留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多层涂布工艺的高阻隔透明纸基材料的制备与性能

邱格 陈港 魏渊 钱杨杨 雷春发

邱格, 陈港, 魏渊, 等. 基于多层涂布工艺的高阻隔透明纸基材料的制备与性能[J]. 复合材料学报, 2023, 40(3): 1484-1493. doi: 10.13801/j.cnki.fhclxb.20220414.002
引用本文: 邱格, 陈港, 魏渊, 等. 基于多层涂布工艺的高阻隔透明纸基材料的制备与性能[J]. 复合材料学报, 2023, 40(3): 1484-1493. doi: 10.13801/j.cnki.fhclxb.20220414.002
QIU Ge, CHEN Gang, WEI Yuan, et al. Preparation and performance of high-barrier transparent paper-based materials via multi-coating technology[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1484-1493. doi: 10.13801/j.cnki.fhclxb.20220414.002
Citation: QIU Ge, CHEN Gang, WEI Yuan, et al. Preparation and performance of high-barrier transparent paper-based materials via multi-coating technology[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1484-1493. doi: 10.13801/j.cnki.fhclxb.20220414.002

基于多层涂布工艺的高阻隔透明纸基材料的制备与性能

doi: 10.13801/j.cnki.fhclxb.20220414.002
基金项目: 广东省自然科学基金(2021A1515010538);制浆造纸工程国家重点实验室项目(2020ZD02);国家重点研发计划(2018YFC1902102)
详细信息
    通讯作者:

    陈港,博士,教授,博士生导师,研究方向为造纸技术与特种纸 E-mail:papercg@scut.edu.cn

  • 中图分类号: TB332

Preparation and performance of high-barrier transparent paper-based materials via multi-coating technology

Funds: Natural Science Foundation of Guangdong Province (2021A1515010538); State Key Laboratory of Pulp and Paper Engineering (2020ZD02); National Key Research and Development Program (2018YFC1902102)
  • 摘要: 通过生物基可降解材料制造阻隔性包装的应用越来越受到人们的关注。然而,现有的技术仍较难同时实现纸基包装材料的高氧气阻隔性和水蒸气阻隔性。本研究以自制透明纸作为基底,采用天然高分子材料(淀粉、瓜尔胶)及环保水性防水剂为涂布层,通过涂布工艺制备了兼具高阻氧和阻水蒸气性能的透明纸基材料。结果表明,不同涂层之间充分发挥各自的阻隔作用,降低了外界水蒸气在纸基材料表面的吸附作用,同时增加了水分子和氧气分子在纸张内部的扩散难度;制得的透明纸基材料氧气透过率最低为2.46 cm3/(m2·day·0.1 MPa),水蒸气透过率仅为107.09 g/(m2·day),相比于未涂布的透明纸分别下降了92%和94%。同时,有防水层的透明纸基材料的纸与纸板表面吸水量(Cobb)值均小于1 g/m2,接触角大于90°,呈现出良好的疏水性和抗水特性。本文的制备工艺简便、制造成本较低、材料性能可控,有望在替塑包装中得到应用。

     

  • 图  1  (a) 透明纸基材料的制备工艺路线图;(b) 涂层/基底材料的化学结构式

    Figure  1.  (a) Schematics illustrating the preparation route of the transparent paper-based materials; (b) Chemical structure of the coating/substrate materials

    PS—Waterproof and starch; PGS—Waterproof , cationic guar gum and starch

    图  2  透明纸基材料的FTIR图谱

    Figure  2.  FTIR spectra of the transparent paper-based materials

    图  3  透明纸基材料的光学照片及透光率 (a)、平面 (b) 和横截面 (c) 的SEM图像

    Figure  3.  Digital photos and optical transmittance (a), SEM images of the surface (b) and cross-sections (c) of the transparent paper-based materials

    RTP—Transparent paper

    图  4  透明纸基材料的纸与纸板表面吸水量(Cobb)值 (a)、水接触角 (b)以及在50%、75%、90%相对湿度下的水蒸气透过率 (c) 和氧气透过率 (d)

    Figure  4.  Cobb values (a), WCA (b) and WVTR (c) at 50%, 75% and 90% relative humidity and OTR (d) of the transparent paper-based materials

    图  5  外界分子在纸基材料中迁移过程示意图及涂层间的相互作用

    Figure  5.  Schematic illustrating the migration process of small molecules in the paper-based materials and interaction between coatings

    图  6  透明纸基材料的TG (a) 和DTG (b) 曲线

    Figure  6.  TG (a) and DTG (b) curves of transparent paper-based materials

    图  7  透明纸基材料的再制浆及抄纸过程

    Figure  7.  Re-pulping and papermaking processes of the transparent paper-based materials

    表  1  涂层/基底信息及涂布方式

    Table  1.   Coating/substrate information and coating method

    SampleSubstate grammage/(g·m−2)Coatings weight /(g·m−2)Thickness/µmCoating method
    TPBottomMediumTop
    TP90 00 0 80.06
    S/TP90100 0 98.70Single
    PS/TP9010010103.04Single
    PGS/TP90100.610103.11Single
    2PGS/TP90100.610117.70Double
    下载: 导出CSV

    表  2  透明纸基材料的阻隔性测试结果汇总

    Table  2.   Summary results of the barrier performance of the transparent paper-based materials

    SampleCobb value/(g·m−2)WCA/(°)WVTR/(g·m−2·day−1)OTR/(cm3·m−2·day−1·
    0.1 MPa−1)
    50%RH75%RH90%RH
    TP 53.05±2.89 49±4.4 1808.26 1921.23 2290.46 32.98±2.94
    S/TP 120.81±2.52 65±3.6 1989.92 2043.96 2374.00 3.65±0.58
    PS/TP 0.66±0.01 101±2.6 334.77 468.96 667.84 2.83±0.39
    PGS/TP 0.65±0.03 103±2.6 249.45 359.83 510.14 2.48±0.03
    2PGS/TP 0.63±0.02 102±2.0 107.09 160.88 225.28 2.46±0.05
    Notes: WCA, WVTR and OTR—Water contact angle, water vapor transmission rate and oxygen transmission rate, respectively; Cobb—Surface water absorption of paper and board; RH—Relative humidity.
    下载: 导出CSV

    表  3  本研究中透明纸基材料与文献报道的材料阻隔性能对比

    Table  3.   Comparison of barrier properties of the transparent paper-based materials in this study compared with other materials in the literature

    MaterialTest conditionsWVTR/(g·m−2·day−1)Test conditionsOTR/(cm3·m−2·day−1·0.1 MPa−1)Ref.
    PET 38℃, 90%RH 5.40 23℃ 14.10 [23]
    PA 38℃, 90%RH 270.30 23℃ 40.10 [23]
    CGG/TOCNs 75%RH 68.52 23℃, 40%RH 5.56 [25]
    MFC/AL 23℃, 50%RH 123.00 [26]
    CNF-GO 23℃, 90%RH 28.57 [27]
    Starch-based film 38℃, 90%RH 1849.08 23℃ 12.87 [28]
    2PGS/TP 38℃, 50%RH 107.09 23℃ 2.46 This paper
    Notes: PET—Polyethylene glycol terephthalate; PA—Polyamide; CGG/TOCNs—Cationic guar gum/2,2,6,6-tetramethylpiperidine nitrogen oxide (TEMPO) oxidized cellulose nanofiber; MFC/AL—Microfibrillated cellulose/alkali lignin; CNF-GO—Cellulose nanofiber-graphene oxide.
    下载: 导出CSV
  • [1] 宋岩. 国家发展改革委就《“十四五”塑料污染治理行动方案》答记者问[EB/OL]. 2021[2021-12-20]. http://www.gov.cn/zhengce/2021-09/16/content _5637607.htm.

    SONG Yan. The national development and reform commission answered reporters' questions on the Action Plan for Plastic Pollution Control in the 14th Five-Year Plan[EB/OL]. 2021[2021-12-20]. http://www.gov.cn/zhengce/2021-09/16/content _5637607.htm(in Chinese).
    [2] 何北海, 张美云. 造纸原理与工程[M]. 北京: 中国轻工业出版社, 2017.

    HE Beihai, ZHANG Meiyun. Papermaking principles and engineering[M]. Beijing: China Light Industry Press, 2017(in Chinese).
    [3] 郝晓秀, 周云令, 付春英, 等. 包装用淋膜纸的研究进展[C]//中国造纸学会第十八届学术年会论文集, 2018: 202-207.

    HAO Xiaoxiu, ZHOU Yunling, FU Chunying, et al. Research progress on the packaging of film paper[C]//China Paper Society's 18th Annual Conference Paper Collection, 2018: 202-207(in Chinese).
    [4] 吴新磊, 景宜. 壳聚糖-蒙脱土与壳聚糖-高岭土纳米复合涂料流变性及其对纸张阻隔性能的影响[J]. 中国造纸学报, 2016, 31(2):1-6.

    WU Xinlei, JING Yi. Rheology of chitosan-mont morillonite and chitosan-kaolin nanocomposite coatings and the effects on paper barrier properties[J]. Transactions of China Pulp and Paper,2016,31(2):1-6(in Chinese).
    [5] 李梓源, 张金柱, 王鹏辉, 等. 改性纤维素纳米纤丝涂布制备高阻隔长纤维薄页纸的研究[J]. 中国造纸, 2020, 39(11): 10-17.

    LI Ziyuan, ZHANG Jinzhu, WANG Penghui, et al. Study on the preparation of high barrier long fiber thin paper by modified cellulose nanofiber silk coating[J]. China Pulp & Paper, 2020, 39(11): 10-17(in Chinese).
    [6] TYAGI P, HUBBE M A, LUCIA L, et al. High performance nanocellulose-based composite coatings for oil and grease resistance[J]. Cellulose,2018,25(6):3377-3391. doi: 10.1007/s10570-018-1810-7
    [7] TAYEB A H, TAJVIDI M, BOUSFIELD D. Paper-based oil barrier packaging using lignin-containing cellulose nano-fibrils[J]. Molecules,2020,25(6):1344. doi: 10.3390/molecules25061344
    [8] BIDEAU B, BRAS J, ADOUI N, et al. Polypyrrole/nanocellulose composite for food preservation: Barrier and antioxidant characterization[J]. Food Packaging and Shelf Life,2017,12:1-8. doi: 10.1016/j.fpsl.2017.01.007
    [9] SAINI A, SHARMA D, XIA Y, et al. Layer-by-layer assembly of cationic guar gum, cellulose nanocrystals and hydroxypropyl methylcellulose based multilayered compo-site films[J]. Cellulose,2021(13):8445-8457.
    [10] LIU S Y, LI X X, CHEN L, et al. Investigating the H2O/O2 selective permeability from a view of multi-scale structure of starch/SiO2 nanocomposites[J]. Carbohydrate Polymers,2017,173:143-149.
    [11] ZHANG D, CHEN L, CAI J, et al. Starch/tea polyphenols nanofibrous films for food packaging application: From facile construction to enhance mechanical, antioxidant and hydrophobic properties[J]. Food Chemistry,2021,360(4):129922.
    [12] 刘扬眉, 向斌, 操恺. 食品包装淀粉基生物降解薄膜阻氧性研究[J]. 中国包装, 2014, 34(11):51-52. doi: 10.3969/j.issn.1003-062X.2014.11.022

    LIU Yangmei, XIANG Bin, CAO Kai. Study on the oxygen resistance of food packaging starch-based biodegradable films[J]. China Packaging,2014,34(11):51-52(in Chinese). doi: 10.3969/j.issn.1003-062X.2014.11.022
    [13] ALMASI H, GHANBARZADEH B, ENTEZAMI A. Physicochemical properties of starch-CMC-nanoclay biodegradable films[J]. International Journal of Biological Macromolecules,2010,46(1):1-5. doi: 10.1016/j.ijbiomac.2009.10.001
    [14] ZAHIRUDDIN S M M, OTHMAN S H, TAWAKKAL I S M A, et al. Mechanical and thermal properties of tapioca starch films plasticized with glycerol and sorbitol[J]. Food Research,2018,3(2):160-166.
    [15] OTHMAN S H, NORDIN N, AZMAN N, et al. Effects of nanocellulose fiber and thymol on mechanical, thermal, and barrier properties of corn starch films[J]. International Journal of Biological Macromolecules,2021,183(3):1352-1361.
    [16] PATIL N V, NETRAVALI A N. Nonedible starch based “green” thermoset resin obtained via esterification using a green catalyst[J]. ACS Sustainable Chemistry & Engineering,2016,4(3):1756-1764.
    [17] 中华人民共和国国家质量监督检验检疫总局. 纸和纸板吸水性的测定 可勃法: GB/T 1540—2002[S]. 北京: 中国标准出版社, 2002.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Paper and board—Determination of water absorption-Cobb method: GB/T 1540—2002[S]. Beijing: Standards Press of China, 2002(in Chinese).
    [18] 中华人民共和国化学工业部. 塑料薄膜和片材透水蒸气性试验方法(杯式法): GB/T 1037—1988[S]. 北京: 中国标准出版社, 1988.

    Ministry of Chemical Industry of the People's Republic of China. Test method for water vapor transmission of plastic film and sheet-Cup method: GB/T 1037—1988[S]. Beijing: Standards Press of China, 1988(in Chinese).
    [19] 国家质量技术监督局. 塑料薄膜和薄片气体透过性试验方法(压差法): GB/T 1038—2000[S]. 北京: 中国标准出版社, 2000.

    State Administration of Quality and Technical Supervision. Plastics-Film and sheeting-Determination of gas transmission-Differential-Pressure method: GB/T 1038—2000[S]. Beijing: Standards Press of China, 2000(in Chinese).
    [20] 中华人民共和国国家质量监督检验验疫总局. 透明塑料透光率和雾度的测定: GB/T 2410—2008[S]. 北京: 中国标准出版社, 2008.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Determination of the luminous transmittance and haze of transparent plastics: GB/T 2410—2008[S]. Beijing: Standards Press of China, 2008(in Chinese).
    [21] HE D B, LI L H, LI Q, et al. Synergistic interaction and gelation in cationic guar gum-sodium alginate system[J]. Wuhan University Journal of Natural Ences,2004,9(3):371-374. doi: 10.1007/BF02907896
    [22] NI Y H, AN X Y, et al. Oil/water interfaces of guar gum-based biopolymer hydrogels and application to their separation[J]. Carbohydrate Polymers,2017,169:9-15. doi: 10.1016/j.carbpol.2017.03.096
    [23] 祝爱萍, 麦伟明, 林锡康. 几种食品包装用塑料膜阻透性能比较[J]. 包装工程, 2018, 39(1):74-78.

    ZHU Aiping, MAI Weiming, LIN Xikang. Comparison of the resistance properties of plastic film for several food packagings[J]. Packaging Engineering,2018,39(1):74-78(in Chinese).
    [24] SU Y, BO Y, LIU J, et al. Prospects for replacement of some plastics in packaging with lignocellulose materials: A brief review[J]. Bioresources,2018,13(2):4550-4576.
    [25] DAI L, LONG Z, CHEN J, et al. Robust guar gum/cellulose nanofibrils multilayer films with good barrier properties[J]. ACS Applied Materials& Interfaces,2017,9(6):5477-5485.
    [26] WANG W, GU F, DENG Z, et al. Multilayer surface construction for enhancing barrier properties of cellulose-based packaging[J]. Carbohydrate Polymers,2020,255(4):117431.
    [27] MIANEHROW H, RE G L, CAROSIO F, et al. Strong reinforcement effects in 2D cellulose nanofibril-graphene oxide (CNF-GO) nanocomposites due to GO-induced CNF ordering[J]. Journal of Materials Chemistry A,2020,8(34):17608-17620. doi: 10.1039/D0TA04406G
    [28] 王飞. 淀粉基生物降解包装膜阻隔性验证测试[J]. 中国包装, 2011(11):32-34. doi: 10.3969/j.issn.1003-062X.2011.11.009

    WANG Fei. Barrier verification test of starch-based biodegradable packaging film[J]. China Packaging,2011(11):32-34(in Chinese). doi: 10.3969/j.issn.1003-062X.2011.11.009
    [29] LEI C F, WEI Y, QIAN Y Y, et al. Large-scale manufacture of recyclable bioplastics from renewable cellulosic biomass derived from softwood kraft pulp[J]. ACS Applied Polymer Materials,2022,4(2):1334-1343. doi: 10.1021/acsapm.1c01729
    [30] TAUNK K, BEHARI K. Graft copolymerization of acrylic acid onto guar gum[J]. Journal of Applied Polymer Science,2000,79:39-44.
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  621
  • HTML全文浏览量:  205
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-28
  • 修回日期:  2022-03-25
  • 录用日期:  2022-04-06
  • 网络出版日期:  2022-04-15
  • 刊出日期:  2023-03-15

目录

    /

    返回文章
    返回