Investigation of the bonding performance of a protein dispersed carbon nanotube/epoxy adhesive
-
摘要: 碳纳米管/环氧树脂因其优良的力学与粘结性能可广泛应用于航空航天等高端领域结构件的胶结连接。然而如何有效降低碳纳米管的团聚性,保证制备工艺的低成本与绿色环保是该纳米粘结剂能够实际应用的关键。为此,本文提出一种基于蛋白质分散的碳纳米管增强环氧树脂粘接剂并对其粘结性能进行了研究。结果表明:经过酸或碱性环境变性处理的大豆分离蛋白能够有效降低碳纳米管的团聚性并显著提高环氧树脂的粘接性能,当碳纳米管质量分数为0.1wt%时,经酸、碱性处理的大豆分离蛋白-碳纳米管/环氧树脂粘结剂的粘结性能增幅分别为26.6%、26.7%;而当碳纳米管质量分数增加到0.3wt%时,两种处理方法的大豆分离蛋白-碳纳米管/环氧树脂粘结剂的粘结性能增幅分别为10.2%和18.3%,碱处理结果比酸处理提升79%。
-
关键词:
- 碳纤维增强树脂基复合材料 /
- 大豆分离蛋白 /
- 粘接性能 /
- 改性 /
- 表面处理
Abstract: Carbon nanotube (CNT)/epoxy resin can be widely used to bond advanced structural parts in the aerospace field due to its excellent mechanical and bonding properties. However, how to effectively reduce the agglomeration of carbon nanotubes and ensure low cost and environmental protection of the preparation process is the key to the practical application of the nano-binder. Therefore, this paper proposes a protein dispersed carbon nanotube reinforced epoxy resin adhesive and investigates its bonding performance. The results show that the soy protein isolate (SPI) after a certain acid or alkali denaturation treatment can effectively reduce the agglomeration of carbon nanotubes and significantly improve the bonding performance of epoxy resin. When the CNT loading is 0.1wt%, the bonding property of acid and alkali treated SPI-CNT/epoxy is increased by 26.6% and 26.7%. While the CNT loading increases to 0.3wt%, the bonding property enhancement of the two treated methods comes to 10.2% and 18.3%, the alkali method is 79% higher than the acid one. -
图 3 (a)质量分数0.1wt%下不同改性处理CNT动态散射实验测量粒子直径;(b) 图3(a)局部放大图;(c)静置一周后测量改性CNT粒子直径
SPI—Soy protein isolate; CNT—Carbon nanotube
Figure 3. (a) Particle diameters measured by dynamic scattering experiments of CNT with different modification treatments; (b) Partial enlarged view of Fig. 3(a); (c) Particle diameters of modified CNT measured after standing for a week
-
[1] YUDHANTO A, ALFANO M, LUBINEAU G. Surface preparation strategies in secondary bonded thermoset-based composite materials: A review[J]. Applied Science and Manufacturing,2021,147:106443. doi: 10.1016/j.compositesa.2021.106443 [2] AMITKUMAR R, ASOKAN R, JHANJI K P, et al. Investigation of tensile properties of carbon/epoxy composite joints with and without carbon nanotubes[J]. International Journal of Vehicle Structures Systems,2019,11(2):209-213. [3] KAHRAMAN R, AL-HARTHI M. Moisture diffusion into aluminum powder-filled epoxy adhesive in sodium chloride solutions[J]. International Journal of Adhesion and Adhesives,2005,25(4):337-341. doi: 10.1016/j.ijadhadh.2004.10.003 [4] ALIAKBARI M, JAZANI O M, SOHRABIAN M, et al. Multi-nationality epoxy adhesives on trial for future nanocomposite developments[J]. Progress in Organic Coatings,2019,133:376-386. doi: 10.1016/j.porgcoat.2019.04.076 [5] HAO B, MU L, MA Q, et al. Stretchable and compressible strain sensor based on carbon nanotube foam/polymer nanocomposites with three-dimensional networks[J]. Composites Science and Technology,2018,163:162-170. doi: 10.1016/j.compscitech.2018.05.017 [6] GONG S, WU D, LI Y, et al. Temperature-independent piezoresistive sensors based on carbon nanotube/polymer nanocomposite[J]. Carbon,2018,137:188-195. doi: 10.1016/j.carbon.2018.05.029 [7] 朱劲, 单人为, 李琴, 等. 几种常规改性方法对大豆分离蛋白化学结构的影响[J]. 浙江林业科技, 2014(2): 5-8.ZHU Jin, SHAN Renwei, LI Qin, et al. Effect of conventional modification methods on chemical structure of soybean protein[J]. Journal of Zhejiang Forestry Science and Technology, 2014(2): 5-8(in Chinese). [8] CHEN J J, YAN L F, SONG W Y. Interfacial characteristics of carbon nanotube-polymer composites: A review[J]. Applied Science and Manufacturing,2018,114:149-169. doi: 10.1016/j.compositesa.2018.08.021 [9] ATA M S, POON R, SYED A M, et al. New developments in non-covalent surface modification, dispersion and electrophoretic deposition of carbon nanotubes[J]. Carbon,2018,130:584-598. doi: 10.1016/j.carbon.2018.01.066 [10] KUMAR P, SENGUPTA A, DEB A K S, et al. Poly(amidoamine) dendrimer functionalized carbon nanotube for efficient sorption of trivalent F-elements: A comparison between 1st and 2nd generation[J]. Chemitry Select,2017,2(3):975-985. doi: 10.1002/slct.201601550 [11] ZHU J, KIM J D, PENG H, et al. Improving the dispersion and integration of single-walled carbon nanotubes in epoxy composites through functionalization[J]. Nano Letters,2003,3(8):1107-1113. doi: 10.1021/nl0342489 [12] LI C C, LIN J L, HUANG S J. A new and acid-exclusive method for dispersing carbon multi-walled nanotubes in aqueous suspensions[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects,2007,297(1-3):275-281. [13] MA P C, SIDDIQUI N A, MAROM G, et al. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review[J]. Composites Part A: Applied Science and Manufacturing,2010,41(10):1345-1367. doi: 10.1016/j.compositesa.2010.07.003 [14] MADNI I, HWANG C Y, PARK S D, et al. Mixed surfactant system for stable suspension of multiwalled carbon nano-tubes[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects,2010,358(1-3):101-107. doi: 10.1016/j.colsurfa.2010.01.030 [15] HASHIM P K, BERGUEIRO J, MEIJER E W, et al. Supramolecular polymerization: A conceptual expansion for innovative materials[J]. Progress in Polymer Science,2020,105:101250. doi: 10.1016/j.progpolymsci.2020.101250 [16] GHOSH A, RAO K V, VOGGU R, et al. Non-covalent functionalization, solubilization of graphene and single-walled carbon nanotubes with aromatic donor and acceptor molecules[J]. Chemical Physics Letters,2010,488(4-6):198-201. doi: 10.1016/j.cplett.2010.02.021 [17] PIAO L, LIU Q, LI Y, et al. Adsorption of L-phenylalanine on single-walled carbon nanotubes[J]. Journal of Physical Chemistry C,2008,112(8):2857-2863. doi: 10.1021/jp077047s [18] WANG Z, CHEN Y. Supramolecular hydrogels hybridized with single-walled carbon nanotubes[J]. Macromolecules,2007,40(9):3402-3407. doi: 10.1021/ma0702593 [19] KINLOCH I A, SUHR J, LOU J, et al. Composites with carbon nanotubes and graphene: An outlook[J]. Science,2018,362(6414):547-553. doi: 10.1126/science.aat7439 [20] SUBRAMANIAN A S, TEY J N, ZHANG L Y, et al. Synergistic bond strengthening in epoxy adhesives using polydopa-mine/MWCNT hybrids[J]. Polymer, 2016, 82: 285-294. [21] GHOSH P K, PATEL A, KUMAR K. Adhesive joining of copper using nanofiller composite adhesive[J]. Polymer,2016,87:159-169. doi: 10.1016/j.polymer.2016.02.006 [22] LEE J, KIM J. Improvement of thermal conductivity and latent heat of cellulose film using surfactant and surface-treated CNT with stearic acid[J]. Composites Part A: Applied Science and Manufacturing,2022,156:106897.