留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高强高模碳纤维表面电化学氮化机制

乔伟静 田艳红 张学军

乔伟静, 田艳红, 张学军. 高强高模碳纤维表面电化学氮化机制[J]. 复合材料学报, 2023, 40(3): 1446-1454. doi: 10.13801/j.cnki.fhclxb.20220406.003
引用本文: 乔伟静, 田艳红, 张学军. 高强高模碳纤维表面电化学氮化机制[J]. 复合材料学报, 2023, 40(3): 1446-1454. doi: 10.13801/j.cnki.fhclxb.20220406.003
QIAO Weijing, TIAN Yanhong, ZHANG Xuejun. Forming mechanism of surface nitriding of high strength and high modulus carbon fiber by electrochemical modification[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1446-1454. doi: 10.13801/j.cnki.fhclxb.20220406.003
Citation: QIAO Weijing, TIAN Yanhong, ZHANG Xuejun. Forming mechanism of surface nitriding of high strength and high modulus carbon fiber by electrochemical modification[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1446-1454. doi: 10.13801/j.cnki.fhclxb.20220406.003

高强高模碳纤维表面电化学氮化机制

doi: 10.13801/j.cnki.fhclxb.20220406.003
详细信息
    通讯作者:

    田艳红,博士,副研究员,硕士生导师,研究方向为碳纤维制备及应用性能 E-mail:tianyh@mail.buct.edu.cn

  • 中图分类号: TB332

Forming mechanism of surface nitriding of high strength and high modulus carbon fiber by electrochemical modification

  • 摘要: 高温石墨化使高强高模碳纤维(CF)表面光滑,反应活性低,导致其复合材料界面粘接性能差。杂原子改性是改善CF表面反应活性的有效手段之一。采用循环伏安(CV)方法在有机复合电解液中对高强高模CF进行了表面氧化和氮化改性,采用CV优选的复合电解液进行恒流电化学氧化处理,研究了CV扫描次数和电解液中含氮有机物对CF表面化学组成的影响。电化学处理前后CF表面化学元素组成和微观形态变化通过XPS、SEM及拉曼光谱表征。基于实验数据探讨了CF表面含氮官能团的生成及转变机制。研究结果显示,有机溶剂、有机氮源和含硫铵盐的协同作用使CF表面N含量从0.28at%增至4.77at%。适量的水存在,可以使CF表面O含量显著提高。CF表面的含氧官能团可以与CO(NH2)2中的—NH2及电解液中的NH4+反应形成酰胺基团,随着反应时间延长,CF表面的酰胺N会先转变成氧化氮,随后转变成吡啶和吡咯N,并最终转换成石墨N。恒流电化学处理后CF/环氧树脂复合材料的层间剪切强度(ILSS)较未处理的提高了132%,同时CF拉伸强度略有提高,表明有机复合电解液是一种温和、有效的CF表面电化学处理液。

     

  • 图  1  三电极体系示意图

    Figure  1.  Sketch of the three electrodes system

    图  2  不同含氮无机物电解液中CF的CV曲线及XPS图谱:(a) E/U/S-2;(b) E/U/C-2;(c) E/U/P-2;(d) XPS曲线

    Figure  2.  CV curves of CF in different nitrogen-containing inorganic electrolytes: (a) E/U/S-2; (b) E/U/C-2; (c) E/U/P-2; (d) XPS survey spectra of CF

    图  3  不同含氮有机物电解液中CF的CV曲线及XPS图谱:(a) E/U/S;(b) E/S;(c) XPS曲线

    Figure  3.  CV curves of CF in different nitrogen-containing organic electrolyte solutions: (a) E/U/S; (b) E/S; (c) XPS spectra of CF

    图  4  CF的不同CV循环次数下XPS的高分辨N1s谱

    Figure  4.  XPS spectra of N1s under different CV cycles

    图  5  CF表面氮化反应历程

    Figure  5.  Schematic diagram of the CF surface nitridation reaction path

    图  6  不同水含量溶液处理后CF的SEM图像

    Figure  6.  SEM images of CF after treatment with different water content solutions

    图  7  电解液E/U/S-50中处理前后CF的拉曼图谱

    Figure  7.  Raman spectra of CF before and after treatment with E/U/S-50 electrolyte

    R—Ratio of relative intensity of D peak to G peak

    表  1  循环伏安(CV)实验参数

    Table  1.   Cyclic voltammetry (CV) experimental conditions

    ElectrolyteSampleScanning
    speed/(mV·s−1)
    EG/NH4HSO4E/S150
    EG/urea/NH4HSO4E/U/S150
    EG/urea/NH4HSO4/2wt%H2OE/U/S-2150
    EG/urea/NH4HCO3/2wt%H2OE/U/C-2150
    EG/urea/NH4H2PO3/2wt%H2OE/U/P-2150
    EG/urea/NH4HSO4E/U/S 20
    EG/urea/NH4HSO4/1wt%H2OE/U/S-1 20
    EG/urea/NH4HSO4/2wt%H2OE/U/S-2 20
    EG/urea/NH4HSO4/5wt%H2OE/U/S-5 20
    EG/urea/NH4HSO4/20wt%H2OE/U/S-20 20
    EG/urea/NH4HSO4/50wt%H2OE/U/S-50 20
    H2O/urea/NH4HSO4H2O/U/S 20
    Note: EG—Ethylene glycol.
    下载: 导出CSV

    表  2  不同CV循环次数下CF表面元素含量

    Table  2.   Element contents on CF surface after treatment with different CV cycles of E/U/S electrolyte

    Cycles01815205070
    O/at%4.976.598.529.3313.007.8010.30
    N/at%0.221.902.593.22 4.772.38 3.78
    下载: 导出CSV

    表  3  不同CV循环次数下CF表面的含氧官能团含量

    Table  3.   Contents of oxygen-containing functional groups on CF surface with different CV cycles

    CycleAtomic fraction of functional groups/at%
    C—CC—OH, C—N,
    C—O—R
    C=OCOOH
    COOR
    0 88.4 8.81 0.36 2.43
    1 76.3 12.64 0.23 10.83
    8 66.1 21.10 12.71
    15 68.6 19.33 12.07
    20 82.8 11.79 1.23 4.18
    50 90.3 6.87 1.72 1.02
    70 76.0 12.05 0.49 11.46
    下载: 导出CSV

    表  4  不同水含量下CV处理的CF表面元素组成

    Table  4.   Element contents on CF surface after CV treatment with different water content electrolytes

    SampleC/at%O/at%N/at%Si/at%
    E/U/S 88.14 7.80 2.38 1.68
    E/U/S-1 86.93 9.85 3.05 0.17
    E/U/S-2 78.55 16.59 4.74 0.12
    E/U/S-5 82.82 13.52 3.66 0.00
    E/U/S-20 79.98 15.59 4.31 0.13
    E/U/S-50 88.79 8.72 2.06 0.44
    H2O/U/S 95.06 4.26 0.49 0.19
    下载: 导出CSV

    表  5  电解液E/U/S-50中处理后CF力学性能变化

    Table  5.   Changes of mechanical properties of CF before and after treatment with E/U/S-50 electrolyte

    Sampleσ/MPaE/GPaε/%ILSS/MPa
    Untreated CF140525410.722
    Treated-CF144785670.851
    Untreated CF240825070.840
    Treated-CF242804990.860
    Notes: σ—Tensile strength; E—Tensile modulus; ε—Elongation at break; ILSS—Interlaminar shear strength.
    下载: 导出CSV
  • [1] WEN Z, XU C, QIAN X, et al. A two-step carbon fiber surface treatment and its effect on the interfacial properties of CF/EP composites: The electrochemical oxidation followed by grafting of silane coupling agent[J]. Applied Surface Science,2019,486:546-554. doi: 10.1016/j.apsusc.2019.04.248
    [2] DANIEL J E, KARYN J, ANDERS J B, et al. Improving the effects of plasma polymerization on carbon fiber using a surface modification pretreatment[J]. Composites Part A: Applied Science and Manufacturing,2021,143:106319. doi: 10.1016/j.compositesa.2021.106319
    [3] XIONG S, ZHAO Y, WANG Y, et al. Enhanced interfacial properties of carbon fiber/epoxy composites by coating carbon nanotubes onto carbon fiber surface by one-step dipping method[J]. Applied Surface Science,2021,546:149135. doi: 10.1016/j.apsusc.2021.149135
    [4] PAIVA M C, BERNARDO C A, NARDIN M. Mechanical, surface and interfacial characterization of pitch and PAN-based carbon fibers[J]. Carbon,2000,38(9):1323-1337. doi: 10.1016/S0008-6223(99)00266-3
    [5] YU J, MENG L, FAN D, et al. The oxidation of carbon fibers through K2S2O8/ AgNO3 system that preserves fiber tensile strength[J]. Composites Part B: Engineering,2014,60:261-267. doi: 10.1016/j.compositesb.2013.12.037
    [6] ZHANG L, KEIKO W. The influence of carboxyl group on nitrogen doping for defective carbon nanotubes toward oxygen reduction reaction[J]. Carbon,2022,189:369-376. doi: 10.1016/j.carbon.2021.12.087
    [7] LOPEZ R O, SANCHEZ G R, SCHULZ J M E, et al. On site formation of N-doped carbon nanofibers, an efficient electrocatalyst for fuel cell applications[J]. International Journal of Hydrogen Energy,2017,42(5):30339-30348.
    [8] FAN Y, ZHAO Z, ZHOU Q, et al. Nitrogen-doped carbon microfibers with porous textures[J]. Carbon,2013,58:128-133. doi: 10.1016/j.carbon.2013.02.040
    [9] RODRIGUEZ-CORVERA C L, FAJARDO-DIAZ J L, CORTES-LOPEZ A J, et al. Nitrogen-doped carbon fiber sponges by using different nitrogen precursors: Synthesis, characterization, and electrochemical activity[J]. Materials Today Chemistry,2019,14:100200. doi: 10.1016/j.mtchem.2019.100200
    [10] PARK S J, KIM M H, LEE J R, et al. Effect of fiber-polymer interactions on fracture toughness behavior of carbon fiber-reinforced epoxy matrix composites[J]. Journal of Colloid Interface Science,2000,228(2):287-291. doi: 10.1006/jcis.2000.6953
    [11] PEERA S G, SAHU A K, ARUNCHANDER A, et al. Nitrogen and fluorine co-doped graphite nanofibers as high durable oxygen reduction catalyst in acidic media for polymer electrolyte fuel cells[J]. Carbon,2015,93:130-142. doi: 10.1016/j.carbon.2015.05.002
    [12] MORITA T, TAKAMI N. Characterization of oxidized boron-doped carbon fiber anodes for Li-ion batteries by analysis of heat of immersion[J]. Electrochim Acta,2004,49(16):2591-2599. doi: 10.1016/j.electacta.2004.02.010
    [13] LU T, LI Q, SHAO J, et al. Nitrogen and sulfur co-doped porous carbons from polyacrylonitrile fibers for CO2 adsorption[J]. Journal of the Taiwan Institute of Chemical Engineers,2021,128:148-155. doi: 10.1016/j.jtice.2021.08.043
    [14] MA T Y, RAN J, DAI S, et al. Phosphorus-doped graphitic carbon nitrides grown in situ on carbon-fiber paper: Flexible and reversible oxygen electrodes[J]. Angewandte Chemie-International Edition,2014,54(15):1-6.
    [15] 刘福杰, 王浩静, 范立东, 等. MJ系列碳纤维微观结构的剖析[J]. 化工新型材料, 2009, 37(1):41-43.

    LIU Fujie, WANG Haojing, FAN Lidong, et al. Analysis on the microstructure of MJ series carbon fiber[J]. New Chemical Materials,2009,37(1):41-43(in Chinese).
    [16] 张莎, 田艳红, 张学军. 电化学氧化对高强高模碳纤维表面结构及力学性能的影响[J]. 复合材料学报, 2012, 29(3):1-8.

    ZHANG Sha, TIAN Yanhong, ZHANG Xuejun, et al. Effect of electrochemical oxidation on the surface structure and mechanical performance of high strength and high modulus carbon fibres[J]. Acta Materiae Compositae Sinica,2012,29(3):1-8(in Chinese).
    [17] 乔伟静, 田艳红, 张学军. 国产聚丙烯腈基高强高模碳纤维电化学氧化表面处理工艺[J]. 复合材料学报, 2018, 35(9):2449-2457.

    QIAO Weijing, TIAN Yanhong, ZHANG Xuejun. Electrochemical oxidation surface treatment of domestic polyacrylonitrile-based high strength and high modulus carbon fiber[J]. Acta Materiae Compositae Sinica,2018,35(9):2449-2457(in Chinese).
    [18] KAINOURGIOS P, KARTSONAKIS I A, DRAGATOGIANNIS D A, et al. Electrochemical surface functionalization of carbon fibers for chemical affinity improvement with epoxy resins[J]. Applied Surface Science,2017,416:593-604. doi: 10.1016/j.apsusc.2017.04.214
    [19] TIWARI S, BIJWE J. Surface treatment of carbon fibers-A review[J]. Procedia Technology,2014,14:505-512. doi: 10.1016/j.protcy.2014.08.064
    [20] DONNET J B, GUILPAIN G. Surface treatments and properties of carbon fibers[J]. Carbon,1989,27(5):749-757. doi: 10.1016/0008-6223(89)90209-1
    [21] BASOVA Y V, HATORI H, YAMADA Y, et al. Effect of oxidation–reduction surface treatment on the electrochemical behavior of PAN-based carbon fibers[J]. Electrochemistry Communications,1999,1(11):540-544. doi: 10.1016/S1388-2481(99)00112-5
    [22] BISMARCK A, KUMRU M E, SPRINGER J, et al. Surface properties of PAN-based carbon fibers tuned by anodic oxidation in different alkaline electrolyte systems[J]. Applied Surface Science,1999,143(1-4):45-55. doi: 10.1016/S0169-4332(98)00929-5
    [23] GEORGIOU P, WALTON J, SIMITZIS J. Surface modification of pyrolyzed carbon fibers by cyclic voltammetry and their characterization with XPS and dye adsorption[J]. Electrochimica Acta,2010,55(3):1207-1216. doi: 10.1016/j.electacta.2009.09.068
    [24] RAHMANI H, ASHORI A, VARNASERI N. Surface modification of carbon fiber for improving the interfacial adhesion between carbon fiber and polymer matrix[J]. Polymers for Advanced Technologies,2016,27(6):805-811. doi: 10.1002/pat.3720
    [25] LIU J, TIAN Y, CHEN Y, et al. Interfacial and mechanical properties of carbon fibers modified by electrochemical oxidation in (NH4HCO3)/(NH4)2C2O4·H2O aqueous compound solution[J]. Applied Surface Science,2010,256(21):6199-6204. doi: 10.1016/j.apsusc.2010.03.141
    [26] WANG Y Q, ZHANG F Q, SHERWOOD P M A. X-ray photoelectron spectroscopic studies of carbon fiber surfaces. 25. Interfacial interactions between PEKK polymer and carbon fibers electrochemically oxidized in nitric acid and degradation in a saline solution[J]. Chemistry of Materials,2001,13(3):832-841. doi: 10.1021/cm000555t
    [27] 徐显亮, 张月义, 马全胜, 等. 国产PAN基高强中模型碳纤维的电化学表面改性研究[J]. 玻璃钢/复合材料, 2016(12):81-85.

    XU Xianliang, ZHANG Yueyi, MA Quansheng, et al. Study on electrochemical surface modification of PAN-based carbon fiber of high strength and middle modulus[J]. Fibre Reinforced Plastics/Composites,2016(12):81-85(in Chinese).
    [28] QIAN X. Effect of ammonium-salt solutions on the surface properties of carbon fibers in electrochemical anodic oxidation[J]. Applied Surface Science, 2012, 259: 238-244.
    [29] 吴波, 郑帼, 孙玉, 等. 有机电解液电化学改性PAN基碳纤维的表面性能[J]. 材料工程, 2016, 44(9):52-57.

    WU Bo, ZHENG Guo, SUN Yu, et al. Surface properties of PAN-based carbon fibers modified by electrochemical oxidization in organic electrolyte systems[J]. Journal of Materials Engineering,2016,44(9):52-57(in Chinese).
    [30] HAN F, DUAN D, JING W, et al. Synthesis and plasma treatment of nitrogen-doped graphene fibers for high-perfor-mance supercapacitors[J]. Ceramics International,2022,48(2):2058-2067. doi: 10.1016/j.ceramint.2021.09.291
    [31] HOU X, HU Q, ZHANG P, et al. Oxygen reduction reaction on nitrogen-doped graphene nanoribbons: A density functional theory study[J]. Chemical Physics Letters, 2016, 663: 123-127.
    [32] ZENG K, WEI M H, LI C, et al. PPy-derived N, P co-doped hollow carbon fiber decorated with island-like Ni2P nanoparticles as bifunctional oxygen electrocatalysts[J]. Jour-nal of Electroanalytical Chemistry,2021,882:115013. doi: 10.1016/j.jelechem.2021.115013
    [33] KIM Y J, LEE H J, LEE S W, et al. Effects of sulfuric acid treatment on the microstructure and electrochemical performance of a polyacrylonitrile (PAN)-based carbon anode[J]. Carbon,2005,43(1):163-169. doi: 10.1016/j.carbon.2004.09.001
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  794
  • HTML全文浏览量:  351
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-03
  • 修回日期:  2022-03-18
  • 录用日期:  2022-03-26
  • 网络出版日期:  2022-04-07
  • 刊出日期:  2023-03-15

目录

    /

    返回文章
    返回