Application of fullerenes in new-generation solar cells
-
摘要: 新型太阳能电池包括有机太阳能电池、钙钛矿太阳能电池和量子点太阳能电池等,是一类十分有前景的光伏器件,目前有机太阳能电池和钙钛矿太阳能电池的能量转换效率分别超过了19%和25.6%。富勒烯材料具有较高的电子迁移率和良好的电子特性,被广泛应用于有机太阳能电池活性层、界面层,钙钛矿太阳能电池活性层和中间层等。在有机太阳能电池中,富勒烯材料作为活性层受体,可以提高器件电子传输能力;作为界面修饰层,可以有效降低接触电阻,抑制载流子的复合。在钙钛矿太阳能电池中,富勒烯材料作为活性层添加剂能钝化钙钛矿缺陷,抑制迟滞效应;作为中间层能优化界面形貌,促进电荷的提取与输运。本文综述了富勒烯材料在各个组成部分中的研究进展,并展望了富勒烯材料在各个组成部分中的发展前景,在此基础上,提出了未来的研究方向。Abstract: New-generation solar cells, including organic solar cells, perovskite solar cells and quantum dot solar cells, are pretty promising photovoltaic devices. At present, the energy conversion efficiency of organic solar cells and perovskite solar cells exceeds 19% and 25.6% respectively. Fullerenes are widely used in organic solar cells active layer and interface layer, perovskite solar cells active layer and intermediate layer due to their high electron mobility and good electronic properties. In organic solar cells, fullerenes act as the active layer receptors to improve the electron transport capacity of devices. As an interface modification layer, it can effectively reduce the contact resistance and inhibit the recombination of carriers. In perovskite solar cells, fullerene materials act as active layer additive to passivate perovskite defect and restrain hysteresis effect. As an intermediate layer, the interface morphology can be optimized and charge extraction and transport can be promoted. In this paper, the research progress of fullerene materials in each component is reviewed, and the development prospect of fullerene materials in each component is prospected, and the future research direction is proposed.
-
表 1 富勒烯在有机太阳能电池中作为活性层受体的性能参数
Table 1. Performance parameters of organic solar cells with fullerene materials as active layer receptors
Active layer $ {V}_{\mathrm{O}\mathrm{C}} $/V $ {J}_{\mathrm{S}\mathrm{C}} $/(mA·cm−2) FF PCE/% Ref. PC71BM:MDMO-PPV 0.77 7.60 0.51 3.00 [24] PffBT4T-C9C13:PC71BM 0.78 20.20 0.74 11.70 [25] Lu3N@C80-PCBH:P3HT 0.81 8.64 0.61 4.20 [27] OQThC59N:P3HT 0.78 7.57 0.69 4.09 [28] DPC59N:P3HT 0.58 8.39 0.50 2.42 [29] bis-PC61BM:P3HT 0.72 9.14 0.68 4.50 [30] IC60BA:P3HT 0.84 9.67 0.67 5.44 [31] IC70BA:P3HT 0.87 11.35 0.75 7.40 [32] NC60BA:P3HT 0.82 9.88 0.67 5.37 [33] NC70BA:P3HT 0.83 10.71 0.67 5.95 [34] bis-TOQC:P3HT 0.86 7.70 0.66 5.10 [35] bis-OQMF70:P3HT 0.95 7.40 0.58 4.09 [36] PBDB-TF:Y6:PC61BM 0.85 25.40 0.77 16.50 [44] PM6:Y6:PC71BM 0.86 25.10 0.77 16.70 [45] PTQ10:Y6:PC71BM 0.85 25.32 0.75 16.07 [46] BTR-Cl:Y6:ICBA 0.84 23.55 0.74 14.70 [47] Notes: $ {V}_{\mathrm{O}\mathrm{C}} $—Open circuit voltage; $ {J}_{\mathrm{S}\mathrm{C}} $—Short-circuit current density; FF—Fill factor; PCE—Power conversion efficiency; MDMO-PPV—Poly[2-methoxy-5-(3′,7′-dimethyloctyloxy)-1,4-phenylenevinylene]; PffBT4 T-C9C13—Poly[(5,6-difluoro-2,1,3-benzothiadiazole-4,7-diyl)-alt-(3,3′′′-di(2-nonyltridecyl)-2,2′,5′,2′′,5′′,2′′′-quaterthiophen-5,5′′′-diyl)]; P3HT—Poly(3-hexylthiophene); bis-TOQC—Thieno-o-quinodimethane bisadducts; bis-OQMF70—64π bis-o-quinodimethane-methano[70]fullerene; PBDB-TF—Poly[(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro)thiophen-2-yl)-benzo[1,2 b:4,5-b′]dithiophene))-alt-(5,5-(1′,3′-di-2-thienyl-5′,7′-bis(2-ethylhexyl)benzo[1′,2′-c:4′,5′c′]dithiophene-4,8-dione)]; PM6—Poly[[4,8-bis[5-(2-ethylhexyl)-4-fluoro-2-thienyl]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl]-2,5-thiophenediyl[5,7-bis(2-ethylhexyl)-4,8-dioxo-4H,8H-benzo[1,2-c:4,5-c′]dithiophene-1,3-diyl]-2,5-thiophenediyl]; Y6—(2,2′-((2 Z,2′Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2′′,3′′:4′,5′]thieno[2′,3′:4,5]pyrrolo[3,2-g]thieno[2′,3′:4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))-bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile); PTQ10—Poly[(thiophene)-alt-(6,7-difluoro-2-(2-hexyldecyloxy)quinoxaline)]; BTR-Cl—Chlorinated benzodithiophene terthiophene rhodanine. 表 2 富勒烯在有机太阳能中作为中间层的性能参数
Table 2. Performance parameters of organic solar cells with fullerene materials as intermediate layers
Intermediate layer/Active layer $ {V}_{\mathrm{O}\mathrm{C}} $/V $ {J}_{\mathrm{S}\mathrm{C}} $/(mA·cm-2) FF PCE/% Ref. F-PCBM/P3HT:PCBM 0.57 9.51 0.70 3.79 [49] PEGN-C60/PBDTTT-C-T:PC71BM 0.79 14.79 0.64 7.45 [50] C60-SB/PTB7:PC71BM(Ag) 0.75 16.89 0.68 8.57 [51] bis-FPI/PIDT-PhanQ:PC71BM 0.83 11.40 0.56 5.26 [52] FPI-PEIE/PBDTT-TT:PC71BM 0.81 16.26 0.73 9.62 [52] ZnO:PCBM/PTB7-F20:PC71BM 0.68 17.04 0.66 7.70 [53] PCMI:K+/PTB7-Th:PC71BM 0.79 19.57 0.67 10.30 [54] C60-4TPB/PTB7:PC71BM 0.73 16.84 0.66 8.07 [55] ZnO:C60-2DPE/PTB7:PC71BM 0.80 17.94 0.64 9.21 [55] ZnO:C60-PEHBS/PTB7-Th:PC71BM 0.79 17.27 0.63 8.56 [56] ZnO:C60-2EHTPB/PTB7:PC71BM 0.79 17.70 0.64 9.00 [56] Notes: PBDTTT-C-T—(Poly(4,8-bis(5-(2-ethylhexyl)-thiophene-2-yl)-benzo[1,2-b:4,5-b′]dithiophene-alt-alkylcarbonylthieno[3,4-b]thiophene)); PTB7—Poly{[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]}; PIDT-PhanQ—Poly(indacenodithiophene-co-phananthrene-quinoxaline); FPI—Amphiphilic fulleropyrrolidinium iodide; PEIE—Ethoxylated polyethyleneimine; PBDTT-TT—Poly{4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b′]dithiophene-alt-4,6-thieno[3,4-b]thiophen-2-yl-2-ethylhexan-1-one}; PTB7-F20—Poly(thienothiophene-co-benzodithiophenes)7-F20; PTB7-Th— Poly{4,8-bis[5-(2-ethylhexyl)thiophen-2-yl]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl-alt-3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]-thiophene-4,6-diyl}; C60-2DPE—[6,6]-Phenyl-C61-butyricacid-2-(4-(9,9-bis(2-(dimethylamino)ethyl)-9H-fluoren-2-yl)-phenyl)ethan-1-ol; C60-PEHBS—[6,6]-Phenyl-C61-butyricacid-potassium 4,4′-(9′,9′-bis(2-(2-ethoxyethoxy)ethyl)-7′-(4-(2-hydroxyethy)phenyl)-9 H,9′H-[2,2′-bifluorene]-9,9-diyl)-bis-(butane-1-sulfonate); C60-2 EHTPB—[6,6]-Phenyl-C61-butyricacid-2-(4-(9′,9′-bis(3-bromopropyl)-9,9-bis(2-(2-ethoxyethoxy)-ethyl)-9H,9′H-[2,2′-bifluoren]-7-yl)phenyl-9H,9′H-[2,2′-bifluoren]-9-yl)-N,N,N-trimethylpropan-1-aminium. 表 3 富勒烯衍生物作为钙钛矿太阳能电池活性层添加剂的性能参数
Table 3. Performance parameters of perovskite solar cells with fullerene materials as active layer additives
Active layer $ {V}_{\mathrm{O}\mathrm{C}} $/V $ {J}_{\mathrm{S}\mathrm{C}} $/(mA·cm−2) FF PCE/% Ref. MAPb0.75Sn0.25I3:C60 0.74 23.50 0.79 13.70 [57] MAPbI3:C70 1.07 20.44 0.72 15.71 [58] MAPbI3:PC61BM 1.08 18.00 0.75 14.40 [59] MAPbI3:1D-PC61BM 0.90 22.88 0.74 15.30 [60] MAPbI3:IC60BA 1.09 21.59 0.77 18.14 [61] MAPbI3:PCBB-OEG 1.07 23.65 0.80 20.20 [62] MAPbI3:PCBPEG 1.07 21.28 0.77 17.31 [63] MAPbI3:C60-PyP 1.10 22.47 0.79 19.82 [64] MAPbI3:C60-PyF15 1.07 23.14 0.81 20.12 [65] MAPbI3:PC61BM(GHJ) 1.07 21.90 0.78 18.21 [66] MAPbI3:PC71BM 1.01 23.50 0.65 15.50 [67] MAPbI3:α-bis-PCBM 1.13 23.95 0.77 20.80 [69] MAPbI3:C60(QM)2 1.08 22.40 0.76 18.40 [70] MAPbI3:C60-PEG 1.05 20.60 0.82 17.71 [71] Notes: MA—CH3NH3+; GHJ—Graded heterojunction. 表 4 富勒烯衍生物作为钙钛矿太阳能电池中间层的性能参数
Table 4. Performance parameters of perovskite solar cells with fullerene materials as intermediate layers
Intermediate layer/Active layer $ {V}_{\mathrm{O}\mathrm{C}} $/V $ {J}_{\mathrm{S}\mathrm{C}} $/(mA·cm−2) FF PCE/% Ref. C60:C70/MAPbI3 1.03 24.30 0.73 18.00 [72] C60-3-BPy/CsFAMA 1.07 20.44 0.72 18.22 [73] HMB-C60/MAPbI3 1.06 22.59 0.67 16.04 [74] Crosslinked PCBM/MAPbI3 0.99 20.00 0.75 14.90 [75] PyCEE/MAPbI3 1.05 22.95 0.76 18.27 [76] PCBM-F4/MAPbI3 0.90 20.60 0.79 14.60 [77] NMPFP/MAPbI3 1.05 19.48 0.68 13.83 [78] PCBM-5a/MAPbI3 1.09 23.70 0.80 20.70 [79] FM/MAPbI3 1.02 22.60 0.73 16.90 [80] C60-PDI-I/MAPbI3 1.07 21.92 0.78 18.29 [81] CF3-PC61BM:PCBM/MAPbI3 1.06 22.25 0.78 18.37 [82] C6F13-PC61BM:PCBM/MAPbI3 1.06 22.13 0.75 17.71 [82] TBA-Azo:PCBM/MAPbI3 1.10 23.40 0.76 19.60 [83] PCPB:PCBM/MAPbI3 1.08 22.67 0.74 18.19 [84] DPP:PCBM/MAPbI3 1.01 23.40 0.69 16.40 [85] TiO2:C60NH2/MAPbI3 1.08 22.39 0.75 18.34 [86] SnO2:C9/(FAPbI3)x(MAPbBr3)1-x 1.12 24.10 0.79 21.30 [87] SnO2:CPTA/MAPbI3 1.07 22.39 0.77 18.36 [88] SnO2:DPC60//MAPbI3 1.14 23.00 0.78 20.40 [89] Spiro-OMeTAD:[Li@C60]TFSI/(FAPbI3)0.85(MAPbBr3)0.15 1.01 22.90 0.72 16.80 [90] Spiro-OMeTAD:[Li@C60]TFSI/CsFAMA 1.09 23.10 0.68 17.20 [91] Spiro-OMeTAD-Sc3N@C80/MAPbI3 1.15 23.06 0.78 20.77 [92] Notes: FA—HC(NH2)2+; HMB—Hexamethonium bromide; NMPFP—N-Methyl-2-pentyl-[60]fullerene pyrrolidine; FM—Fullerene mixture (C60:C70=1:1); TBA-Azo—3,4,5-Tris(n-dodecyloxy) benzoylamide with an azobenzene moiety; DPP—Pyrrolo[3,4-c]pyrrole-1,4-dione; Spiro-OMeTAD—2,2′,7,7′-Tetrakis(N, N-di-p-methoxyphenylamine)-9,9′-spirobifluorene; TFSI—Bis(trifluoromethanesulfonyl)imide. -
[1] YUE Q, LIU W, ZHU X. n-Type molecular photovoltaic materials: design strategies and device applications[J]. Jour-nal of the American Chemical Society,2020,142(27):11613-11628. doi: 10.1021/jacs.0c04084 [2] YAN D, CUEVAS A, MICHEL J I, et al. Polysilicon passi-vated junctions: The next technology for silicon solar cells?[J]. Joule,2021,5(4):811-828. doi: 10.1016/j.joule.2021.02.013 [3] COSTALS E R, MASMITJA G, ALMACHE E, et al. Atomic layer deposition of vanadium oxide films for crystalline sili-con solar cells[J]. Materials Advances,2022,3(1):337-345. doi: 10.1039/D1MA00812A [4] SREEJITH S, AJAYAN J, KOLLEM S, et al. A comprehensive review on thin film amorphous sili-con solar cells[J]. Silicon,2022,14:1-17. [5] ROMEO A, ARTEGIANI E. CdTe-based thin film solar cells: Past, present and future[J]. Energies,2021,14(6):1684. doi: 10.3390/en14061684 [6] ISABELA C, LAMEIRINHAS R A M, TORRES J P N, et al. Comparative study of the copper indium gallium selenide (CIGS) solar cell with other solar technologies[J]. Sustainable Energy & Fuels,2021,5(8):2273-2283. [7] XU Y, CUI Y, YAO H, et al. A new conjugated polymer that enables the integration of photovoltaic and light-emitting functions in one device[J]. Advanced Materials,2021,33(22):2101090. doi: 10.1002/adma.202101090 [8] XU X, LI Y, PENG Q. Ternary blend organic solar cells: Understanding the morphology from recent progress[J]. Advanced Materials,2021:2107476. [9] YAKOOB M A, LAMMINAHO J, PETERSONS K, et al. Efficiency-enhanced scalable organic photovoltaics using Roll-to-Roll nanoimprint lithography[J]. ChemSusChem,2022,15(2):e202101611. [10] RIEDE M, SPOLTORE D, LEO K. Organic solar cells-the path to commercial success[J]. Advanced Energy Materials,2021,11(1):2002653. doi: 10.1002/aenm.202002653 [11] GREEN M, DUNLOP E, HOHL-EBINGER J, et al. Solar cell efficiency tables (version 57)[J]. Progress in photovoltaics: Research and applications,2021,29(1):3-15. doi: 10.1002/pip.3371 [12] CUI Y, XU Y, YAO H, et al. Single-junction organic photovoltaic cell with 19% efficiency[J]. Advanced Materials,2021,33(41):2102420. doi: 10.1002/adma.202102420 [13] YOO J J, SEO G, CHUA M R, et al. Efficient perovskite solar cells via improved carrier management[J]. Nature,2021,590(7847):587-593. doi: 10.1038/s41586-021-03285-w [14] JEONG J, KIM M, SEO J, et al. Pseudo-halide anion engi-neering for α-FAPbI3 perovskite solar cells[J]. Nature,2021,592(7854):381-385. doi: 10.1038/s41586-021-03406-5 [15] SONG H, LIN Y, ZHANG Z, et al. Improving the efficiency of quantum dot sensitized solar cells beyond 15% via se-condary deposition[J]. Journal of the American Chemical Society,2021,143(12):4790-4800. doi: 10.1021/jacs.1c01214 [16] RIZWAN M, MINGSUKANG M A B, AKHTARUZZAMAN M. Quantum dot-sensitized solar cells[J]. Comprehensive Guide on Organic and Inorganic Solar Cells. Elsevier,2022:245-271. [17] ROMBACH F M, HAQUE S A, MACDONALD T J. Lessons learned from spiro-OMeTAD and PTAA in perovskite solar cells[J]. Energy & Environmental Science,2021,14(10):5161-5190. [18] PERRIN L, LEMERCIER T, PLANèS E, et al. Perovskite inverted solar cells: impact of hole transport layer and anti-solvent ejection time//2021 IEEE 48 th photovoltaic specialists conference (PVSC)[J]. IEEE,2021:1324-1327. [19] KROTO H W, HEATH J R, O’BRIEN S C, et al. C60: Buckminsterfullerene[J]. Nature,1985,318(6042):162-163. doi: 10.1038/318162a0 [20] DENG L L, XIE S Y, GAO F. Fullerene-based materials for photovoltaic applications: Toward efficient, hysteresis-free, and stable perovskite solar cells[J]. Advanced Electronic Materials,2018,4(10):1700435. doi: 10.1002/aelm.201700435 [21] JIANG Y, WANG J, ZAI H, et al. Reducing energy disorder in perovskite solar cells by chelation[J]. Journal of the American Chemical Society,2022,144(12):5400-5410. doi: 10.1021/jacs.1c12732 [22] BECKER-KOCH D, ALBALADEJO-SIGUAN M, HOFSTETTER Y J, et al. Doped organic hole extraction layers in efficient PbS and AgBiS2 quantum dot solar cells[J]. ACS Applied Materials & Interfaces,2021,13(16):18750-18757. [23] GOSWAMI B, KHAN B A. Understanding the photovoltaic performances of ZnSe quantum dot-fullerene nanocomposites: A computational study[J]. Computational and Theoretical Chemistry,2021,1206:113463. doi: 10.1016/j.comptc.2021.113463 [24] WIENK M M, KROON J M, VERHEES W J, et al. Efficient methano [70] fullerene/MDMO-PPV bulk heterojunction photovoltaic cells[J]. Angewandte Chemie International Edition,2003,115(29):3493-3497. [25] ZHAO J, LI Y, YANG G, et al. Efficient organic solar cells processed from hydrocarbon solvents[J]. Nature Energy,2016,1(2):1-7. [26] LAI Y Y, CHENG Y J, HSU C S. Applications of functional fullerene materials in polymer solar cells[J]. Energy & Environmental Science,2014,7(6):1866-1883. [27] ROSS R B, CARDONA C M, GULDI D M, et al. Endohedral fullerenes for organic photovoltaic devices[J]. Nature Materials,2009,8(3):208-212. doi: 10.1038/nmat2379 [28] XIAO Z, HE D, ZUO C, et al. An azafullerene acceptor for organic solar cells[J]. RSC Advances,2014,4(46):24029-24031. doi: 10.1039/c4ra02757d [29] CAMBARAU W, FRITZE U F, VITERISI A, et al. Increased short circuit current in an azafullerene-based organic solar cell[J]. Chemical Communications,2015,51(6):1128-1130. doi: 10.1039/C4CC08094G [30] LENES M, WETZELAER G J A, KOOISTRA F B, et al. Fullerene bisadducts for enhanced open-circuit voltages and efficiencies in polymer solar cells[J]. Advanced Mate-rials,2008,20(11):2116-2119. doi: 10.1002/adma.200702438 [31] HE Y, CHEN H Y, HOU J, et al. Indene-C60 bisadduct: A new acceptor for high-performance polymer solar cells[J]. Journal of the American Chemical Society,2010,132(4):1377-1382. doi: 10.1021/ja908602j [32] GUO X, CUI C, ZHANG M, et al. High efficiency polymer solar cells based on poly (3-hexylthiophene)/indene-C70 bisadduct with solvent additive[J]. Energy & Environ-mental Science,2012,5(7):7943-7949. [33] MENG X, ZHANG W, TAN Z, et al. Dihydronaphthyl-based [60]fullerene bisadducts for efficient and stable polymer solar cells[J]. Chemical Communications,2012,48(3):425-427. doi: 10.1039/C1CC15508C [34] MENG X, ZHANG W, TAN Z A, et al. Highly efficient and thermally stable polymer solar cells with dihydronaphthyl-based [70] fullerene bisadduct derivative as the acceptor[J]. Advanced Functional Materials,2012,22(10):2187-2193. doi: 10.1002/adfm.201102771 [35] ZHANG C, CHEN S, XIAO Z, et al. Synthesis of mono- and bisadducts of thieno-o-quinodimethane with C60 for efficient polymer solar cells[J]. Organic Letters,2012,14(6):1508-1511. doi: 10.1021/ol3002392 [36] HE D, ZUO C, CHEN S, et al. A highly efficient fullerene acceptor for polymer solar cells[J]. Physical Chemistry Chemical Physics,2014,16(16):7205-7208. doi: 10.1039/c4cp00268g [37] XU X, DENG M, LEE Y W, et al. Realizing high-efficiency Multiple blend polymer solar cells via a unique parallel-series working mechanism[J]. Journal of Materials Che-mistry A,2019,7(43):24937-24946. doi: 10.1039/C9TA09150E [38] ZHAO C, WANG J, ZHAO X, et al. Recent advances, challenges and prospects in ternary organic solar cells[J]. Nanoscale,2021,13(4):2181-2208. doi: 10.1039/D0NR07788G [39] FENG K, WU Z, SU M, et al. Highly efficient ternary all-polymer solar cells with enhanced stability[J]. Advanced Functional Materials,2021,31(5):2008494. doi: 10.1002/adfm.202008494 [40] JIANG M, BAI H, ZHI H, et al. Rational compatibility in a ternary matrix enables all-small-molecule organic solar cells with over 16% efficiency[J]. Energy & Environmental Science,2021,14(7):3945-3953. [41] GASPARINI N, SALLEO A, MCCULLOCH I, et al. The role of the third component in ternary organic solar cells[J]. Nature Reviews Materials,2019,4(4):229-242. doi: 10.1038/s41578-019-0093-4 [42] BAO S, YANG H, FAN H, et al. Volatilizable solid additive-assisted treatment enables organic solar cells with efficiency over 18.8% and fill factor exceeding 80%[J]. Advanced Materials,2021,33(48):2105301. doi: 10.1002/adma.202105301 [43] WANG J, ZHENG Z, ZU Y, et al. A tandem organic photovoltaic cell with 19.6% efficiency enabled by light distribution control[J]. Advanced Materials,2021,33(39):e2102787. doi: 10.1002/adma.202102787 [44] YU R, YAO H, CUI Y, et al. Improved charge transport and reduced nonradiative energy loss enable over 16% efficiency in ternary polymer solar cells[J]. Advanced Materials,2019,31(36):e1902302. doi: 10.1002/adma.201902302 [45] PAN M A, LAU T K, TANG Y, et al. 16.7%-Efficiency ternary blended organic photovoltaic cells with PCBM as the acceptor additive to increase the open-circuit voltage and phase purity[J]. Journal of Materials Chemistry A,2019,7(36):20713-20722. doi: 10.1039/C9TA06929A [46] QIU B, CHEN S, SUN C, et al. Understanding the effect of the third component PC71BM on nanoscale morphology and photovoltaic properties of ternary organic solar cells[J]. Solar RRL,2020,4(4):1900540. doi: 10.1002/solr.201900540 [47] HU D, TANG H, LV J, et al. 14.7% All-small-molecule orga-nic solar cells enabled by fullerene derivative incorporation[J]. Sustainable Energy & Fuels,2021,5(14):3593-3597. [48] LIU Z, WANG H E. Understanding the effect of the double side chain fullerene derivative as third component materials on the charge dynamics and photovoltaic performance[J]. Solar Energy,2021,230:549-557. doi: 10.1016/j.solener.2021.10.068 [49] WEI Q, NISHIZAWA T, TAJIMA K, et al. Self-organized buffer layers in organic solar cells[J]. Advanced Materials,2008,20(11):2211-2216. doi: 10.1002/adma.200792876 [50] ZHANG Z G, LI H, QI Z, et al. Poly (ethylene glycol) modified [60] fullerene as electron buffer layer for high-perfor-mance polymer solar cells[J]. Applied Physics Letters,2013,102(14):143902. doi: 10.1063/1.4801923 [51] PAGE Z A, LIU Y, DUZHKO V V, et al. Fulleropyrrolidine interlayers: Tailoring electrodes to raise organic solar cell efficiency[J]. Science,2014,346(6208):441-444. doi: 10.1126/science.1255826 [52] LI C Z, CHANG C Y, ZANG Y, et al. Suppressed charge recombination in inverted organic photovoltaics via enhanced charge extraction by using a conductive fullerene electron transport layer[J]. Advanced Materials,2014,26(36):6262-6267. doi: 10.1002/adma.201402276 [53] CHO S, KIM K D, HEO J, et al. Role of additional PCBM layer between ZnO and photoactive layers in inverted bulk-heterojunction solar cells[J]. Scientific Reports,2014,4(1):1-6. [54] ZHAO F, WANG Z, ZHANG J, et al. Self-doped and crown-ether functionalized fullerene as cathode buffer layer for highly-efficient inverted polymer solar cells[J]. Advanced Energy Materials,2016,6(9):1502120. [55] LIU J, LI J, LIU X, et al. Synthesis and application of functionalized diblock amphiphilic fullerene derivatives[J]. Macromolecular Chemistry and Physics,2019,220(5):1800477. doi: 10.1002/macp.201800477 [56] LIU J, LI J, LIU X, et al. Synthesis of amphiphilic triblock fullerene derivatives and their solvent induced self assembly in organic solar cells[J]. Organic Electronics,2019,71:36-44. doi: 10.1016/j.orgel.2019.04.007 [57] LIU C, LI W, LI H, et al. C60 additive-assisted crystallization in CH3NH3Pb0.75Sn0.25I3 perovskite solar cells with high stability and efficiency[J]. Nanoscale,2017,9(37):13967-13975. doi: 10.1039/C7NR03507A [58] GHARIBZADEH S, VALDUGA DE ALMEIDA CAMARGO F, ROLDÁN-CARMONA C, et al. Picosecond capture of photoexcited electrons improves photovoltaic conversion in MAPbI3: C70-doped planar and mesoporous solar cells[J]. Advanced Materials,2018,30(40):1801496. doi: 10.1002/adma.201801496 [59] XU J, BUIN A, IP A H, et al. Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes[J]. Nature Communications,2015,6(1):1-8. [60] RAN C, CHEN Y, GAO W, et al. One-dimensional (1 D)[6, 6]-phenyl-C61-butyric acid methyl ester (PCBM) nanorods as an efficient additive for improving the efficiency and stabi-lity of perovskite solar cells[J]. Journal of Materials Che-mistry A,2016,4(22):8566-8572. doi: 10.1039/C6TA03605H [61] WU F, CHEN T, YUE X, et al. Enhanced photovoltaic performance and reduced hysteresis in perovskite-ICBA-based solar cells[J]. Organic Electronics,2018,58:6-11. doi: 10.1016/j.orgel.2018.03.042 [62] XU G, XUE R, CHEN W, et al. New strategy for two-step sequential deposition: incorporation of hydrophilic fullerene in second precursor for high-performance p-i-n planar perovskite solar cells[J]. Advanced Energy Materials,2018,8(12):1703054. doi: 10.1002/aenm.201703054 [63] QIN Q, ZHANG Z, CAI Y, et al. Improving the performance of low-temperature planar perovskite solar cells by adding functional fullerene end-capped polyethylene glycol deri-vatives[J]. Journal of Power Sources,2018,396:49-56. doi: 10.1016/j.jpowsour.2018.05.091 [64] ZHEN J, ZHOU W, CHEN M, et al. Pyridine-functionalized fullerene additive enabling coordination interactions with CH3NH3PbI3 perovskite towards highly efficient bulk he-terojunction solar cells[J]. Journal of Materials Chemistry A,2019,7(6):2754-2763. doi: 10.1039/C8TA12206G [65] JIA L, HUANG F, DING H, et al. Double-site defect passivation of perovskite film via fullerene additive engineering toward highly efficient and stable bulk heterojunction solar cells[J]. Nano Today,2021,39:101164. doi: 10.1016/j.nantod.2021.101164 [66] WU Y, YANG X, CHEN W, et al. Perovskite solar cells with 18.21% efficiency and area over 1 cm2 fabricated by heterojunction engineering[J]. Nature Energy,2016,1(11):1-7. [67] RANJAN R, USMANI B, RANJAN S, et al. Enhanced efficiency and thermal stability of mesoscopic perovskite solar cells by adding PC70 BM acceptor[J]. Solar Energy Materials and Solar Cells,2019,202:110130. doi: 10.1016/j.solmat.2019.110130 [68] VIDAL S, IZQUIERDO M, FILIPPONE S, et al. Site-selective synthesis of β-[70]PCBM-like fullerenes: Efficient application in perovskite solar cells[J]. Chemistry-A European Journal,2019,25(13):3224-3228. doi: 10.1002/chem.201806053 [69] ZHANG F, SHI W, LUO J, et al. Isomer-pure bis-PCBM-assisted crystal engineering of perovskite solar cells showing excellent efficiency and stability[J]. Advanced Materials,2017,29(17):1606806. doi: 10.1002/adma.201606806 [70] LI H, GUO L, LI C N, et al. Enhanced electronic quality of perovskite via a novel C60 o-quinodimethane bisadducts toward efficient and stable perovskite solar cells[J]. ACS Sustainable Chemistry & Engineering,2019,7(9):8579-8586. [71] FU Q, XIAO S, TANG X, et al. Amphiphilic fullerenes employed to improve the quality of perovskite films and the stability of perovskite solar cells[J]. ACS Applied Materials & Interfaces,2019,11(27):24782-24788. [72] LIN H S, JEON I, XIANG R, et al. Achieving high efficiency in solution-processed perovskite solar cells using C60/C70 mixed fullerenes[J]. ACS Applied Materials & Interfaces,2018,10(46):39590-39598. [73] WANG Y, LI B, JIA L, et al. Pyridine-functionalized fullerene derivative as an independent electron transport layer enabling efficient and hysteresis-free regular perovskite solar cells[J]. Nano Select,2021,2(11):2192-2200. doi: 10.1002/nano.202100050 [74] ZHOU J, HOU J, TAO X, et al. Solution-processed electron transport layer of n-doped fullerene for efficient and stable all carbon based perovskite solar cells[J]. Journal of Materials Chemistry A,2019,7(13):7710-7716. doi: 10.1039/C9TA00118B [75] QIU W, BASTOS J, DASGUPTA S, et al. Highly efficient perovskite solar cells with crosslinked PCBM interlayers[J]. Journal of Materials Chemistry A,2017,5(6):2466-2472. doi: 10.1039/C6TA08799J [76] LIU H R, LI S H, DENG L L, et al. Pyridine-functionalized fullerene electron transport layer for efficient planar perovskite solar cells[J]. ACS Applied Materials & Interfaces,2019,11(27):23982-23989. [77] ELNAGGAR M, ELSHOBAKI M, MUMYATOV A, et al. Molecular engineering of the fullerene-based electron transport layer materials for improving ambient stability of perovskite solar cells[J]. Solar RRL,2019,3(9):1900223. doi: 10.1002/solr.201900223 [78] CHEN R, WANG W, BU T, et al. Low-cost fullerene deriva-tive as an efficient electron transport layer for planar perovskite solar cells[J]. Acta Physico-Chimica Sinica,2019,35(4):401-407. doi: 10.3866/PKU.WHXB201803131 [79] LIN H S, JEON I, CHEN Y, et al. Highly selective and scalable fullerene-cation-mediated synthesis accessing cyclo [60] fullerenes with five-membered carbon ring and their application to perovskite solar cells[J]. Chemistry of Materials,2019,31(20):8432-8439. doi: 10.1021/acs.chemmater.9b02468 [80] XU C, LIU Z, LEE E C. High-performance inverted planar perovskite solar cells using a pristine fullerene mixture as an electron-transport layer[J]. Journal of Materials Che-mistry C,2019,7(23):6956-6963. doi: 10.1039/C9TC01741K [81] ZHENG T, FAN B, ZHAO Y, et al. Rational design of anion-doped perylene diimide-fullerene dimer as effective electron transporting material in inverted perovskite solar cells[J]. Chemical Engineering Journal,2021,420:129730. doi: 10.1016/j.cej.2021.129730 [82] XING Z, LI S H, XIE F F, et al. Mixed fullerene electron transport layers with fluorocarbon chains assembling on the surface: A moisture-resistant coverage for perovskite solar cells[J]. ACS Applied Materials & Interfaces,2020,12(31):35081-35087. [83] MA N, JIANG J, WANG G, et al. Stable perovskite solar cells with bulk-mixed electron transport layer by multifunctional defect passivation[J]. ACS Applied Materials & Interfaces,2021,13(37):44401-44408. doi: 10.1021/acsami.1c12826 [84] LI S H, XING Z, WU B S, et al. Hybrid fullerene-based electron transport layers improving the thermal stability of perovskite solar cells[J]. ACS Applied Materials & Interfaces,2020,12(18):20733-20740. doi: 10.1021/acsami.0c02119 [85] ELNAGGAR M M, FROLOVA L A, GORDEEVA A M, et al. Improving stability of perovskite solar cells using fullerene-polymer composite electron transport layer[J]. Synthetic Metals,2022,286:117028. doi: 10.1016/j.synthmet.2022.117028 [86] CHEN Q, WANG W, XIAO S, et al. Improved performance of planar perovskite solar cells using an amino-terminated multifunctional fullerene derivative as the passivation layer[J]. ACS Applied Materials & Interfaces,2019,11(30):27145-27152. [87] LIU K, CHEN S, WU J, et al. Fullerene derivative anchored SnO2 for high-performance perovskite solar cells[J]. Energy & Environmental Science,2018,11(12):3463-3471. [88] ZHONG M, LIANG Y, ZHANG J, et al. Highly efficient flexible MAPbI3 solar cells with a fullerene derivative-modified SnO2 layer as the electron transport layer[J]. Journal of Materials Chemistry A,2019,7(12):6659-6664. doi: 10.1039/C9TA00398C [89] TIAN C, LIN K, LU J, et al. Interfacial bridge using a cis-fulleropyrrolidine for efficient planar perovskite solar cells with enhanced stability[J]. Small Methods,2020,4(5):1900476. doi: 10.1002/smtd.201900476 [90] JEON I, UENO H, SEO S, et al. Lithium-ion endohedral fullerene (Li+@C60) dopants in stable perovskite solar cells induce instant doping and anti-oxidation[J]. Angewandte Chemie International Edition,2018,130(17):4697-4701. [91] JEON I, SHAWKY A, LIN H S, et al. Controlled redox of lithium-ion endohedral fullerene for efficient and stable metal electrode-free perovskite solar cells[J]. Journal of the American Chemical Society,2019,141(42):16553-16558. doi: 10.1021/jacs.9b06418 [92] WANG K, LIU X, HUANG R, et al. Nonionic Sc3N@C80 dopant for efficient and stable halide perovskite photovoltaics[J]. ACS Energy Letters,2019,4(8):1852-1861. doi: 10.1021/acsenergylett.9b01042