留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

狭缝涂布大面积氧化锌薄膜的制备及其在柔性有机太阳能电池中的应用

郭经波 韩云飞 龚超 潘雅琴 刘立起 骆群 马昌期

郭经波, 韩云飞, 龚超, 等. 狭缝涂布大面积氧化锌薄膜的制备及其在柔性有机太阳能电池中的应用[J]. 复合材料学报, 2022, 39(5): 1976-1985. doi: 10.13801/j.cnki.fhclxb.20220428.001
引用本文: 郭经波, 韩云飞, 龚超, 等. 狭缝涂布大面积氧化锌薄膜的制备及其在柔性有机太阳能电池中的应用[J]. 复合材料学报, 2022, 39(5): 1976-1985. doi: 10.13801/j.cnki.fhclxb.20220428.001
GUO Jingbo, HAN Yunfei, GONG Chao, et al. Slot-die coated large-area ZnO films for flexible organic solar cells[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 1976-1985. doi: 10.13801/j.cnki.fhclxb.20220428.001
Citation: GUO Jingbo, HAN Yunfei, GONG Chao, et al. Slot-die coated large-area ZnO films for flexible organic solar cells[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 1976-1985. doi: 10.13801/j.cnki.fhclxb.20220428.001

狭缝涂布大面积氧化锌薄膜的制备及其在柔性有机太阳能电池中的应用

doi: 10.13801/j.cnki.fhclxb.20220428.001
基金项目: 国家自然科学基金 (22075315);中科院青年创新促进会(2019317)
详细信息
    作者简介:

    刘立起,上海大学材料学院教师,博士,河北沧州人。2012年博士毕业于东华大学,同年加入上海大学工作。研究方向为复合材料,主要从事高性能纤维制备、碳碳复合材料及石墨烯复合材料等方面的研究工作

    骆群,项目研究员。2006年获郑州大学工学学士学位,2011年获浙江大学工学博士学位,期间在法国雷恩一大化学系交流半年。2011年至2014年,苏州纳米所从事博士后研究工作,2015年至今,任副研究员、项目研究员。入选2019年中科院青年促进会会员。研究方向为印刷光电功能材料以及光伏器件,主要从事印刷有机和钙钛矿太阳能电池相关的墨水、印刷工艺开发、高效大面积柔性电池构建以及应用方面的研究工作。迄今在Adv. Mater., Adv. Energy Mater., ACS Nano等期刊发表研究论文60余篇,申请国家发明专利20余项,国际专利2项,其中授权专利8项(含1项国际专利)

    通讯作者:

    刘立起,博士,硕士生导师,研究方向为碳纤维复合材料、石墨烯材料  E-mail:llq@shu.edu.cn

    骆群,博士,项目研究员,硕士生导师,研究方向为印刷有机和钙钛矿太阳能电池相关的墨水、印刷工艺开发、高效大面积柔性电池构建及应用 E-mail:qluo2011@sinano.ac.cn

  • 中图分类号: TB383.2; TM914.4

Slot-die coated large-area ZnO films for flexible organic solar cells

  • 摘要: 发展有机太阳能电池的印刷法制备技术是实现有机光伏产业化的关键。在有机光伏器件中,氧化锌是常用的电子传输层材料。氧化锌纳米粒子在印刷过程中的自聚集,以及大面积薄膜干燥的不均匀,严重影响了大面积印刷有机光伏器件的性能。通过调控氧化锌墨水溶剂和引入墨水分散添加剂,获得一种适用于大面积涂布的氧化锌纳米墨水。其中复合溶剂的使用调控了氧化锌墨水的流变特性,进而改善了涂布薄膜中的边缘效应;而乙醇胺添加剂的引入解决了墨水在存放和印刷过程中的聚集问题。该墨水具有18个月以上保存稳定性,以及优异的狭缝涂布适印性。基于上述墨水,采用狭缝涂布方法制备获得的100×100 mm2尺寸的大面积涂布薄膜具有优异的均匀性。将印刷的大面积氧化锌薄膜作为柔性有机太阳能电池的电子传输层,获得1 cm2柔性有机太阳能电池的效率超过了14%,同时表现优异的重复性。

     

  • 图  1  ZnO-A (a)、ZnO-B (b)和ZnO-C (c)墨水的DLS测试结果;(d)三种氧化锌纳米墨水的Zeta电位;(e) ZnO-C纳米墨水的流体力学半径随老化时间的变化统计图;(f)乙醇胺的配位作用示意图;((g)~(i)) 三种氧化锌纳米粒子的TEM图像

    Figure  1.  Diameter of ZnO-A (a), ZnO-B (b) and ZnO-C (c) nanoinks measured through DLS; (d) Zeta potential of the ZnO nanoinks; (e) Diameter of ZnO-C nanoink during long-term storage; (f) Diagram of ethanolamine coordination; ((g)-(i)) TEM images of the ZnO nanoparticles

    DLS—Dynamic light scattering; Z-average—Average hydrodynamic diameter obtained from DLS light intensity; ZnO-A—ZnO nanoparticle ink dispersed in n-butanol solvent; ZnO-B—ZnO nanoparticle ink dispersed in the mixed solvent containing 66% n-butanol and 34% ethanol; ZnO-C—Zinc oxide nanoparticle ink dispersed in mixed solvents containing 66% n-butanol and 34% ethanol, and added with 1.5 mg/mL ethanolamine

    图  2  (a)狭缝涂布印刷示意图;((b)~(d)) 三种氧化锌薄膜的SEM图像;(e)自制的36通道的紫外可见光吸收光谱仪示意图;((f)~(h)) 根据36通道吸收光谱测试薄膜397 nm处的吸收强度绘制的氧化锌薄膜的吸收强度分布图

    Figure  2.  (a) Schematic diagram of slot-die coating; ((b)-(d)) SEM images of three kinds of ZnO films; (e) Schematic diagram of homemade 36-channel UV-vis absorption spectrometer; ((f)-(h)) Absorption intensity distribution diagram of ZnO films based on absorption intensity at 397 nm

    ETL—Electron transporting layer; AgNWs/PET—Ag nanowires/polyethylene terephthalate

    图  3  (a)流体的马兰戈尼再循环速度分解示意图;(b)三种氧化锌薄膜成膜示意图

    Figure  3.  (a) Diagram of Marangoni recirculation velocity decomposition of fluid; (b) Diagram of film formation of the three ZnO films

    VMa—Loop velocity; VRad—Radial velocity

    图  4  (a)狭缝涂布印刷的100×100 mm2大面积ZnO-C薄膜;(b)本论文所使用的倒置柔性器件结构示意图;基于这三种氧化锌薄膜的1 cm2 PM6:Y6倒置柔性有机太阳能电池最优器件的J-V曲线(c)和器件性能分布图(d)

    Figure  4.  (a) 100×100 mm2 large-area ZnO-C film fabricated through slot-die coating; (b) Device structure of flexible 1 cm2 PM6:Y6 inverted flexible organic solar cells; (c) J-V characteristics of the optimized devices; (d) Histogram of device performance

    表  1  乙醇胺(EA)添加剂含量对ZnO-C的小面积刚性器件性能影响

    Table  1.   Device performance of the small area rigid ZnO-C solar cells with different concentrations of ethanol amine (EA)

    EA/(mg·mL−1)VOC/VJSC/(mA·cm−2)FF/%Average PCE/%Maximum PCE/%
    00.83923.0070.0413.52 ± 0.4613.87
    0.50.83723.4971.3414.02 ± 0.2914.23
    1.00.83624.4171.9014.68 ± 0.1214.71
    1.50.83724.4671.5514.65 ± 0.1914.81
    2.00.83524.0571.3814.33 ± 0.4414.66
    5.00.83923.8670.9114.20 ± 0.4614.59
    10.00.79824.2847.529.20 ± 0.9610.08
    Notes: PCE—Photovoltaic conversion efficiency of the 8 individual devices; These devices with an area of 0.09 cm2 had a structure of Glass/ITO/ZnO-C ETL/PM6:Y6/MoO3/Al; VOC—Open circuit voltage; JSC—Short circuit current density; FF—Filling factor.
    下载: 导出CSV

    表  2  基于不同厚度的ZnO-C狭缝涂布薄膜作电子传输层的1 cm2 PM6:Y6倒置柔性有机太阳能电池性能

    Table  2.   Performance of 1 cm2 PM6:Y6 inverted flexible organic solar cells based on ZnO-C electron transporting layers with different thicknesses

    ZnO-C/(mg·mL−1)Thickness/nmVOC/VJSC/(mA·cm−2)FF/%Average PCE/%Maximum PCE/%
    2023 ± 6.40.82522.2168.0312.47 ± 0.1912.66
    4043 ± 5.10.82524.2668.7613.76 ± 0.1713.88
    6059 ± 3.90.82524.7969.3214.18 ± 0.1414.38
    8086 ± 6.60.82523.4468.9413.33 ± 0.1813.56
    Note: PCE—Photovoltaic conversion efficiency of the 9 individual devices.
    下载: 导出CSV

    表  3  基于ZnO-A、ZnO-B和ZnO-C薄膜为电子传输层 (ETL) 的1 cm2 PM6:Y6倒置柔性有机太阳能电池性能

    Table  3.   Performance of 1 cm2 PM6:Y6 inverted flexible organic solar cells based on ZnO-A, ZnO-B, and ZnO-C electron transporting layers (ETL)

    ETLThickness/nmVOC/VJSC/(mA·cm−2)FF/%Average PCE%Maximum PCE/%Rs/(Ω·cm2)Rsh/(Ω·cm2)
    ZnO-A65 ± 6.60.82522.9867.0912.72 ± 0.3513.226.8774.72
    ZnO-B63 ± 4.70.82522.5066.8512.41 ± 0.3012.417.9904.08
    ZnO-C59 ± 3.90.82524.7969.3214.18 ± 0.1414.386.71006.36
    Notes: Rs—Series resistance;Rsh—Shunt resistance.
    下载: 导出CSV

    表  4  柔性大面积(≥1 cm2) 有机太阳能电池的进展

    Table  4.   A recent report of flexible large-area (≥1 cm2 ) organic solar cells progress

    YearDevice StructureETL coating methodArea/cm2PCE/%Ref.
    2017PES/Ag/PEI/P3HT:ICBA/CRL/PTB7:PC71BM/
    PEDOT:PSS/Silver grid
    Spin coating10.56.5[31]
    2017PET-ITO/ZnO NPs/PTB7-Th: p-DTS(FBTTH2)2:PC71BM/MoOX/AgSpin coating1.258.28[32]
    2018ITO/ZnO NPs/PTB7-Th:ITIC/MoO3/AgSpin coating2.037.6[33]
    2019PET/Ag/Cu-grid/ZnO NPs/PBDB-TF:IT-4F/MoO3/AlSpin coating112.26[34]
    2019PET/ITO/Sol-gel ZnO/PBDB-T:ITIC/MoO3/AgSpin coating1.049.77[35]
    2020PET/AgNWs/ZnO NPs/PM6:Y6/MoO3/AlSpin coating113.6[27]
    2020PET silver-grid/Sol-gel ZnO/PTB7-Th:COi8DFIC:PC71BM/MoOX/AgSpin coating112.16[36]
    2020PET/Nabil transparent electrode/ZnO NPs/
    PTB7-Th:EH-IDTBR/MoO3/Ag
    Spin coating855.21[37]
    2021ITO/PEDOT:PSS/PBDB-T:ITIC:FOIC/ZrAcac/AlSpin coating1.059.81[38]
    2021PET/Ag grid/AgNWs:PEI-Zn/PBDB-T-2F:Y6:PC71BM/MoO3/AgBlade coating5413.2[3]
    2021PEN/ITO/Sol-gel ZnO/BTP-eC9/MoOX/AgBlade coating116.71[2]
    2022PET/Ag/Cu electrode/Amorphous ITO ZnO NPs/PM6:BTP-4Cl-12/MoO3/AlSpin coating25.4212.42[1]
    Notes: PES—Polyethersulfone; PEI—Polyethyleneimine; P3HT—Poly(3-hexylthiophene-2,5-diyl); ICBA—Indene-C60 bisadduct; CRL—Charge-recombination layer; PTB7-Th—Poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b']dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl)]; PC71BM—[6,6]-Phenyl C71 butyric acid methyl ester; PEDOT:PSS—Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate); p-DTS(FBTTH2)2—7,7-(4,4-Bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b']dithiophene-2,6-diyl)bis(6-fluoro-4-(5'-hexyl-[2,2'-bithiophen]-5-yl)-benzo[c][1,2,5] thiadiazole); ITIC—3,9-Bis(2-methylene(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4hexylphenyl)-dithieno[2,3-d:2′,3′-d′]-s-indaceno[1,2-b:5,6-b′] dithiophene; IT-4F—3,9-Bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2',3'-d']-s-indaceno[1,2-b:5,6-b'] dithiophene); PBDB-T—Poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl)benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione)]; COi8DFIC—2,2'-([4,4,11,11-Tetrakis(4-hexylphenyl)-4,11-dihydrothieno4-hexylphenyl)-4,11-dihydrothieno[2',3':4,5]thieno[2,3-d]thieno[2'''',3'''':4''',5''']thieno[2''',3''':4'',5'']pyrano[2'',3'':4',5']thieno[2',3':4,5] thieno[3,2-b]pyran-2,9-diyl]bis{(Z)methylylidene[(2Z)-5,6-difluoro-3-oxo-1H-indene-2,1(3H)-diylidene]})dimalononitrile; EH-IDTBR—5,5'-[[4,4,9,9-Tetrakis(2-ethylhexyl)-4,9-dihydro-s-indaceno[1,2-b:5,6-b']dithiophene-2,7-diyl]bis(2,1,3-benzothiadiazole-7,4-diylmethylidyne)]bis[3-ethyl-2-thioxo-4-thiazolidinone]; FOIC—Three[thieno[3,2-b]thiophene]-2-(5/6-fluoro-3-oxo-2,3-dihydro-1H-inden-1-ylidene)-malononitrile; BTP-4Cl-12—2,2′-((2Z,2′Z)-((12,13-bis(2-butyloctyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2″,3″:4′,5′]thieno[2′,3′:4,5]pyrrolo [3,2-g]thieno[2′,3′:4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-dichloro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile.
    下载: 导出CSV
  • [1] HAN Y, HU Z, ZHA W, et al. 12.42% Monolithic 25.42 cm2 flexible organic solar cells enabled by an amorphous ITO-modified metal grid electrode[J]. Advanced Materials,2022,34(17):e2110276.
    [2] LIU X, ZHENG Z, WANG J, et al. Fluidic manipulating of printable zinc oxide for flexible organic solar cells[J]. Advanced Materials,2021,34(3):e2106453.
    [3] QIN F, SUN L, CHEN H, et al. 54 cm2 large-area flexible organic solar modules with efficiency above 13%[J]. Advanced Materials,2021,33(39):e2103017. doi: 10.1002/adma.202103017
    [4] LEVY D H, FREEMAN D, NELSON S F, et al. Stable ZnO thin film transistors by fast open air atomic layer depo-sition[J]. Applied Physics Letters,2008,92(19):192101. doi: 10.1063/1.2924768
    [5] NATSUME Y, SAKATA H, Zinc oxide films prepared by sol-gel spin-coating[J]. Thin Solid Films, 2000, 372 (1/2): 30-36.
    [6] XIA T, KOVOCHICH M, LIONG M, et al. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nano-particles based on dissolution and oxidative stress properties[J]. ACS Nano,2008,2(10):2121-2134. doi: 10.1021/nn800511k
    [7] WEI J, JI G, ZHANG C, et al. Silane-capped ZnO nanoparticles for use as the electron transport layer in inverted organic solar cells[J]. ACS Nano,2018,12(6):5518-5529. doi: 10.1021/acsnano.8b01178
    [8] PANASIUK Y V, RAEVSKAYA O E, STROYUK O L, et al. Colloidal ZnO nanocrystals in dimethylsulfoxide: A new synthesis, optical, photo- and electroluminescent properties[J]. Nanotechnology,2014,25(7):075601. doi: 10.1088/0957-4484/25/7/075601
    [9] KREBS F C, THOMANN Y, THOMANN R, et al. A simple nanostructured polymer/ZnO hybrid solar cell-preparation and operation in air[J]. Nanotechnology,2008,19:424013. doi: 10.1088/0957-4484/19/42/424013
    [10] LIU B, HAN Y, LI Z, et al. Visible light–induced degradation of inverted polymer: Nonfullerene acceptor solar cells: initiated by the light absorption of ZnO layer[J]. Solar RRL,2020,5:2000638.
    [11] YANG K, FU J, HU L, et al. Impact of ZnO photolumine-scence on organic photovoltaic performance[J]. ACS Applied Materials & Interfaces,2018,10(46):39962-39969.
    [12] FU P, GUO X, ZHANG B, et al. Achieving 10.5% efficiency for inverted polymer solar cells by modifying the ZnO cathode interlayer with phenols[J]. Journal of Materials Che-mistry A,2016,4:16824-16829. doi: 10.1039/C6TA07105H
    [13] HAN Y, DONG H, PAN W, et al. An efficiency of 16.46% and a T80 lifetime of over 4000 h for the PM6: Y6 inverted orga-nic solar cells enabled by surface acid treatment of the zinc oxide electron transporting layer[J]. ACS Applied Materials & Interfaces,2021,13(15):17869-17881.
    [14] LIANG Z, ZHANG Q, WIRANWETCHAYAN O, et al. Effects of the morphology of a ZnO buffer layer on the photovoltaic performance of inverted polymer solar cells[J]. Advanced Functional Materials,2012,22(10):2194-2201. doi: 10.1002/adfm.201101915
    [15] JI G, ZHAO W, WEI J, et al. 12.88% Efficiency in doctor-blade coated organic solar cells through optimizing the surface morphology of a ZnO cathode buffer layer[J]. Journal of Materials Chemistry A,2019,7:212-220. doi: 10.1039/C8TA08873J
    [16] WEI J F, ZHANG C J, JI G Q, et al. Roll-to-roll printed stable and thickness-independent ZnO:PEI composite electron transport layer for inverted organic solar cells[J]. Solar Energy,2019,193:102-110. doi: 10.1016/j.solener.2019.09.037
    [17] HU L, LIU Y, MAO L, et al. Chemical reaction between an itic electron acceptor and an amine-containing interfacial layer in non-fullerene solar cells[J]. Journal of Materials Chemistry A,2018,6:2273-2278. doi: 10.1039/C7TA10306A
    [18] QIN F, WANG W, SUN L, et al. Robust metal ion-chelated polymer interfacial layer for ultraflexible non-fullerene organic solar cells[J]. Nature Communications,2020,11:4508. doi: 10.1038/s41467-020-18373-0
    [19] YI M B, KU J R, YOON J S, et al. Facile preparation of a polymer-ZnO composite colloid as an electron transport layer and its effects on inverted polymer solar cells[J]. Journal of Physics and Chemistry of Solids,2020,145:109538. doi: 10.1016/j.jpcs.2020.109538
    [20] MOUSSODIA R O, BALAN L, MERLIN C, et al. Biocompa-tible and stable ZnO quantum dots generated by functiona-lization with siloxane-core PAMAM dendrons[J]. Journal of Materials Chemistry,2010,20:1147-1155. doi: 10.1039/B917629B
    [21] SWIATKOWSKI M, KRUSZYNSKI R. Structurally diverse coordination compounds of zinc as effective precursors of zinc oxide nanoparticles with various morphologies[J]. Applied Organometallic Chemistry,2019,33(4):e4812. doi: 10.1002/aoc.4812
    [22] ŠARIĆ A, DESPOTOVIĆ I, ŠTEFANIĆ G, et al. The influence of ethanolamines on the solvothermal synthesis of zinc oxide: A combined experimental and theoretical study[J]. Chemistry Select,2017,2(31):10038-10049. doi: 10.1002/slct.201701692
    [23] HAYAMI R, ENDO N, ABE T, et al. Zinc–diethanolamine complex: Synthesis, characterization, and formation mechanism of zinc oxide via thermal decomposition[J]. Journal of Sol-Gel Science and Technology,2018,87:743-748. doi: 10.1007/s10971-018-4768-x
    [24] BOSTROM M, DENIZ V, FRANKS G V, et al. Extended DLVO theory: Electrostatic and non-electrostatic forces in oxide suspensions[J]. Advances in Colloid Interface Science,2006,(123/126):5-15. doi: 10.1016/j.cis.2006.05.001
    [25] ZHABROVA G M, EGOROV E V, Sorption and ion exchange on amphoteric oxides and hydroxides[J]. Russian Chemi-cal Reviews, 1961, 30(6): 338-346.
    [26] BALLERINI G, OGLE K, BARTHÉS-LABROUSSE M G. The acid-base properties of the surface of native zinc oxide layers: An XPS study of adsorption of 1, 2-diaminoethane[J]. Applied Surface Science, 2007, 253(16): 6860-6867.
    [27] WANG Z, HAN Y, YAN L, et al. High power conversion efficiency of 13.61% for 1 cm2 flexible polymer solar cells based on patternable and mass-producible gravure-printed silver nanowire electrodes[J]. Advanced Functional Materials,2020,31(4):2007276.
    [28] BHARDWAJ R, FANG X, SOMASUNDARAN P, et al. Self-assembly of colloidal particles from evaporating droplets: Role of DLVO interactions and proposition of a phase diagram[J]. Langmuir,2010,26(11):7833-7842. doi: 10.1021/la9047227
    [29] XU B. Paint application manual [M]. Jiangsu: Phoenix Science Press, 2000(in Chinese).
    [30] PAN W, HAN Y, WANG Z, et al. An efficiency of 14.29% and 13.08% for 1 cm2 and 4 cm2 flexible organic solar cells enabled by sol-gel ZnO and ZnO nanoparticle bilayer electron transporting layers[J]. Journal of Materials Chemistry A,2021,9:16889-16897. doi: 10.1039/D1TA03308E
    [31] MAO L, TONG J, XIONG S, et al. Flexible large-area orga-nic tandem solar cells with high defect tolerance and device yield[J]. Journal of Materials Chemistry A,2017,5:3186-3192.
    [32] ZHANG J, ZHAO Y, FANG J, et al. Enhancing performance of large-area organic solar cells with thick film via ternary strategy[J]. Small,2017,13(21):1700388. doi: 10.1002/smll.201700388
    [33] LIN Y, JIN Y, DONG S, et al. Printed nonfullerene organic solar cells with the highest efficiency of 9.5%[J]. Advanced Energy Materials,2018,8(13):1701942. doi: 10.1002/aenm.201701942
    [34] HAN Y, CHEN X, WEI J, et al. Efficiency above 12% for 1 cm2 Flexible organic solar cells with Ag/Cu grid tr-ansparent conducting electrode[J]. Advanced Science,2019,6(22):1901490. doi: 10.1002/advs.201901490
    [35] MENG X, ZHANG L, XIE Y, et al. A general approach for lab-to-manufacturing translation on flexible organic solar cells[J]. Advanced Materials,2019,31(41):e1903649. doi: 10.1002/adma.201903649
    [36] WANG G, ZHANG J, YANG C, et al. Synergistic optimization enables large-area flexible organic solar cells to maintain over 98% PCE of the small-area rigid devices[J]. Advanced Materials,2020,32(49):e2005153. doi: 10.1002/adma.202005153
    [37] JEONG S, PARK B, HONG S, et al. Large-area nonfullerene organic solar cell modules fabricated by a temperature-independent printing method[J]. ACS Applied Materials & Interfaces,2020,12(37):41877-41885.
    [38] ZHANG L, YANG F, MENG X, et al. Regulating crystallization to maintain balanced carrier mobility via ternary strategy in blade-coated flexible organic solar cells[J]. Organic Electronics,2021,89:106027. doi: 10.1016/j.orgel.2020.106027
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  1138
  • HTML全文浏览量:  493
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-01
  • 修回日期:  2022-04-18
  • 录用日期:  2022-04-23
  • 网络出版日期:  2022-04-29
  • 刊出日期:  2022-03-23

目录

    /

    返回文章
    返回