Abstract:
Here a new type of agarose-based composite cryogel has been developed using a facile and green method. By introducing nanoparticles derived of polyphenol tannic acid (TA) and amine-terminated poly(propylene glycol) (D400) to agarose, the TA-D400 nanoparticles/agarose composite cryogel (ATD) was successfully prepared and the effect of TA-D400 complexation time on the properties of the resulting cryogels was studied. The ATD cryogels prepared by the freezing method have an interconnected macroporous structure, and the nanoparticles are embedded in the agarose matrix. The storage modulus of the composite cryogels ATD-0 and ATD-24 with complexation times of 0 h and 24 h is 1.8 kPa and 0.8 kPa respectively. The introduction of nanoparticles increases the mechanical properties of agarose cryogel. The ATD gels are antioxidative, shown by their excellent 1, 1-diphenyl-2-picrohydrazine (DPPH) free radical scavenging ability and total antioxidant capacity based on the ferric ion reducing/antioxidant power (FRAP) assay result. In vitro cytoprotection experiments show that the ATD gels can protect fibroblasts from H
2O
2-induced oxidative damage. Furthermore, the ATD gels support the adhesion of fibroblasts, pre-osteoblasts, and primary cortical neurons. In summary, by rationally introducing TA-D400 nanoparticles, we have developed a multifunctional cryogel with innate ability for cell adhesion and antioxidation, providing a new option of macroporous materials as potential scaffolds for tissue engineering.