Fe3O4的催化活性;氧空位可以增强材料的导电性,并提供缺陷,更有助于磷原子的掺杂。结果表明:P-Ov-Fe3O4/IF析氢性能优异,在−10 mA·cm−2时,过电位仅40.96 mV,塔菲尔斜率为70.93 mV·dec−1,表现出类Pt/C性能,并且在不同电流下连续运作96 h后,电压变化基本忽略不计,稳定性优异。氧空位和磷原子掺杂可共同促进铁基材料的电催化析氢性能,本文为非贵金属电催化材料的制备提供了新的思路和策略。

     

  • 图  1  氧空位和磷原子掺杂协同调控的四氧化三铁/泡沫铁(P-Ov-Fe3O4/IF)电催化剂的合成路径

    Figure  1.  Flow chart of ferroferric oxide containing oxygen vacancies and phosphorization/foam iron (P-Ov-Fe3O4/IF)

    图  2  ((a)~(c)) FeOOH/IF、Ov-Fe3O4/IF、P-Ov-Fe3O4/IF的高分辨率及低分辨率SEM图像;(d) P-Ov-Fe3O4/IF的EDS图像

    Figure  2.  ((a)-(c)) High-resolution and low-resolution SEM images of FeOOH/IF, Ov-Fe3O4/IF and P-Ov-Fe3O4/IF; (d)EDS images of P-Ov-Fe3O4/IF

    图  3  P-Ov-Fe3O4/IF的TEM图像((a)~(c))及高角度环形暗场扫描透射电子(HADDF-STEM)图像和元素EDS图(d)

    Figure  3.  TEM images ((a)-(c)) and high-angle annular dark field (HADDF-STEM) and EDS images (d) of P-Ov-Fe3O4/IF

    图  4  (a) FeOOH/IF、P-Ov-Fe3O4/IF、Ov-Fe3O4/IF和P-FeOOH/IF的XRD图谱;(b) P-Ov-Fe3O4/IF和Ov-Fe3O4/IF的XRD图谱

    Figure  4.  (a) XRD patterns of the FeOOH/IF, P-Ov-Fe3O4/IF, Ov-Fe3O4/IF and P-FeOOH/IF; (b) XRD patterns of P-Ov-Fe3O4/IF and Ov-Fe3O4/IF

    图  5  Ov-Fe3O4/IF和P-Ov-Fe3O4/IF的XPS图谱:(a)总谱;(b) Fe2p;(c) O1s;(d) P2p

    O1—Lattice oxygen; O2—Oxygen vacancy; O3—Adsorb oxygen

    Figure  5.  XPS spectrum of Ov-Fe3O4/IF and P-Ov-Fe3O4/IF: (a) Survey; (b) Fe2p; (c) O1s; (d) P2p

    图  6  富氧空位铁基复合材料的电催化析氢(HER)性能:(a) LSV极化曲线;(b) Tafel图

    Figure  6.  Electrocatalytic performance of hydrogen evolution (HER) of iron-based composites with rich oxygen vacancies: (a) LSV polarization curves; (b) Tafel patterns

    j—Current density; RHE—Reversible hydrogen electrode

    图  7  (a) 双电层电容(Cdl)曲线;(b) 电化学阻抗(EIS)图谱;(c) P-Ov-Fe3O4/IF在不同电流密度下的稳定性测试

    Figure  7.  (a) Electrical double-layer capacitor (Cdl) curves; (b) Electrochemical impedance spectroscopy (EIS) images; (c) Stability test under different current densities of P-Ov-Fe3O4/IF

  • [1] TANG C, ZHANG Q. Nanocarbon for oxygen reduction electrocatalysis: Dopants, edges, and defects[J]. Advanced Materials,2017,29(13):1604103. doi: 10.1002/adma.201604103
    [2] WU Z P, LU X F, ZANG S Q, et al. Non-noble-metal-based electrocatalysts toward the oxygen evolution reaction[J]. Advanced Functional Materials,2020,30(15):1910274. doi: 10.1002/adfm.201910274
    [3] LIU Y, LIANG X, CHEN H, et al. Iridium-containing water-oxidation catalysts in acidic electrolyte[J]. Chinese Jour-nal of Catalysis,2021,42(7):1054-1077. doi: 10.1016/S1872-2067(20)63722-6
    [4] XU S, ZHAO H, LI T, et al. Iron-based phosphides as electrocatalysts for the hydrogen evolution reaction: Recent advances and future prospects[J]. Journal of Materials Chemistry A,2020,8(38):19729-19745. doi: 10.1039/D0TA05628F
    [5] WANG Y, CHEN S, ZHAO S, et al. Interfacial coordination assembly of tannic acid with metal ions on three-dimensional nickel hydroxide nanowalls for efficient water splitting[J]. Journal of Materials Chemistry A,2020,8(31):15845-15852. doi: 10.1039/D0TA02229B
    [6] YUAN J, CHENG X, WANG H, et al. A superaerophobic bimetallic selenides heterostructure for efficient industrial-level oxygen evolution at ultra-high current densities[J]. Nano-Micro Letters,2020,12(1):104. doi: 10.1007/s40820-020-00442-0
    [7] LI X, ZHANG R, LUO Y, et al. A cobalt-phosphorus nanoparticle decorated N-doped carbon nanosheet array for efficient and durable hydrogen evolution at alkaline pH[J]. Sustainable Energy & Fuels,2020,4(8):3884-3887.
    [8] SHENG W, ZHUANG Z, GAO M, et al. Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy[J]. Nature Communications,2015,6(1):5848. doi: 10.1038/ncomms6848
    [9] BAI S, WANG C, DENG M, et al. Surface polarization matters: Enhancing the hydrogen-evolution reaction by shrinking Pt shells in Pt-Pd-graphene stack structures[J]. Angewandte Chemie International Edition,2014,53(45):12120-12124. doi: 10.1002/anie.201406468
    [10] 曾庆乐, 刘小超, 刘超, 等. Co2Ni1O4/不锈钢复合材料的制备及其电催化析氧性能[J]. 复合材料学报, 2021, 38(11):3764-3774.

    ZENG Qingle, LIU Xiaochao, LIU Chao, et al. Synthesis and electrocatalytic oxygen evolution performances of Co2Ni1O4/stainless steel composites[J]. Acta Materiae Compositae Sinica,2021,38(11):3764-3774(in Chinese).
    [11] ZHANG X Y, GUO B Y, CHEN Q W, et al. Ultrafine and highly-dispersed bimetal Ni2P/Co2P encapsulated by hollow N-doped carbon nanospheres for efficient hydrogen evolution[J]. International Journal of Hydrogen Energy,2019,44(29):14908-14917. doi: 10.1016/j.ijhydene.2019.04.108
    [12] ZHANG X Y, LI F T, FAN R Y, et al. F, P double-doped Fe3O4 with abundant defect sites for efficient hydrogen evolution at high current density[J]. Journal of Materials Chemistry A,2021,9(28):15836-15845. doi: 10.1039/D1TA03686F
    [13] AHMED A T A, ANSARI A S, PAWAR S M, et al. Anti-corrosive FeO decorated CuCo2S4 as an efficient and durable electrocatalyst for hydrogen evolution reaction[J]. Applied Surface Science,2021,539:148229.
    [14] SHIBLI S M A, THUSHARA L, ARCHANA S R. Development of nano CeO2-Fe2O3 mixed oxide based electro catalytic electrodes for hydrogen evolution reaction[J]. International Journal of Hydrogen Energy,2017,42(4):1919-1931. doi: 10.1016/j.ijhydene.2016.11.092
    [15] MÜLLNER M, RIVA M, KRAUSHOFER F, et al. Stability and catalytic performance of reconstructed Fe3O4(001) and Fe3O4(110) surfaces during oxygen evolution reaction[J]. The Journal of Physical Chemistry C,2019,123(13):8304-8311. doi: 10.1021/acs.jpcc.8b08733
    [16] FAN X, XIE L, LIANG J, et al. In situ grown Fe3O4 particle on stainless steel: A highly efficient electrocatalyst for nitrate reduction to ammonia[J]. Nano Research,2022,15(4):3050-3055. doi: 10.1007/s12274-021-3951-5
    [17] MERTE L R, OLSSON P A T, SHIPILIN M, et al. Structure of two-dimensional Fe3O4[J]. The Journal of Chemical Physics,2020,152(11):114705. doi: 10.1063/1.5142558
    [18] FAN H, NIU R, DUAN J, et al. Fe3O4@carbon nanosheets for all-solid-state supercapacitor electrodes[J]. ACS Applied Materials & Interfaces,2016,8(30):19475-19483.
    [19] ZHU M, WACHS I E. Resolving the reaction mechanism for H2 formation from high-temperature water-gas shift by chromium-iron oxide catalysts[J]. ACS Catalysis,2016,6(5):2827-2830. doi: 10.1021/acscatal.6b00659
    [20] LI S, JIAN X, LIU J, et al. Phosphorus-doped Fe3O4 nanoflowers grown on 3D porous graphene for robust pH-universal hydrogen evolution reaction[J]. International Journal of Hydrogen Energy,2020,45(7):4435-4443. doi: 10.1016/j.ijhydene.2019.12.024
    [21] XIAO Z, WANG Y, HUANG Y C, et al. Filling the oxygen vacancies in Co3O4 with phosphorus: An ultra-efficient electrocatalyst for overall water splitting[J]. Energy& Environmental Science,2017,10(12):2563-2569.
    [22] ZHANG X, JI J, YANG Q, et al. Phosphate doped ultrathin FeP nanosheets as efficient electrocatalysts for the hydrogen evolution reaction in acid media[J]. ChemCatChem,2019,11(10):2484-2489. doi: 10.1002/cctc.201900256
    [23] WANG Z, LIU H, GE R, et al. Phosphorus-doped Co3O4 nanowire array: A highly efficient bifunctional electrocatalyst for overall water splitting[J]. ACS Catalysis,2018,8(3):2236-2241. doi: 10.1021/acscatal.7b03594
    [24] LIU X, LIU F, YU J, et al. Charge redistribution caused by S, P synergistically active Ru endows an ultrahigh hydrogen evolution activity of S-doped RuP embedded in N, P, S-doped carbon[J]. Advanced Science,2020,7(17):2001526. doi: 10.1002/advs.202001526
    [25] WANG Q, HUANG Y, HUANG L, et al. Se doping regulates the activity of NiTe2 for electrocatalytic hydrogen evolution reaction[J]. The Journal of Physical Chemistry C,2020,124(49):26793-26800. doi: 10.1021/acs.jpcc.0c08080
    [26] GAO L, TANG C, LIU J, et al. Oxygen vacancy-induced electron density tuning of Fe3O4 for enhanced oxygen evolution catalysis[J]. Energy & Environmental Materials,2021,4(3):392-398.
    [27] LI X X, LIU X C, LIU C, et al. Co3O4/stainless steel catalyst with synergistic effect of oxygen vacancies and phosphorus doping for overall water splitting[J]. Tungsten,2023,5(1):100-108. doi: 10.1007/s42864-022-00144-7
    [28] ZHANG F S, WANG J W, LUO J, et al. Extraction of nickel from NiFe-LDH into Ni2P@NiFe hydroxide as a bifunctional electrocatalyst for efficient overall water splitting[J]. Chemical Science,2018,9(5):1375-1384. doi: 10.1039/C7SC04569G
    [29] LUO J, LIU J, ZENG Z, et al. Three-dimensional graphene foam supported Fe3O4 lithium battery anodes with long cycle life and high rate capability[J]. Nano Letters,2013,13(12):6136-6143. doi: 10.1021/nl403461n
    [30] GUO Y, FENG C, QIAO S, et al. Magnetic Fe3O4-encapsulated VAN@MIL-101(Fe) with mixed-valence sites and mesoporous structures as efficient bifunctional water splitting photocatalysts[J]. Nanoscale,2020,12(23):12551-12560. doi: 10.1039/D0NR02230F
    [31] WANG W, LIU Y, YUE Y, et al. The confined interlayer growth of ultrathin two-dimensional Fe3O4 nanosheets with enriched oxygen vacancies for peroxymonosulfate activation[J]. ACS Catalysis,2021,11(17):11256-11265. doi: 10.1021/acscatal.1c03331
    [32] YAMASHITA T, HAYES P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials[J]. Applied Surface Science,2008,254(8):2441-2449. doi: 10.1016/j.apsusc.2007.09.063
    [33] LIU Y, BAI L, LI T, et al. Mn-doping tuned electron configuration and oxygen vacancies in NiO nanoparticles for stable electrocatalytic oxygen evolution reaction[J]. Applied Surface Science,2022,577:151952.
    [34] CHEN J, QI X, LIU C, et al. Interfacial engineering of a MoO2-CeF3 heterostructure as a high-performance hydrogen evolution reaction catalyst in both alkaline and acidic solutions[J]. ACS Applied Materials & Interfaces,2020,12(46):51418-51427.
    [35] ZENG H, OUBLA M H, ZHONG X, et al. Rational defect and anion chemistries in Co3O4 for enhanced oxygen evolution reaction[J]. Applied Catalysis B: Environmental,2021,281:119535.
    [36] BI J, ZHAI X, LIU G, et al. Low loading of P modified Rh nanoparticles encapsulated in N, P-doped carbon for boosted and pH-universal hydrogen evolution reaction[J]. International Journal of Hydrogen Energy,2022,47(6):3791-3800. doi: 10.1016/j.ijhydene.2021.11.036
    [37] REN Y, LI Z, DENG B, et al. Superior hydrogen evolution electrocatalysis enabled by CoP nanowire array on graphite felt[J]. International Journal of Hydrogen Energy,2022,47(6):3580-3586. doi: 10.1016/j.ijhydene.2021.11.039
  • 加载中
图(7)
计量
  • 文章访问数:  593
  • HTML全文浏览量:  279
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-18
  • 修回日期:  2022-06-11
  • 录用日期:  2022-06-24
  • 网络出版日期:  2022-07-07
  • 刊出日期:  2023-05-15

目录

    /

    返回文章
    返回