Abstract:
Recently, barrier packaging products made from biodegradable materials have attracted wide attention. However, most reported methods are still difficult to achieve both high oxygen barrier and water vapor resistance in paper-based packaging. In this study, high-barrier transparent paper-based materials was prepared based on coating technology, where homemade transparent paper served as a substrate, while the natural biomass materials (starch and guar gum) and environmental-friendly waterborne resin functioned as coatings. The results show that the barrier effect between different coatings is fully utilized, which reduces the adsorption of external water vapor on the surface of paper-based materials, and increases the difficulty of diffusion of water molecules and oxygen molecules inside the paper. The oxygen transmission rate and water vapor transmission rate of our resulting transparent paper-based materials are low to 2.46 cm
3/(m
2·day·0.1 MPa) and 107.09 g/(m
2·day), respectively, which show a significant reduction of 92% and 94% compared to the uncoated transparent paper. Meanwhile, the surface water absorption of paper and board (Cobb) values of transparent paper-based materials with waterproof layer are less than 1 g/m
2, and the contact angles are greater than 90°, showing good hydrophobicity and water resisting property. In short, we provided a simple and low-cost technical route to manufacture performance-adjustable paper, suggesting a great potential to achieve industrialization and partially replace plastic packaging.