多巴胺@氮化硼-碳纳米管/聚酰亚胺复合气凝胶太阳能蒸发器的制备与性能

Preparation and performance of dopamine@boron nitride-carbon nanotubes/polyimide composite aerogel solar-driven evaporator

  • 摘要: 利用太阳能蒸发器进行水蒸发是生产清洁用水的重要途径之一。为了提高聚酰亚胺(PI)气凝胶的太阳能蒸发性能,本文通过添加多巴胺改性氮化硼(PDA@BN)和羟基化碳纳米管(CNT),采用四定向冷冻干燥和亚胺化工艺制备了PDA@BN-CNT/PI复合气凝胶。研究了PDA@BN和CNT的加入对气凝胶的形貌结构、润湿性能、太阳能蒸发性能的影响。结果表明:PDA@BN-CNT/PI复合气凝胶不仅具有良好的亲水性和太阳能光热转换能力,而且其独特的低弯曲度管状结构促进了水在气凝胶内部的运输,提高了太阳能蒸发性能。该气凝胶在2 kW/m2光照下的蒸发速率为1.95 kg/(m2·h),并展现出优异的循环使用性能、化学稳定性和高效的污水净化能力。

     

    Abstract: It is one of the important ways to produce fresh water through solar-driven evaporator. In order to improve the solar-driven evaporation performance of polyimide (PI) aerogel, PDA@BN-CNT/PI composite aerogel was prepared by adding dopamine-modified boron nitride (PDA@BN) and hydroxylated carbon nanotubes (CNT) through four-directional freeze-drying and imidization. The influence of PDA@BN and CNT on the morphology, structure, wettability and solar-driven evaporation of the aerogel were studied. The results indicate that PDA@BN-CNT/PI aerogel has good hydrophilicity and solar photothermal conversion performance. Moreover, it exhibits unique low bending tubular structure, which is conducive to promoting the transportation of water inside the aerogel and improving the performance of solar-driven evaporator. The aerogel exhibits high evaporation rate of 1.95 kg/(m2·h) under 2 kW/m2 sun irradiation and excellent recycling performance, chemical stability and efficient wastewater purification ability.

     

/

返回文章
返回