留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

3D打印磁控柔性抓手

圣宇 欧兴成 黄嘉琪 黄丹彤 李小红 毕燃 石明 郭双壮

圣宇, 欧兴成, 黄嘉琪, 等. 3D打印磁控柔性抓手[J]. 复合材料学报, 2023, 40(5): 2670-2679. doi: 10.13801/j.cnki.fhclxb.20220620.001
引用本文: 圣宇, 欧兴成, 黄嘉琪, 等. 3D打印磁控柔性抓手[J]. 复合材料学报, 2023, 40(5): 2670-2679. doi: 10.13801/j.cnki.fhclxb.20220620.001
SHENG Yu, OU Xingcheng, HUANG Jiaqi, et al. 3D printing magnetic soft gripper[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2670-2679. doi: 10.13801/j.cnki.fhclxb.20220620.001
Citation: SHENG Yu, OU Xingcheng, HUANG Jiaqi, et al. 3D printing magnetic soft gripper[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2670-2679. doi: 10.13801/j.cnki.fhclxb.20220620.001

3D打印磁控柔性抓手

doi: 10.13801/j.cnki.fhclxb.20220620.001
基金项目: 广东省自然科学基金(2021A1515010464);广州市科技计划项目(202102080330);中山大学中央高校基本科研业务费专项(22qntd0101; 2021qntd16)
详细信息
    通讯作者:

    郭双壮,博士,副教授,博士生导师,研究方向为多材料多尺度多功能增材制造 E-mail: guoshzh3@mail.sysu.edu.cn

  • 中图分类号: TB332

3D printing magnetic soft gripper

Funds: Natural Science Foundation of Guangdong Province (2021A1515010464); Science and Technology Project of Guangzhou (202102080330); Fundamental Research Funds for the Central Universities of Sun Yat-sen University (22qntd0101; 2021qntd16)
  • 摘要: 柔性抓手能够在外部刺激下发生形变,在货物运输等领域有较好的应用。然而,目前使用的柔性抓手响应速度慢,对货物的形态和质量都有着较高要求,无法像人手一样适配绝大多数场景,因此有必要开发一种响应速度快、适配各种货物的柔性抓手。本文将硬磁材料——钕铁硼粉末(NdFeB)与硅橡胶(Room temperature vulcanized rubber,RTV橡胶)进行共混复合,形成了一种可打印的磁响应NdFeB-RTV橡胶复合材料。通过对墨水直写3D打印技术的制造工艺参数的探索和优化,将NdFeB-RTV橡胶复合材料的前驱体墨水打印成型。该材料固化后呈现出优异的力学性能—断裂伸长率接近300%,抗拉强度为1.03 MPa,拉伸杨氏模量为1.27 MPa,弯曲强度为78.06 MPa,弯曲模量为160.96 MPa。最后,本文采用墨水直写3D打印技术,设计制造了磁响应的四臂抓手机器人。利用机器人的磁致动与柔韧特性,实现了灵活变形、快速抓取、平稳运输等功能。

     

  • 图  1  NdFeB-室温固化橡胶(NdFeB-RTV)复合材料前驱体墨水的制备流程

    DCM—Dichloromethane

    Figure  1.  Preparation process of precursor ink for NdFeB-room temperature vulcanized rubber (NdFeB-RTV) composite

    图  2  墨水直写3D打印技术打印四臂柔性抓手的流程图:(a)四臂抓手的设计图;(b)切片软件切片的示意图;(c)打印路径

    Figure  2.  Flow chart of the four-arm soft gripper printed by direct ink write 3D printing technology: (a) Design of the four-arm gripper; (b) Schematic diagram of the slicing software; (c) Printing path

    图  3  (a) NdFeB-RTV橡胶复合材料前驱体墨水的黏度;(b)前驱体墨水直写(DIW)打印多层单壁结构实物图

    Figure  3.  (a) Viscosity of the precursor ink for NdFeB-RTV rubber composite; (b) Physical image of the multi-layer single-wall structure printed by the precursor direct ink writing (DIW)

    图  4  NdFeB微型粉末的微观形貌(a)和粒径分布(b);(c)磁粉NdFeB和NdFeB-RTV橡胶复合材料的磁性能

    Figure  4.  Micromorphology (a) and particle size distribution (b) of NdFeB micropowder; (c) Magnetic properties of magnetic powder NdFeB and NdFeB-RTV rubber composite

    图  5  (a)墨水直写3D打印过程示意图;在1100 kPa的分配气压下不同打印速度下打印的墨水线宽(b)和实物图(c)

    p—Pressure; D—Diameter; V—Printing speed; h—Height

    Figure  5.  (a) Schematic diagram of direct ink write 3D printing; Printing ink line width (b) and optical image (c) printed at different printing speeds with distribution pressure is 1100 kPa

    图  6  NdFeB-RTV橡胶复合材料的拉伸测试样品的设计图(a)、实物图(b)及样品的表面微观图((c), (d))

    Figure  6.  Design drawing (a), physical drawing (b) and surface micrographs ((c), (d)) of the tensile test sample of NdFeB-RTV rubber composite

    图  7  (a)单轴拉伸测试示意图;(b)三点弯曲测试示意图;NdFeB-RTV橡胶复合材料的单轴拉伸测试数据图(c)和三点弯曲测试数据图(d)

    F—Pull

    Figure  7.  (a) Schematic diagram of uniaxial tensile test; (b) Schematic diagram of three-point bending test; Uniaxial tensile test data diagram (c) and three-point bending test data diagram (d) of NdFeB-RTV rubber composite

    图  8  ((a), (b))四臂抓手实物图;(c)四臂抓手致动原理

    Figure  8.  ((a), (b)) Pictures of the gripper; (c) Actuation principle of the gripper

    图  9  四臂抓手机器人完成任务1的过程及运动轨迹分析:(a)泡沫货物平地转移过程;(b)泡沫货物平地转移的运动轨迹分析;(c)泡沫货物抬高转移过程;(d)泡沫货物抬高转移的运动轨迹分析

    B—Magnetic field; FB—Magnetic force

    Figure  9.  Process and motion trajectory analysis of the four-arm gripper robot completing task 1: (a) Process of transferring the foam cargo to the ground; (b) Trajectory analysis of the transfer of the foam cargo on the ground; (c) Lifting transfer process of the foam cargo; (d) Movement trajectory analysis of foam cargo lift and transfer

    图  10  四臂抓手机器人完成任务2(圆筒形物体)的过程(a)及运动轨迹分析(b)

    FE—Elastic force of material

    Figure  10.  Process (a) and motion trajectory analysis (b) of the four-arm gripper robot completing task 2 (Cylindrical object)

    图  11  四臂抓手机器人完成任务3的过程

    Figure  11.  Process of the four-arm gripper robot completing task 3

    表  1  NdFeB粉末的物理性能

    Table  1.   Physical properties of NdFeB powder

    Particle sizeBr/kOeHcj/kOeHcB/kOeBHmax/MGOe
    ~5 μm14.4314.7013.4049.50
    Notes: Br—Remanence; Hcj—Intrinsic coercivity; HcB—Coercivity; BHmax—Maximum magnetic energy product.
    下载: 导出CSV
  • [1] HINES L, PETERSEN K, LUM G Z, et al. Soft actuators for small-scale robotics[J]. Advanced Materials,2016,29(13):1603483.
    [2] 汪培义, 郭盛, 王向阳, 等. 基于柔性并联连续体的灵巧操作手的设计及分析[J]. 机械工程学报, 2020, 56(19):122-131. doi: 10.3901/JME.2020.19.122

    WANG Peiyi, GUO Sheng, WANG Xiangyang, et al. Design and analysis of a dexterous gripper based on soft parallel continuum manipulator[J]. Journal of Mechanical Engi-neering,2020,56(19):122-131(in Chinese). doi: 10.3901/JME.2020.19.122
    [3] MONTGOMERY S M, WU S, KUANG X, et al. Magneto-mechanical metamaterials with widely tunable mechanical properties and acoustic bandgaps[J]. Advanced Functional Materials,2020,31(3):2005319.
    [4] REN Z, HU W, DONG X, et al. Multi-functional soft-bodied jellyfish-like swimming[J]. Nature Communications,2019,10(1):2703. doi: 10.1038/s41467-019-10549-7
    [5] WANG T, REN Z, HU W, et al. Effect of body stiffness distribution on larval fish-like efficient undulatory swimming[J]. Science Advances,2021,7(19):eabf7364. doi: 10.1126/sciadv.abf7364
    [6] MA C, WU S, ZE Q, et al. Magnetic multimaterial printing for multimodal shape transformation with tunable properties and shiftable mechanical behaviors[J]. ACS Applied Materials & Interfaces,2021,13(11):12639-12648.
    [7] LIU J A C, GILLEN J H, MISHRA S R, et al. Photothermally and magnetically controlled reconfiguration of polymer composites for soft robotics[J]. Science Advances,2019,5(8):eaaw2897. doi: 10.1126/sciadv.aaw2897
    [8] CEYLAN H, YASA I C, YASA O, et al. 3D-printed biodegradable microswimmer for theranostic cargo delivery and release[J]. ACS Nano,2019,13(3):3353-3362. doi: 10.1021/acsnano.8b09233
    [9] BOZUYUK U, YASA O, YASA I C, et al. Light-triggered drug release from 3D-printed magnetic chitosan microswimmers[J]. ACS Nano,2018,12(9):9617-9625. doi: 10.1021/acsnano.8b05997
    [10] YASA I C, TABAK A F, YASA O, et al. 3D-printed microrobotic transporters with recapitulated stem cell niche for programmable and active cell delivery[J]. Advanced Functional Materials,2019,29(17):1808992. doi: 10.1002/adfm.201808992
    [11] DONG Y, WANG J, GUO X, et al. Multi-stimuli-responsive programmable biomimetic actuator[J]. Nature Communications,2019,10(1):4087. doi: 10.1038/s41467-019-12044-5
    [12] GOUDU S R, YASA I C, HU X, et al. Biodegradable untethered magnetic hydrogel milli-grippers[J]. Advanced Functional Materials,2020,30(50):2004975. doi: 10.1002/adfm.202004975
    [13] LI G, CHEN X, ZHOU F, et al. Self-powered soft robot in the mariana trench[J]. Nature,2021,591(7848):66-71. doi: 10.1038/s41586-020-03153-z
    [14] 顾莉莉, 熊克, 卞侃, 等. 制备温度对Ag-IPMC拉伸及致动性能的影响[J]. 复合材料学报, 2013, 30(5):34-40. doi: 10.3969/j.issn.1000-3851.2013.05.006

    GU Lili, XIONG Ke, BIAN Kan, et al. Performance of tensile and actuating of IPMC with silver as electrodes under different manufacturing temperatures[J]. Acta Materiae Compositae Sinica,2013,30(5):34-40(in Chinese). doi: 10.3969/j.issn.1000-3851.2013.05.006
    [15] ZHANG Y, ZHANG N, HINGORANI H, et al. Fast-response, stiffness-tunable soft actuator by hybrid multimaterial 3D printing[J]. Advanced Functional Materials,2019,29(15):1806698. doi: 10.1002/adfm.201806698
    [16] SAED M O, AMBULO C P, KIM H, et al. Molecularly-engi-neered, 4D-printed liquid crystal elastomer actuators[J]. Advanced Functional Materials,2019,29(3):1806412. doi: 10.1002/adfm.201806412
    [17] TRUBY R L, WEHNER M, GROSSKOPF A K, et al. Soft somatosensitive actuators via embedded 3D printing[J]. Advanced Materials,2018,30(15):1706383. doi: 10.1002/adma.201706383
    [18] KENETH E S, KAMYSHNY A, TOTARO M, et al. 3D printing materials for soft robotics[J]. Advanced Materials,2021,33(19):2003387. doi: 10.1002/adma.202003387
    [19] 罗斌, 李小兰, 徐雪杰, 等. PVC凝胶驱动及CNT/PDMS传感一体化柔性抓手的研究[J]. 西安交通大学学报, 2020, 54(12):30-36.

    LUO Bin, LI Xiaolan, XU Xuejie, et al. Integrated polyvinyl chloride (PVC) gel actuating and CNT/PDMS sensing structure for soft gripper[J]. Journal of Xi'an Jiaotong University,2020,54(12):30-36(in Chinese).
    [20] 朱德举, 张超慧, 刘鹏. 天然和仿生柔性生物结构的设计[J]. 复合材料学报, 2018, 35(6):1636-1645. doi: 10.13801/j.cnki.fhclxb.20170920.001

    ZHU Deju, ZHANG Chaohui, LIU Peng. Study on the design of natural and biomimetic soft biological structures[J]. Acta Materiae Compositae Sinica,2018,35(6):1636-1645(in Chinese). doi: 10.13801/j.cnki.fhclxb.20170920.001
    [21] TANG Y, CHI Y, SUN J, et al. Leveraging elastic instabilities for amplified performance: Spine-inspired high-speed and high-force soft robots[J]. Science Advances,2020,6(19):eaaz6912. doi: 10.1126/sciadv.aaz6912
    [22] BAKER R D, MONTENEGRO-JOHNSON T, SEDIAKO A D, et al. Shape-programmed 3D printed swimming microtori for the transport of passive and active agents[J]. Nature Communications,2019,10(1):4932. doi: 10.1038/s41467-019-12904-0
    [23] WALLIN T J, PIKUL J, SHEPHERD R F. 3D printing of soft robotic systems[J]. Nature Reviews Materials,2018,3(6):84-100. doi: 10.1038/s41578-018-0002-2
    [24] GUL J Z, SAJID M, REHMAN M M, et al. 3D printing for soft robotics—A review[J]. Science and Technology of Advanced Materials,2018,19(1):243-262. doi: 10.1080/14686996.2018.1431862
    [25] 齐田宇, 杨建军, 赵佳伟, 等. 基于多材料3D打印和约束牺牲层连续功能梯度材料-结构一体化制造与性能[J]. 复合材料学报, 2022, 39(3):1055-1067.

    QI Tianyu, YANG Jianjun, ZHAO Jiawei, et al. Integrated manufacturing and performance study of continuous functionally graded materials-structures based on multi-material 3D printing and constraint sacrifice layer[J]. Acta Materiae Compositae Sinica,2022,39(3):1055-1067(in Chinese).
    [26] 李西敏, 杨韬, 彭必友, 等. 二氧化钛陶瓷浆料的制备及其直写成型3D打印[J]. 复合材料学报, 2022, 39(7):3510-3517.

    LI Ximin, YANG Tao, PENG Biyou, et al. Preparation of titanium dioxide ceramic slurry and its 3D printing for direct-ink-writing[J]. Acta Materiae Compositae Sinica,2022,39(7):3510-3517(in Chinese).
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  1047
  • HTML全文浏览量:  528
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-10
  • 修回日期:  2022-06-09
  • 录用日期:  2022-06-11
  • 网络出版日期:  2022-06-21
  • 刊出日期:  2023-05-15

目录

    /

    返回文章
    返回