留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

国外空天往返飞行器用先进树脂基复合材料研究与应用进展

杨智勇 张东 顾春辉 赵锐霞 左小彪 仝凌云 尚呈元 孙宏杰

杨智勇, 张东, 顾春辉, 等. 国外空天往返飞行器用先进树脂基复合材料研究与应用进展[J]. 复合材料学报, 2022, 39(7): 3029-3043. doi: 10.13801/j.cnki.fhclxb.20220325.004
引用本文: 杨智勇, 张东, 顾春辉, 等. 国外空天往返飞行器用先进树脂基复合材料研究与应用进展[J]. 复合材料学报, 2022, 39(7): 3029-3043. doi: 10.13801/j.cnki.fhclxb.20220325.004
YANG Zhiyong, ZHANG Dong, GU Chunhui, et al. Research and application of advanced resin matrix composites for aerospace shuttle vehicles abroad[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3029-3043. doi: 10.13801/j.cnki.fhclxb.20220325.004
Citation: YANG Zhiyong, ZHANG Dong, GU Chunhui, et al. Research and application of advanced resin matrix composites for aerospace shuttle vehicles abroad[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3029-3043. doi: 10.13801/j.cnki.fhclxb.20220325.004

国外空天往返飞行器用先进树脂基复合材料研究与应用进展

doi: 10.13801/j.cnki.fhclxb.20220325.004
基金项目: 国防基础科研计划项目(JCKY2019203-WDZC006)
详细信息
    通讯作者:

    杨智勇,博士,高级工程师,研究方向为树脂基结构复合材料及工艺  E-mail: yzy512007@163.com

  • 中图分类号: TB332

Research and application of advanced resin matrix composites for aerospace shuttle vehicles abroad

Funds: NIU Wen, YE Lei, LI Wenjie, et al.USA Defence Advaced Research projects Agency (DARPA) launches XS-1 aerospace vehicle program[J]Aerodynamic Missile Jounal, 2014, (11): 25-29(in Chinese).
  • 摘要: 先进树脂基复合材料技术是空天往返飞行器轻量化结构系统设计与研制的重要基础支撑。本文首先阐述了国外空天往返飞行器用先进树脂基复合材料类型及性能,典型轻质复合材料结构制造工艺应用及发展情况,然后介绍了世界主要国家空天往返飞行器的复合材料结构研制应用进展情况,包括美国X系列飞行器、日本HOPE-X空天飞行器的复合材料应用情况,最后介绍了飞行器复合材料结构的技术发展趋势。

     

  • 图  1  树脂基复合材料的树脂基体发展演变:环氧树脂

    Figure  1.  Development and evolution of resin matrix of resin matrix composites: Epoxies

    RFI—Resin film infiltration

    图  2  树脂基复合材料的树脂基体发展演变:耐中温和高温树脂

    Figure  2.  Development and evolution of resin matrix of resin matrix composites: Intermediate and high temperature resistant resins

    ATF—Advanced tactic fighter; PETI—Phenylethynyl terminated polyimide; BMI—Bismaleimide; HSCT—High speed civil transport; LARC—Langley research center; CASTS—Composites for advanced space transportation systems

    图  3  碳纤维复合材料在空天飞行器机身上的应用结构形式

    Figure  3.  Application of carbon fiber composite on the fuselage of aerospace vehicle

    图  4  典型贮箱间结构组成分布

    Figure  4.  Typical intertanks structural lay-out

    图  5  飞行器结构复合材料制造技术发展演变

    Figure  5.  Evolution of aero structural composites fabrication technology

    ACT—Advanced composite technology; QC—Quality control; JSF—Joint strike fighter; HSCT—High speed civil transport; RLV—Reusable launch vehicles

    图  6  X-33飞行器内部结构

    Figure  6.  Internal structure of X-33 aerospace vehicle

    图  7  X-33飞行器复合材料结构

    Figure  7.  Composite structure of X-33 aerospace vehicle

    图  8  X-33飞行器液氢贮箱内部结构及材料组成

    Figure  8.  Internal structure and material composition of X-33 aerospace vehicle LH2 tank

    图  9  X-37B飞行器

    Figure  9.  X-37B aerospace vehicle

    图  10  X-37B飞行器结构碳纤维复合材料组件示意图

    Figure  10.  Schematic diagram of carbon fiber composite components of X-37B aerospace vehicle structure

    图  11  装配中的X-37B飞行器机身

    Figure  11.  X-37B vehicle fuselage in assembly

    图  12  成功试验后运回的X-37B飞行器

    Figure  12.  X-37B vehicle returned after successful proof tests

    图  13  HOPE-X飞行器机身结构胶接

    Figure  13.  Fuselage structure bonding of HOPE-X vehicle

    图  14  HOPE-X飞行器结构组装

    Figure  14.  HOPE-X vehicle structural assembly

    图  15  IXV飞行器复合材料结构

    Figure  15.  IXV composite structure

    图  16  英国SKYLON飞行器

    Figure  16.  British SKYLON vehicle

    图  17  俄罗斯МРКН飞行器

    Figure  17.  Russian МРКН vehicle

    表  1  国外空天往返飞行器用典型树脂基复合材料信息

    Table  1.   Typical resin matrix composites for foreign aerospace shuttle vehicles

    No.TypeGradeReinforcementResinTg/℃Typical mechanical properties
    σ/MPaΕ/GPaτ/MPaCAI/MPa
    1CFRPT300/934T300(FA)9342106286383
    2CFRPT300/LTM45ELUDLTM45210
    (Post treatment at 175℃)
    133812879
    3CFRPIM7/977-2IM-7(UD)977-22052606169112254
    4CFRPIM7/8552IM-7(UD)85522012648162139214
    5CFRPIM7/5250-4IM-7(UD)5250-42882618162139248
    6CFRPIM7/5260IM-7(UD)52602742691165159345
    7CFRPT650/5250-4T650(FA)5250-427391072
    8GFRPF50-HRPGFPF
    9CFRPIM7/PETI-5IM-7(UD)PETI-5270
    (Post treatment at 350℃)
    191317099320
    Notes: CFRP—Carbon fiber reinforced resin matrix composites; GFRP—Glass fiber reinforced resin matrix composites; GF—Glass fiber; PF—Phenol formaldehyde resin; σ—Tensile strength; E—Tensile modulus; τ—Shear strength of the short beam; CAI—Compression strength after impacting; FA—Fabric; UD—Unidirectional band; F50-HRP—Grade of GFRP; Tg—Glass transition temperature: PETI-5—Polyimide resin; IM-7—Carbon fiber: LTM45—Epoxy resin.
    下载: 导出CSV

    表  2  国外空天往返飞行器典型复合材料结构及其制造方案

    Table  2.   Typical composite structure and manufacturing process for foreign aerospace shuttle vehicles

    No.SegmentFrame nameStructural styleManufacturing
    materials
    Manufacturing
    process
    Application
    1WingWing full size
    test piece
    Honeycomb sandwich structureIM7/5250-4+
    HRH-327 GF/PI honeycomb
    Bonding curing processReusable vehicle prototype
    2WingWing boxRib/beam orthogonal
    skeleton structure
    CF/BMI compositeBonding curing processReusable vehicle prototype
    3FuselageLiquid hydrogen tank skinConical shell structureIM7/977-2+Korex
    paper honeycomb
    Automated placement+
    Autoclave process
    X-33
    4WingWing skinLarge size curved laminated structureLTM45EL low temperature curing compositeOven curing processX-34
    5AirframeLower fuselage, wing, upper fuselageComplicated integrated structureIM7/5250-4(Fuselage)+
    IM7/PETI-5(Wing)
    Integral co-curing processX-37B
    6FuselageSkin panel, lower panelLarge curved laminated structureVacuum infusion processHOPE-X
    7FuselageLongitudinal beam, bulkhead, ring ribHigh dimensional accuracy, small-middle laminated structurePrepreg layup+Autoclave processHOPE-X
    8AirframeBlended wing body, upper fuselageComplicated integrated structureBonding curing processHOPE-X
    Notes: PI—Polyimide; CF—Carbon fiber; BMI—Bismaleimide resin; HOPE-X—H-Ⅱ orbiting plane experimental.
    下载: 导出CSV

    表  3  国外空天往返飞行器典型复合材料应用情况

    Table  3.   Application of typical composite materials in foreign aerospace shuttle vehicles

    No.ApplicationSegmentFrame nameStructural styleManufacturing materialsManufacturing process
    1X-33FuselageUpper TPS composite panel structureLaminated structureHot pressing process
    Aft thrust structureLaminated structureHot pressing process
    WingSkinLaminated structureIM7/5250-4 compositeHot pressing process
    Inter-tank sectionLaminated structureIM7/5250-4 compositeHot pressing process
    Liquid hydrogen tankTank skinHoneycomb sandwich
    structure
    IM7/977-2+
    Korex paper honeycomb
    Hot pressing process
    Horizontal septum, vertical septumLaminated structureIM7/977-2 compositeHot pressing process
    Bulkhead, extended bulkheadHoneycomb sandwich
    structure
    IM7/977-2 compositeHot pressing process
    Ring, longeronLaminated structure3D woven materialsRTM process
    2X-34FuselageComposite sandwich memberHoneycomb sandwich
    structure
    LTM45EL CFRPAutoclave process
    WingSkinLaminated structureLTM45EL CFRPVacuum bag pressing process
    Frame memberLaminated structureLTM45EL CFRP
    RudderComposite sandwich memberHoneycomb sandwich
    structure
    LTM45EL CFRPCo-curing process
    TankLTM45EL CFRP
    3X-40FuselageHoneycomb sandwich
    structure
    CF/epoxy composite
    Wing, flaperon, tail, resistance plateCF/BMI composite
    4X-40AFuselageHoneycomb sandwich structureCF/epoxy composite
    5X-37AAir frameLaminated and honeycomb
    sandwich structure
    CF/BMI composite
    6X-37BFuselageUpper wall panel, lower wall panelhoneycomb sandwich
    structure
    IM7/5250-4 composite+
    Flexcore+F50-HRP
    composite
    Hot pressing process+
    Bonding curing process
    Cover plate, longitudinal beamLaminated structureIM7/5250-4 compositeHot pressing process
    Resistance plateLaminated structureIM7/PETI-5 compositeHot pressing process
    Body flaphoneycomb sandwich
    structure
    IM7/PETI-5 composite+
    Titanium alloy honeycomb
    Hot pressing process
    WingUpper skin, lower skin, beam, sleeve beamhoneycomb sandwich
    structure
    IM7/PETI-5 composite+
    Titanium alloy honeycomb
    Hot pressing process
    7HOPE-XFuselageSkin panel, lower panelLarge curved
    laminated structure
    CFRPVacuum infusion process
    FuselageLongitudinal beam, bulkhead, ring ribHigh dimensional accuracy,
    small-middle
    laminated structure
    CFRPPrepreg layup+Autoclave process
    Air frameBlended wing body, upper fuselageComplicated integrated structureCFRPBonding curing process
    8IXVAir frameBeam, cover plate,
    wall panel
    CFRP
    下载: 导出CSV
  • [1] 汤一华, 余梦伦, 杨勇, 等. 第二代可重复使用运载器及其再入制导技术[J]. 导弹与航天运载技术, 2010(1):26-31. doi: 10.3969/j.issn.1004-7182.2010.01.006

    TANG Yihua, YU Menglun, YANG Yong, et al. Second generation reusable launch vehicle and its reentry guidance technologies[J]. Missile and Space Vehicles,2010(1):26-31(in Chinese). doi: 10.3969/j.issn.1004-7182.2010.01.006
    [2] 杨华保, 王建. 重复使用飞行器双层式结构连接研究[J]. 航空计算技术, 2013, 43(2):9-11. doi: 10.3969/j.issn.1671-654X.2013.02.003

    YANG Huabao, WANG Jian. Study on joint of reusable launch vehicle’s double-shell structure[J]. Aeronautical Computing Technique,2013,43(2):9-11(in Chinese). doi: 10.3969/j.issn.1671-654X.2013.02.003
    [3] 邢丽英, 包建文, 礼嵩明, 等. 先进树脂基复合材料发展现状和面临的挑战[J]. 复合材料学报, 2016, 33(7):1327-1338.

    XING Liying, BAO Jianwen, LI Songming, et al. Development status and facing challenge of advanced polymer matrix composites[J]. Acta Materiae Compositae Sinica,2016,33(7):1327-1338(in Chinese).
    [4] 杨智勇, 张博明, 解永杰, 等. 碳纤维复合材料空间反射镜制造技术研究进展[J]. 复合材料学报, 2017, 34(1):1-11.

    YANG Zhiyong, ZHANG Boming, XIE Yongjie, et al. Research progress on carbon fiber composite mirror technol-ogy[J]. Acta Materiae Compositae Sinica,2017,34(1):1-11(in Chinese).
    [5] 高禹, 张志松, 王柏臣, 等. 空天飞行器用炭/双马复合材料环境损伤行为的研究现状[J]. 高分子材料科学与工程, 2013, 29(6):165-168.

    GAO Yu, ZHANG Zhisong, WANG Baicheng, et al. Investi-gation of the environmental damage behaviors for carbon/bismaleimide composite used in aerospace flying vehicle[J]. Polymer Material Science and Engineering,2013,29(6):165-168(in Chinese).
    [6] HAN J H, KIM C G. Low earth orbit space environment si-mulation and its effects on graphite/epoxy composites[J]. Composite Structures,2006,72(2):218-226. doi: 10.1016/j.compstruct.2004.11.007
    [7] HAROLD J K, DARRYL S. R. Graphite/epoxy composite adapters for the space shuttle/centaur vehicle[R]. NASA Technical Paper-3014, 1992.
    [8] 美国CMH-17协调委员会. 复合材料手册: 聚合物基复合材料. 第2卷, 材料性能[M]. 汪海, 沈真, 等译. 上海: 上海交通大学出版社, 2016.

    CMH-17 Coordinating Committee. Composites material handbook: Polymer matrix matrix composites. Volume 2, Material properties[M]. WANG Hai, SHEN Zhen, et al. Translate. Shanghai: Shanghai Jiaotong University Press, 2016(in Chinese).
    [9] 卢兆勇, 郑义, 隋阳, 等. 美国空天飞机计划验证飞行器结构、材料工艺及试验技术[J]. 航天制造技术, 2013(5):5-11.

    LU Zhaoyong, ZHENG Yi, SUI Yang, et al. Research of structure, material processing and test of the United States space airplane[J]. Aerospace Manufacturing Technology,2013(5):5-11(in Chinese).
    [10] 赵渠森. 先进战斗机用复合材料树脂基体[J]. 高科技纤维与应用, 2000, 25(3):21-28.

    ZHAO Qusen. Composite resin matrix for advanced mili-tary aircraft[J]. Hi-Tech Fiber & Application,2000,25(3):21-28(in Chinese).
    [11] 包建文. 高效低成本复合材料及其制造技术[M]. 北京: 国防工业出版社, 2012: 33-68.

    BAO Jianwen. High-efficient and law-cost manufacturing technology for advanced composites[M]. Beijing: National Defense Industry Press, 2012: 33-68(in Chinese).
    [12] THEODORE F. J, THOMAS S. G. High temperature poly-imide materials in extreme temperature environments[C]. 42nd AIAA/ASMBASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit, Seattle, 2001.
    [13] HATAKEYAMA S J, MCLVER K L. A high-temperature polymide composite for use on future reusable space vehicles[C]. AIAA Space 2000 Conference and Exposition, California, 2000.
    [14] HOU T H, JENSEN B J, HERGENROTHER P. M. Processing and Properties of IM7/PETI Composites[J]. Journal of Composite Materials,1996,30(1):109-122. doi: 10.1177/002199839603000107
    [15] JOHNSON W S, PAVLICK M M, OLIVER M S. Determination of interlaminar toughness of IM7/977-2 composites at temperature extremes and different thicknesses[R]. NASA Final Report, Ga Tech Project Number E-18-A19, 2005.
    [16] CHARLES E H, JAMES H S, MARK J. S et al. An assessment of the state-of-the-art in the design and manufacturing of large composite structures for aerospace vehicles[R]. NASA Technical Memorandum, TM-2001-210844, 2001.
    [17] TANG Y, XIEY, PAN W P, et al. Thermal properties of PETI-5/IM7[J]. Thermochimica Acta,2000,357-358:239-249. doi: 10.1016/S0040-6031(00)00394-4
    [18] PASRICHA A, TUTTLE M E, EMERY A F. Time-dependent response of IM7/5260 composites subjected to cyclic thermo-mechanical loading[J]. Composites Science and Technology,1995,55:49-56. doi: 10.1016/0266-3538(95)00095-X
    [19] DANIEL L, TUMINO G , HENRIKSEN T . Advanced compo-site technology in reusable launch vehicle (RLV)[C]. AIAA Space 2004 Conference and Exhibit, California, 2004.
    [20] CLINTON R G, MCMAHON W M, JOHNSTON N J, et al. Large composite structures processing technologies for reusable launch vehicles[C]. 4th Conference on Aerospace Materials, Processes, and Environmental Technology. Alabama, 2000.
    [21] COOK S A. The reusable launch vehicle technology program and the X-33 advanced technology demonstrator[R]. NASA Technical Memorandum, NASA-TM-111868, 1996.
    [22] DRAGONE T L. Structural innovations in design, manufacture, and testing on the X-34 reusable launch vehicle[C]. AIAA Space 2000 Conference and Exposition, California, 2000.
    [23] TENNEY D R, DAVIS J G, PIPES R B, et al. NASA composite materials development: lessons learned and future challenges[R]. NASA Report, LF99-9370, 2009.
    [24] 彭小波. 可重复使用新型航天飞行器结构设计[M]. 北京: 中国宇航出版社, 2006.

    PENG Xiaobo. Structural design of new reusable space vehicles [M] Beijing: China Astronautic Publishing House, 2006(in Chinese).
    [25] STARNES J H, DEXTER H B, JOHNSTON N J. Composite structures and materials research at NASA langley research center[R]. The NATO Research and Technology Agency Applied Vehicle Technical Panel Specialists' Meeting on Low Cost Composite Structure, Loen, 2001.
    [26] PENDLETON E, BIGGS R, COCHRAN R, et al. Integrated composite structures demonstration for future space launch vehicle airframe applications[C]. 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Hawaii, 2012.
    [27] TENNEY D R, DAVIS J G, JOHNSTON N J, et al. Structural framework for flight: NASA’s role in development of advanced composite materials for aircraft and space structures[R]. NASA Report, CR-2011-217076, 2011.
    [28] 吴建刚, 王晓广, 栗琳. 美国空天飞行器技术发展分析[C]. 第五届中国航空学会青年科技论坛, 南昌, 2012.

    WU Jiangang, WANG Xiaoguang, LI Lin. Analysis of U. S. aerospace vehicle technology development[C]. 5th Youth Science and Technology Forum of CAAC, Nanchang, 2012(in Chinese).
    [29] LETCHWORTH G F. X-33 reusable launch vehicle demonstrator, spaceport and range[R]. AIAA Space 2011 Conference, California, 2011.
    [30] 牛文, 李文杰, 叶蕾. 美国X-33空天飞行器项目回顾与总结[J]. 飞航导弹, 2014(7):13-17.

    NIU Wen, LI Wenjie, YE Lei. Review and summary of Ameri-can X-33 aerospace vehicle project[J]. Aerodynamic Missile Jounal,2014(7):13-17(in Chinese).
    [31] 冷洪霞, 卢亮, 吕剑. 美国X系列技术验证飞行器的发展[C]//张传超. 2013中国无人机系统峰会论文集. 北京: 航空工业出版社, 2013: 56-63.

    LENG Hongxia, LU Liang, LV Jian. Development of X series technology verification aircraft in the United States[C]//ZHANG Chuanchao. Proceedings of 2013 China UAV System Summit. Beijing: Aviation Industry Press, 2013: 56-63(in Chinese).
    [32] FREEMAN D C, TALAY T A, AUSTIN R E. Reusable launch vehicle technology program[C]. 47th International Astronautical Congress, Beijing, 1996.
    [33] CLINTON R G, EFFINGER M, SMITH D, et al. NASA’s earth-to-orbit space transportation pragram: A material overview[C]. 23rd Annual Conference on Composites, Mater-ials, and Structure, Florida, 1999.
    [34] 宋博, 李高峰. 美国X-37B轨道试验飞行器的发展及分析[J]. 飞航导弹, 2012(12): 3-9.

    SONG Bo, LI Gaofeng. Development and analysis of Ameri-can X-37B test vehicle[J]. Aerodynamic Missile Jounal, 2012(12): 3-9(in Chinese).
    [35] 吴奇龙, 谈何易, 周斌. X-37B太空作战平台应用构想[J]. 飞航导弹, 2020(11): 26-30.

    WU Qilong, TAN Heyi, ZHOU bin. Application conception of X-37B space combat platform[J]. Aerodynamic Missile Jounal, 2020(11): 26-30(in Chinese).
    [36] TURNER S. Flight demonstrations of orbital space plane (OSP) technologies[C]. AIAA/ICAS International Air and Space Symposium and Exposition, Ohio, 2003.
    [37] PAEZ C A. The development of the X-37 re-entry vehicle[C]. 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Florida, 2004.
    [38] ASADA S, NISHIWAKI K, NIITSU M, et al. Development of HOPE-X all-composite prototype ptructure[C]. AIAA/NAL-NASDA-ISAS 10th International Space Planes and Hypersonic Systems and Technologies Conference, Kyoto, 2001.
    [39] UZAWA K, NISHIWAKI K, NIITSU M, et al. Low cost fabircation of HOPE-X all-composite prototype ptructure[J]. Advanced Composite Materials,2005,14(3):289-304. doi: 10.1163/1568551054922593
    [40] MALUCCHI G, ZACCAGNINO E, DROCCOA, et al. The European re-entry program, from IXV to ISV-GNC/avionics development status and challenges[C]. AIAA Guidance, Navigation, and Control (GNC) Conference, Massachusetts, 2013.
    [41] URBINATI F, BECCHIO V, VITA G. Design, development and manufacturing of the IXV aeroshell panels[C]. 13th European Conference on Spacecraft Structures, Materials & Environmental Testing, Braunschweig, 2014.
    [42] 康开华. 英国“云霄塔”空天飞机的最新进展[J]. 国际太空, 2014(7):42-50.

    KANG Kaihua. Latest development of British SKYLON vehicle[J]. Space International,2014(7):42-50(in Chinese).
    [43] 牛文, 李文杰, 胡冬, 等. 2014 年国外高超声速技术发展动态回顾[J]. 飞航导弹, 2015(1):27-34.

    NIU Wen, LI Wenjie, HU Dong, et al. Review on the development of hypersonic technology abroad in 2014[J]. Aerodynamic Missile Jounal,2015(1):27-34(in Chinese).
    [44] 牛文, 叶蕾, 李文杰等. 美国国防预先研究计划局启动XS-1空天飞行器项目[J]. 飞航导弹, 2014, 11:25-29.

    NIU Wen, YE Lei, LI Wenjie, et al. USA defence advaced research projects agency (DARPA) launches XS-1 aerospace vehicle program[J]. Aerodynamic Missile Jounal,2014,11:25-29(in Chinese).
  • 加载中
图(17) / 表(3)
计量
  • 文章访问数:  2232
  • HTML全文浏览量:  866
  • PDF下载量:  437
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-10
  • 修回日期:  2022-02-25
  • 录用日期:  2022-03-19
  • 网络出版日期:  2022-03-29
  • 刊出日期:  2022-07-30

目录

    /

    返回文章
    返回