留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑界面应变传递机制的内埋FBGs环氧树脂固化过程模拟

雷伟华 胡海晓 曹东风 肖磊 田一洲 李书欣 王静南

雷伟华, 胡海晓, 曹东风, 等. 考虑界面应变传递机制的内埋FBGs环氧树脂固化过程模拟[J]. 复合材料学报, 2023, 40(3): 1807-1817. doi: 10.13801/j.cnki.fhclxb.20220419.002
引用本文: 雷伟华, 胡海晓, 曹东风, 等. 考虑界面应变传递机制的内埋FBGs环氧树脂固化过程模拟[J]. 复合材料学报, 2023, 40(3): 1807-1817. doi: 10.13801/j.cnki.fhclxb.20220419.002
LEI Weihua, HU Haixiao, CAO Dongfeng, et al. Simulation of curing process of epoxy resin with embedded FBGs considering interfacial strain transfer mechanism[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1807-1817. doi: 10.13801/j.cnki.fhclxb.20220419.002
Citation: LEI Weihua, HU Haixiao, CAO Dongfeng, et al. Simulation of curing process of epoxy resin with embedded FBGs considering interfacial strain transfer mechanism[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1807-1817. doi: 10.13801/j.cnki.fhclxb.20220419.002

考虑界面应变传递机制的内埋FBGs环氧树脂固化过程模拟

doi: 10.13801/j.cnki.fhclxb.20220419.002
基金项目: 先进能源科学与技术广东省实验室佛山分中心(佛山仙湖实验室)开放基金(XHT2020-002)
详细信息
    通讯作者:

    胡海晓,博士,副教授,硕士生导师,研究方向为复合材料材料-工艺-结构一体化应用 E-mail: yiming9008@126.com

    曹东风,博士,副研究员,硕士生导师,研究方向为先进复合材料计算力学 E-mail: cao_dongf@whut.edu.cn

  • 中图分类号: TB332

Simulation of curing process of epoxy resin with embedded FBGs considering interfacial strain transfer mechanism

Funds: Foundation of Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory (XHT2020-002)
  • 摘要: 采用实验与数值分析相结合的手段对光纤布拉格光栅传感器(Fiber Bragg grating sensor,FBGs)与基体间应变传递机制这一固化监测的基础问题进行了探索。首先,对树脂的固化动力学、热膨胀、化学收缩和玻璃化转变等物化变化进行了表征,然后,借助热电偶和FBGs开展了环氧树脂固化过程的温度和应变监测实验,最后,基于固化过程热-化-力多场耦合数值分析方法开展了固化过程模拟。通过对比纯树脂模型、界面采用绑定约束的含FBGs模型和界面采用内聚力行为的含FBSs模型分析结果,对界面传递机制进行了探讨。结果表明:固化前期界面处存在的剪滞效应和界面滑移行为导致FBGs监测应变相较树脂本体应变明显偏小,其中剪滞效应占主导作用。采用内聚力行为可以较好地描述固化过程界面应变传递机制,数值预测结果与实验值误差较小。

     

  • 图  1  2511-1 A/BS树脂的动态升温DSC的热流曲线

    Figure  1.  Heat flow curves of dynamic DSC of 2511-1 A/BS resin

    图  2  2511-1 A/BS环氧树脂玻璃化转变温度与固化度的关系

    Figure  2.  Relationship between glass transition temperature and curing degree of 2511-1 A/BS epoxy resin

    图  3  2511-1 A/BS环氧树脂DMA测试的力学性能变化

    Figure  3.  Mechanical properties of 2511-1 A/BS epoxy resin by DMA testing

    图  4  2511-1 A/BS环氧树脂TMA测试热膨胀系数的结果

    Figure  4.  TMA test results of thermal expansion coefficient of 2511-1 A/BS epoxy resin

    L—Change of length; L0—Initial length

    图  5  2511-1 A/BS环氧树脂的化学收缩率随固化度变化曲线

    Figure  5.  Chemical shrinkage curve of 2511-1 A/BS epoxy resin with curing degree

    αgel—Curing degree of gel point; ΔV—Chang of volume; V0—Initial volume of resin

    图  6  光纤布拉格光栅传感器(FBGs)和热电偶的位置

    Figure  6.  Position of fiber Bragg grating sensor (FBGs) and thermocouple

    TC—Thermocouple

    图  7  树脂固化过程热-化-力多场耦合数值分析的流程

    Figure  7.  Process of thermo-chemical-mechanical coupling numerical analysis of resin curing process

    图  8  树脂浇注体的有限元模型

    Figure  8.  Finite element model of resin casting

    图  9  热电偶位置的实验与模拟的内埋FBGs环氧树脂温度对比及固化度历程

    Figure  9.  Experimental and simulated temperature comparison and curing degree history of thermocouple position of epoxy resin with embedded FBGs

    FEM—Finite element model

    图  10  温度峰值时模拟的内埋FBGs环氧树脂温度和固化度分布

    Figure  10.  Simulated temperature and curing degree distributions at peak temperatures of epoxy resin with embedded FBGs

    图  11  纯树脂模型模拟的热电偶位置的内埋FBGs环氧树脂温度和应变历程曲线

    Figure  11.  Temperature and strain history curves of thermocouple positions of epoxy resin with embedded FBGs simulated by pure resin model

    图  12  纯树脂模型和Tie模型模拟的内埋FBGs环氧树脂应变历程与实验测试的对比

    Figure  12.  Comparison of strain history of epoxy resin with embedded FBGs simulated by pure resin model and Tie model with experimental tests

    图  13  Tie模型和Cohesive模型模拟的内埋FBGs环氧树脂应变历程与实验测试的对比

    Figure  13.  Comparison of strain history simulated by Tie model and cohesive model with experimental tests of epoxy resin with embedded FBGs

    图  14  3种模型固化结束时内埋FBGs环氧树脂位移云图

    Figure  14.  Displacement contour of epoxy resin with embedded FBGs at the end of curing for the three models

    表  1  2511-1 A/BS环氧树脂在80℃恒温固化不同时间后的玻璃化转变温度和固化度

    Table  1.   Glass transition temperature and curing degree of 2511-1 A/BS epoxy resin after curing at 80℃ for different time

    t/minTg/℃α
    60 25 0.734
    120 33 0.864
    180 59.7 0.925
    300 75 0.985
    −67.7 0
    81.6 1
    Notes:t—Resin curing time; TgGlass transition temperature; α—Curing degree of resin.
    下载: 导出CSV

    表  2  2511-1 A/BS环氧树脂热膨胀系数的参数值

    Table  2.   Parameter values of thermal expansion coefficients of 2511-1 A/BS epoxy resin

    ParameterValue
    T1/K2
    T2/K12
    αEXP1/℃−189.5×10−6
    αEXP2/℃−1194.5×10−6
    Notes: T1 and T2—Fitting values; αEXP1 and αEXP2—Fitting values of elastic modulus.
    下载: 导出CSV

    表  3  热分析中树脂的热特性

    Table  3.   Thermal properties of resins in thermal analysis

    ParameterValue
    ρr/(kg·m−3)1088
    Cpr/(J·(kg·K)−1)1800-1500
    kr/(W·(m·K)−1)0.16
    Notes: ρrDensity of resin; CprSpecific heat capacity of resin; krThermal conductivity coefficient of resin.
    下载: 导出CSV

    表  4  FBGs的计算参数

    Table  4.   Calculation parameters of FBGs

    ParameterValue
    ρFBGs/(kg·m−3)2500
    CpFBGs/(J·(kg·K)−1)966
    kFBGs/(W·(m·K)−1)1.1
    EFBGs/MPa72000
    νFBGs0.22
    αFBGs0
    Notes: ρFBGsDensity of FBGs; CpFBGsSpecific heat capacity of FBGs; kFBGsThermal conductivity coefficient of FBGs; EFBGsElastic modulus of FBGs; νFBGsPoisson's ratio of FBGs; αFBGs—Coefficient of thermal expansion of FBGs.
    下载: 导出CSV

    表  5  实验和仿真的内埋FBGs环氧树脂温度峰值对比

    Table  5.   Comparison of experimental and simulated temperature peaks of epoxy resin with embedded FBGs

    LocationTestFEM/%
    Tp/℃tm/minTp/℃tm/min
    TC116546.516446.50.6
    TC215346.715947.03.9
    TC313147.013447.72.3
    Notes: TpPeak temperature; tmTime corresponding to peak temperature; Peak temperature error between simulation and experiment.
    下载: 导出CSV

    表  6  实验和3种模型计算的内埋FBGs环氧树脂固化应变对比

    Table  6.   Comparison of curing strain of epoxy resin with embedded FBGs calculated by experiment and 3 models

    ParametersTestWithout FBGsTieCohesive
    Strain/10−6−3826.4−26356.7−5870.9−4053.2
    /%589.053.45.9
    Note: ∆—Strain error of simulation relative to experiment.
    下载: 导出CSV
  • [1] BARAN I, CINAR K, ERSOY N, et al. A review on the mechanical modeling of composite manufacturing processes[J]. Archives of Computational Methods in Engineering,2017,24(2):365-395. doi: 10.1007/s11831-016-9167-2
    [2] 张江涛, 尚云东, 张梅, 等. 复合材料固化相关黏弹性性能演化及残余应力分析[J]. 复合材料学报, 2017, 34(5):978-986.

    ZHANG Jiangtao, SHANG Yundong, ZHANG Mei, et al. Analysis on the process dependent viscoelastic properties and residual stresses of composites during cure[J]. Acta Materiae Compositae Sinica,2017,34(5):978-986(in Chinese).
    [3] HWANG S S, PARK S Y, KWON G C, et al. Cure kinetics and viscosity modeling for the optimization of cure cycles in a vacuum-bag-only prepreg process[J]. The International Journal of Advanced Manufacturing Technology,2018,99(9):2743-2753.
    [4] KHOUN L, RUI D O, MICHAUD V, et al. Investigation of process-induced strains development by fibre Bragg grating sensors in resin transfer moulded composites[J]. Composites Part A: Applied Science and Manufacturing,2011,42(3):274-282. doi: 10.1016/j.compositesa.2010.11.013
    [5] 朱路佳, 刘荣梅. 基于FBG的不同工艺下环氧树脂固化监测研究[J]. 压电与声光, 2017, 39(4):634-637, 642.

    ZHU Lujia, LIU Rongmei. Study on curing process monitoring of epoxy resin with different precesses based on fiber bragg grating[J]. Piezoelectrics & Acoustooptics,2017,39(4):634-637, 642(in Chinese).
    [6] FEDOROV A Y, KOSHELEVA N A, MATVEENKO V P, et al. Strain measurement and stress analysis in the vicinity of a fiber Bragg grating sensor embedded in a composite material[J]. Composite Structures,2020,239:111844. doi: 10.1016/j.compstruct.2019.111844
    [7] 福田武人, 白云英. 光纤传感器在监测RTM固化过程及复合材料健康状况中的应用[J]. 纤维复合材料, 2002, 19:56-61. doi: 10.3969/j.issn.1003-6423.2002.03.020

    FUKUDA Takehito, BAI Yunying. Application of optical fiber sensor in monitoring curing process of RTM and health condition of composite materials[J]. Fiber Composites,2002,19:56-61(in Chinese). doi: 10.3969/j.issn.1003-6423.2002.03.020
    [8] 武湛君, 张博明, 万里冰. 单根光纤光栅监测复合材料固化工艺过程多目标参量技术的研究[J]. 复合材料学报, 2004, 21(6):82-86. doi: 10.3321/j.issn:1000-3851.2004.06.014

    WU Zhanjun, ZHANG Boming, WAN Libing. Multi-parameters monitoring for fiber reinforced plastics with a single fiber Bragg gratings[J]. Acta Materiae Compositae Sinica,2004,21(6):82-86(in Chinese). doi: 10.3321/j.issn:1000-3851.2004.06.014
    [9] QI Y, JIANG D, JU S, et al. Investigation of strain history in fast and conventional curing epoxy matrix composites by FBGs[J]. Composites Science and Technology,2018,159:18-24. doi: 10.1016/j.compscitech.2018.02.019
    [10] 卢少微, 陈铎, 王晓强. 聚合物基复合材料制造过程在线监测技术研究进展[J]. 航空制造技术, 2017, 60(19):72-77.

    LU Shaowei, CHEN Duo, WANG Xiaoqiang. Review of in-situ cure monitoring techniques for polymer matrix composite manufacturing process[J]. Aeronautical Manufacturing Technology,2017,60(19):72-77(in Chinese).
    [11] 李雪芹, 刘刚, 张子龙, 等. 基于FBG应变监测的环氧树脂固化收缩及工艺参数优化[J]. 复合材料学报, 2016, 33:2151-2157.

    LI Xueqin, LIU Gang, ZHANG Zilong, et al. Curing shrinkage and process parameter optimization of epoxy resin based on FBG strain monitoring[J]. Acta Materiae Compositae Sinica,2016,33:2151-2157(in Chinese).
    [12] KHADKA S, HOFFMAN J, KUMOSA M. FBG monitoring of curing in single fiber polymer composites[J]. Composites Science and Technology,2020,198:108308. doi: 10.1016/j.compscitech.2020.108308
    [13] HOFFMAN J, KHADKA S, KUMOSA M. Determination of gel point and completion of curing in a single fiber/polymer composite[J]. Composites Science and Technology,2020,188:107997. doi: 10.1016/j.compscitech.2020.107997
    [14] KHADKA S, KUMOSA M, HOFFMAN J. Determination of residual stresses in a single FBG fiber/epoxy composite system[J]. Composites Science and Technology,2022,218:109138. doi: 10.1016/j.compscitech.2021.109138
    [15] 康峻铭, 孙亮亮, 王继辉, 等. 电子封装用环氧树脂固化温度与应变的三维有限元模拟[J]. 复合材料学报, 2019, 36(10):2330-2340.

    KANG Junming, SUN Liangliang, WANG Jihui, et al. Three-dimensional finite element simulation of remperature and strain in epoxy resin used to electronic packaging during curing[J]. Acta Materiae Compositae Sinica,2019,36(10):2330-2340(in Chinese).
    [16] 丁安心, 俞星辰, 杨鹏, 等. 一种灌封结构用环氧树脂的固化行为表征和模拟[J]. 复合材料学报, 2022, 39(4):1824-1833.

    DING Anxin, YU Xingchen, YANG Peng, et al. Characterization and simulation on the on the cure behavior of epoxy resin for encapsulation structure[J]. Acta Materiae Compositae Sinica,2022,39(4):1824-1833(in Chinese).
    [17] 李小阳, 康峻铭, 朱子钊, 等. 环氧树脂灌封结构固化行为 数值模拟和工艺优化[J]. 复合材料学报, 2021, 38(9):2907-2917.

    LI Xiaoyang, KANG Junming, ZHU Zizhao, et al. Numerical simulation on cure behavior and optimization on cure cycle for encapsulation struture of epoxy resin[J]. Acta Materiae Compositae Sinica,2021,38(9):2907-2917(in Chinese).
    [18] MINAKUCHI S. In situ characterization of direction-dependent cure-induced shrinkage in thermoset composite laminates with fiber-optic sensors embedded in through-thickness and in-plane directions[J]. Journal of Composite Materials,2015,49:1021-1034. doi: 10.1177/0021998314528735
    [19] HU H, LI S, WANG J, et al. Monitoring the gelation and effective chemical shrinkage of composite curing process with a novel FBG approach[J]. Composite Structures, 2017, 176: 187–194.
    [20] 郭章新, 韩小平, 李金强, 等. 纤维缠绕复合材料固化过程残余应力/应变的三维树脂模拟[J]. 复合材料学报, 2014, 31(4):1006-1012.

    GUO Zhangxin, HAN Xiaoping, LI Jinqiang, et al. Three-dimensional simulation of residual stress/strain for filament-wound composites during curing process[J]. Acta Materiae Compositae Sinica,2014,31(4):1006-1012(in Chinese).
    [21] HU H, CAO D, PAVIER M, et al. Investigation of non-uniform gelation effects on residual stress-es of thick laminates based on tailed FBG sensor[J]. Composite Structures,2018,202:1361-1372. doi: 10.1016/j.compstruct.2018.06.074
    [22] BARAN I, AKKERMAN R, HATTEL JH. Material characterization of a polyester resin system for the pultrusion process[J]. Composites Part B: Engineering,2014,64:194-201.
    [23] KHOUN L, CENTEA T, HUBERT P. Characterization methodology of thermoset resins for the processing of compo-site materials—Case study: CYCOM 890 RTM epoxy resin[J]. Journal of Composite Materials,2010,44(11):1397-1415. doi: 10.1177/0021998309353960
    [24] 武佳男, 倪爱清, 张盛, 等. 真空辅助成型工艺环氧树脂体系化学流变特性研究[J]. 复合材料科学与工程, 2016, 11:32-38. doi: 10.3969/j.issn.1003-0999.2016.11.006

    WU Jia'nan, NI Aiqing, ZHANG Sheng, et al. Study on rheological properties of epoxy in vari process[J]. Compo-sites Science and Engineering,2016,11:32-38(in Chinese). doi: 10.3969/j.issn.1003-0999.2016.11.006
    [25] 杨喜, 李书欣, 王继辉, 等. 一种实时监测环氧树脂固化过程中化学收缩的方法[J]. 复合材料科学与工程, 2016, 1:74-78. doi: 10.3969/j.issn.1003-0999.2016.05.013

    YANG Xi, LI Shuxin, WANG Jihui, et al. A real-time monitoring method for the chemical shrinkage in the curing process of epoxy resin[J]. Composites Science and Engineering,2016,1:74-78(in Chinese). doi: 10.3969/j.issn.1003-0999.2016.05.013
  • 加载中
图(14) / 表(6)
计量
  • 文章访问数:  346
  • HTML全文浏览量:  122
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-08
  • 修回日期:  2022-04-01
  • 录用日期:  2022-04-05
  • 网络出版日期:  2022-04-20
  • 刊出日期:  2023-03-15

目录

    /

    返回文章
    返回