留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米SiO2@超支化PDMS复合超疏水涂层的制备与性能调控

刘静 雷西萍 于婷 陈浩男 樊凯

刘静, 雷西萍, 于婷, 等. 纳米SiO2@超支化PDMS复合超疏水涂层的制备与性能调控[J]. 复合材料学报, 2023, 40(2): 872-883. doi: 10.13801/j.cnki.fhclxb.20220331.002
引用本文: 刘静, 雷西萍, 于婷, 等. 纳米SiO2@超支化PDMS复合超疏水涂层的制备与性能调控[J]. 复合材料学报, 2023, 40(2): 872-883. doi: 10.13801/j.cnki.fhclxb.20220331.002
LIU Jing, LEI Xiping, YU Ting, et al. Construction and property regulation of nano-SiO2@hyperbranched PDMS composite superhydrophobic coating[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 872-883. doi: 10.13801/j.cnki.fhclxb.20220331.002
Citation: LIU Jing, LEI Xiping, YU Ting, et al. Construction and property regulation of nano-SiO2@hyperbranched PDMS composite superhydrophobic coating[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 872-883. doi: 10.13801/j.cnki.fhclxb.20220331.002

纳米SiO2@超支化PDMS复合超疏水涂层的制备与性能调控

doi: 10.13801/j.cnki.fhclxb.20220331.002
基金项目: 生态环境相关高分子材料教育部重点实验室开放基金(KF-18-01);西安建筑科技大学基础研究基金(ZR21026)Open Foundation Provided by Key Laboratory of Eco-functional Polymer Materials of Ministry of Education (KF-18-01); Basic Research Foundation of Xi'an University of Architecture and Technology (ZR21026)
详细信息
    通讯作者:

    雷西萍,博士,教授,博士生导师,研究方向为超疏水材料 E-mail: leixiping123456@163.com

  • 中图分类号: TB332

Construction and property regulation of nano-SiO2@hyperbranched PDMS composite superhydrophobic coating

  • 摘要: 超疏水涂层在实际应用中受化学腐蚀、刮擦磨损等外界环境的影响,易造成涂层老化、开裂甚至脱落,造成涂层失效。因此,针对这一问题,设计出具备耐候性的自修复超疏水表面:以超支化聚二甲基硅氧烷为柔性基底和低表面能物质,引入纳米二氧化硅构筑表面粗糙结构,制备超疏水涂层。当SiO2粒径为50 nm、固含量为30wt%时,得到了接触角为154.87°的超疏水涂层。经过5次胶带剥离试验,涂层表现出良好的机械稳定性。经历10次温差循环试验和24 h紫外光照射后,涂层表面接触角仍大于150°,表明涂层具有良好的耐候性。涂层经过80℃、2 h的热处理可修复划痕,表明该涂层具有一定的自修复功能。同时,Tafel及Nyquist测试结果表明,对基底进行超疏水处理可显著提高防腐性能,并且该涂层具有明显的自清洁效果。综上所述,本文所制备的纳米SiO2@超支化聚二甲基硅氧烷(PDMS)复合超疏水涂层具有自修复功能,为自修复超疏水涂层的开发提供了新的研究策略。

     

  • 图  1  超疏水涂层的制备过程示意图

    TMC—Trimesoyl chloride; A-PDMS—Diaminopropyl terminated polydimethylsiloxane; HB-PDMS—Hyperbranched polydimethylsiloxane; SiO2@HB-PDMS—SiO2@hyperbranched polydimethylsiloxane composite

    Figure  1.  Schematic diagram of preparation of superhydrophobic coating

    图  2  超支化聚二甲基硅氧烷(HB-PDMS)的反应机制和复合涂层化学结构表征:(a)HB-PDMS的化学结构;(b)A-PDMS、均苯三甲酰氯(TMC)和HB-PDMS的1H NMR图谱;HB-PDMS的13C NMR图谱(c)和凝胶渗透色谱(GPC)分子量分布曲线(d);(e)A-PDMS、HB-PDMS、SiO2和SiO2@HB-PDMS涂层的FTIR图谱

    Figure  2.  Reaction mechanism of hyperbranched-polydimethyl siloxane (HB-PDMS) and chemical structure characterization of composite coatings: (a) Chemical structure of HB-PDMS; (b) 1H NMR spectra of A-PDMS, trimesoyl chloride (TMC) and HB-PDMS; 13C NMR spectra (c) and molecular weight distribution curves (d) of gel permeation chromatography (GPC) of HB-PDMS; (e) FTIR spectra of A-PDMS, HB-PDMS, SiO2 and SiO2@HB-PDMS coatings

    δ—Chemical shift; THF—Tetrahydrofuran; dw/dlgM—Quantity distribution of polymers with different molecular weights

    图  3  不同SiO2粒径及固含量对SiO2@HB-PDMS复合涂层润湿性的影响

    Figure  3.  Effect of different SiO2 particle size and solid content on the wettability of SiO2@HB-PDMS composite coatings

    图  4  SiO2@HB-PDMS超疏水涂层的胶带剥离测试结果

    Figure  4.  Tape peeling test results of SiO2@HB-PDMS superhydrophobic coatings

    图  5  添加不同固含量SiO2纳米颗粒的SiO2@HB-PDMS复合涂层的微观形貌((a)~(d))与元素组成(e)

    Figure  5.  Microstructure ((a)-(d)) and elemental composition (e) of SiO2@HB-PDMS composite coatings with different solid content of SiO2 nanoparticles

    图  6  超支化PDMS涂层((a), (b))和SiO2@HB-PDMS超疏水涂层((c)~(f))的自修复光学显微镜照片;差示扫描量热曲线(g)和修复前后Tafel测试结果((h), (i))

    Figure  6.  Self-healing optical microscope images of hyperbranched-PDMS coatings ((a), (b)) and SiO2@HB-PDMS superhydrophobic coatings ((c)-(f)), DSC curves (g) and Tafel results ((h), (i)) before and after self-healing of hyperbranched-PDMS coatings and SiO2@HB-PDMS superhydrophobic coatings

    Tg—Glass transition temperature; i—Corrosion current density

    图  7  HB-PDMS涂层和SiO2@HB-PDMS涂层的温差试验 (a) 和耐紫外老化试验结果 (b)

    Figure  7.  Transmission spectra (a) and UV aging resistance test (b) of the HB-PDMS and SiO2@HB-PDM coatings

    图  8  涂覆SiO2@HB-PDMS涂层前后试样的电化学测试结果:(a) Tafel极化曲线;(b) Nyquist图

    Figure  8.  Electrochemical test results of samples before and after SiO2@HB-PDMS coating: (a) Tafel polarization curve; (b) Nyquist diagram

    RsSolution resistance between the reference electrode and specimens; RctCharge transfer resistance; RcoatResistance of the superhydrophobic coating; Cdl, CcoatDouble layer capacitance on metal surface and capacitance on coating itself, respectively; WWarburg resistance

    图  9  未处理玻璃 (a) 和SiO2@HB-PDMS超疏水涂层玻璃 (b) 的自清洁测试

    Figure  9.  Self-cleaning properties of uncoated glass (a) and SiO2@HB-PDMS superhydrophobic coated glass (b)

    表  1  不同SiO2粒径及固含量的SiO2@HB-PDMS复合涂层的划格试验测试结果

    Table  1.   Classification of cross-cut test results of SiO2@HB-PDMS composite coatings with different SiO2 particle size and solid content

    SiO2 particle size/nmCross-cut test results
    20wt%SiO230wt%SiO240wt%SiO250wt%SiO260wt%SiO2
    3001245
    5000345
    50003245
    下载: 导出CSV

    表  2  从极化曲线获得的HB-PDMS和SiO2@HB-PDMS涂层自修复测试前后的腐蚀参数

    Table  2.   Corrosion parameters obtained from potentiodynamic polarization curves with the self-healing tests on HB-PDMS and SiO2@HB-PDMS coatings

    SamplesEcorr/mVi/(μA·cm−2)
    HB-PDMS Original 188.2 0.330
    Scratched 171.6 0.486
    Healed 182.3 0.472
    SiO2@HB-PDMS Original 197.3 0.560
    Scratched −1091.3 0.886
    Healed −663.1 0.802
    Note: Ecorr—Corrosion potential.
    下载: 导出CSV
  • [1] FENG L, LI S, LI Y, et al. Super-hydrophobic surfaces: From natural to artificial[J]. Advanced Materials,2002,14(24):1857-1860. doi: 10.1002/adma.200290020
    [2] PATANKAR N A. Mimicking the lotus effect: Influence of double roughness structures and slender pillars[J]. Langmuir, 2004, 20: 8209-8213.
    [3] HUANG Z, GURNEY R S, WANG T, et al. Environmentally durable superhydrophobic surfaces with robust photocatalytic self-cleaning and self-healing properties prepared via versatile film deposition methods[J]. Journal of Colloid and Interface Science,2018,527:107-116. doi: 10.1016/j.jcis.2018.05.004
    [4] 汪雨微, 欧宝立, 鲁忆, 等. 功能化纳米TiO2/环氧树脂超疏水防腐复合涂层的制备与性能[J]. 复合材料学报, 2021, 38(12):3971-3985.

    WANG Yuwei, OU Baoli, LU Yi, et al. Preparation and pro-perties of functionalized nano-TiO2/epoxy resin superhydrophobic anticorrosive composite coating[J]. Acta Materiae Compositae Sinica,2021,38(12):3971-3985(in Chinese).
    [5] YANG H, GAO Y, QIN W, et al. A robust superhydrophobic surface on AA3003 aluminum alloy with intermetallic phases in-situ pinning effect for corrosion protection[J]. Journal of Alloys and Compounds,2022,898:163038.
    [6] 李君, 矫维成, 王寅春, 等. 超疏水材料在防/除冰技术中的应用研究进展[J]. 复合材料学报, 2022, 39(1):23-38.

    LI Jun, JIAO Weicheng, WANG Yinchun, et al. Research progress on application of superhydrophobic materials in anti-icing and de-icing technology[J]. Acta Materiae Compositae Sinica,2022,39(1):23-38(in Chinese).
    [7] ZENG D, LI Y, HUAN D, et al. Robust epoxy-modified superhydrophobic coating for aircraft anti-icing systems[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2021,628:127377.
    [8] ZHANG Y, ZHANG Y, CAO Q, et al. Novel porous oil-water separation material with super-hydrophobicity and super-oleophilicity prepared from beeswax, lignin, and cotton[J]. Science of the Total Environment,2020,706:135807.
    [9] WANG Y, LIU X, ZHANG H, et al. Superhydrophobic surfaces created by a one-step solution-immersion process and their drag-reduction effect on water[J]. RSC Advances,2015,5(24):18909-18914. doi: 10.1039/C5RA00941C
    [10] VERHO T, BOWER C, ANDREW P, et al. Mechanically durable superhydrophobic surfaces[J]. Advanced Materials,2011,23(5):673-678. doi: 10.1002/adma.201003129
    [11] NAZEER A A, MADKOUR M. Potential use of smart coatings for corrosion protection of metals and alloys: A review[J]. Journal of Molecular Liquids, 2018, 253: 11-22.
    [12] LU Y, SATHASIVAM S, SONG J, et al. Robust self-cleaning surfaces that function when exposed to either air or oil[J]. Science,2015,347(6226):1132-1135. doi: 10.1126/science.aaa0946
    [13] WANG X, LIU X, ZHOU F, et al. Self-healing superamphiphobicity[J]. Chemical Communications,2011,47(8):2324-2326. doi: 10.1039/C0CC04066E
    [14] PAN S, CHEN M, WU L. Smart superhydrophobic surface with restorable microstructure and self-healable surface chemistry[J]. ACS Applied Materials & Interfaces,2020,12(4):5157-5165.
    [15] YI B, LIU P, HOU C, et al. Dual-cross-linked supramolecular polysiloxanes for mechanically tunable, damage-healable and oil-repellent polymeric coatings[J]. ACS Applied Materials & Interfaces,2019,11(50):47382-47389.
    [16] QIN L, CHEN N, ZHOU X, et al. A superhydrophobic aerogel with robust self-healability[J]. Journal of Materials Chemistry A,2018,6(10):4424-4431. doi: 10.1039/C8TA00323H
    [17] YANG L, TAN X, WANG Z, et al. Supramolecular polymers: Historical development, preparation, characterization, and functions[J]. Chemical Reviews,2015,115(15):7196-7239. doi: 10.1021/cr500633b
    [18] YANAGISAWA Y, NAN Y, OKURO K, et al. Mechanically robust, readily repairable polymers via tailored noncovalent cross-linking[J]. Science,2018,359(6371):72-76. doi: 10.1126/science.aam7588
    [19] CUI X, SONG Y, WANG J P, et al. Self-healing polymers with tunable mechanical strengths via combined hydrogen bonding and zinc-imidazole interactions[J]. Polymer,2019,174:143-149. doi: 10.1016/j.polymer.2019.04.060
    [20] WANG H, LIU H, CAO Z, et al. Room-temperature autonomous self-healing glassy polymers with hyperbranched structure[J]. Proceedings of the National Academy of Sciences of the United States of America,2020,117(21):11299-11305. doi: 10.1073/pnas.2000001117
    [21] WANG Y, JIANG D, ZHANG L, et al. Hydrogen bonding derived self-healing polymer composites reinforced with amidation carbon fibers[J]. Nanotechnology,2020,31(2):025704. doi: 10.1088/1361-6528/ab4743
    [22] FU Y, XU F, WENG D, et al. Superhydrophobic foams with chemical- and mechanical-damage-healing abilities enabled by self-healing polymers[J]. ACS Applied Materials & Interfaces,2019,11(40):37285-37294.
    [23] CAO C, YI B, ZHANG J, et al. Sprayable superhydrophobic coating with high processibility and rapid damage-healing nature[J]. Chemical Engineering Journal,2020,392:124834.
    [24] EUNHEE P, JAEHYUN H. Three-dimensionally interconnected porous pdms decorated with poly(dopamine) and prussian blue for floatable, flexible, and recyclable photo-fenton catalyst activated by solar light[J]. Applied Surface Science,2021,545:148990.
    [25] QIN L, CHU Y, ZHOU X, et al. Fast healable superhydrophobic material[J]. ACS Applied Materials & Interfaces,2019,11(32):29388-29395.
    [26] HOU R, LI G, ZHANG Y, et al. Self-healing polymers materials based on dynamic supramolecular motifs[J]. Progress in Chemistry,2019,31(5):690-698.
    [27] YING Y, LIU Z, FAN J, et al. Micelles-based self-healing coating for improved protection of metal[J]. Arabian Journal of Chemistry,2020,13(1):3137-3148. doi: 10.1016/j.arabjc.2018.09.005
    [28] 邓三喜. 掺杂纳米二氧化硅改性环氧树脂涂料[D]. 海口: 海南大学, 2019.

    DENG Sanxi. Epoxy resin coatings modified by doped nano-SiO2[D]. Haikou: Hainan University, 2019(in Chinese).
    [29] CHEN X, WANG P, ZHANG D, et al. Rational fabrication of superhydrophobic surfaces with coalescence-induced droplet jumping behavior for atmospheric corrosion protection[J]. Chemical Engineering Journal,2022,428:132029.
    [30] LI D W, WANG H Y, LIU Y, et al. Large-scale fabrication of durable and robust super-hydrophobic spray coatings with excellent repairable and anti-corrosion performance[J]. Chemical Engineering Journal,2019,367:169-179. doi: 10.1016/j.cej.2019.02.093
    [31] WANG N, XIONG D, DENG Y, et al. Mechanically robust superhydrophobic steel surface with antiicing, UV-durabi-lity, and corrosion resistance properties[J]. ACS Applied Materials & Interfaces,2015,7(11):6260-6272.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  846
  • HTML全文浏览量:  374
  • PDF下载量:  111
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-13
  • 修回日期:  2022-03-12
  • 录用日期:  2022-03-19
  • 网络出版日期:  2022-04-01
  • 刊出日期:  2023-02-15

目录

    /

    返回文章
    返回