留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纤维素材料的改性与研究进展

何江 王大威

何江, 王大威. 纤维素材料的改性与研究进展[J]. 复合材料学报, 2022, 39(7): 3121-3130. doi: 10.13801/j.cnki.fhclxb.20220314.001
引用本文: 何江, 王大威. 纤维素材料的改性与研究进展[J]. 复合材料学报, 2022, 39(7): 3121-3130. doi: 10.13801/j.cnki.fhclxb.20220314.001
HE Jiang, WANG Dawei. Modification and research progress of cellulose materials[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3121-3130. doi: 10.13801/j.cnki.fhclxb.20220314.001
Citation: HE Jiang, WANG Dawei. Modification and research progress of cellulose materials[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3121-3130. doi: 10.13801/j.cnki.fhclxb.20220314.001

纤维素材料的改性与研究进展

doi: 10.13801/j.cnki.fhclxb.20220314.001
详细信息
    通讯作者:

    王大威,博士,副教授,硕士生导师,研究方向为智能医用材料、柔性功能材料、生物降解材料 E-mail: wangdawei@wit.edu.cn

  • 中图分类号: TQ352.7

Modification and research progress of cellulose materials

  • 摘要: 纤维素具有来源广泛、绿色可再生、生物相容性好等诸多优点,但是纤维素由于热塑性能差、亲水性过强及机械强度不足等问题难以作为单一材料应用于生产生活中。从纤维素材料的增塑改性、疏水改性与增强改性三方面出发,对现阶段国内外开展的纤维素改性研究工作的进展进行了论述与分析,并对纤维素基材料的未来研究方向和研究重点进行了展望。

     

  • 图  1  纤维素材料的改性方向及方法

    Figure  1.  Modification directions and methods of cellulose materials

    图  2  增塑剂增塑改性示意图:(a)未加入增塑剂;(b) 增塑剂进入纤维素非结晶区; (c) 增塑剂进入纤 维素结晶区; (d) 纤维素结晶区消失 ;(e) 纤维素链段迁移

    Figure  2.  Schematic diagram of a plasticizing modification of plasticizer: (a) No plasticizer added; (b) Plasticizer enters the non-crystalline area; (c) Plasticizer enters crystalline area; (d) Crystalline area disappears; (e) Cellulose chain stretches

    图  3  不同增塑剂处理后的纤维素薄膜

    Figure  3.  Cellulose film treated with different plasticizers

    G—Glycerin; S—Sorbitol

    图  4  由再生纤维素合成热塑性纤维素接枝聚氨酯的原理图

    Figure  4.  Schematic diagram of the synthesis of thermoplastic cellulose grafted polyurethane from regenerated cellulose

    PCL—Polycaprolactone; HDI—Hexamethylene diisocyanate; RC—Regenerated cellulose; DMSO—Deuterated dimethyl sulfoxide; PU—Polyurethane

    图  5  纤维素吸湿机制图

    Figure  5.  Cellulose moisture absorption mechanism

    图  6  甘蔗渣纤维素纤维的吸附机制图

    Figure  6.  Adsorption mechanism of bagasse cellulose fiber

    图  7  柠檬酸改性纤维素纳米晶

    Figure  7.  Citric acid modified cellulose nanocrystals

    CNC—Cellulose nanocrystals; LNP—Lignin nanoparticles

    图  8  木质纤维素/磷酸氢钙复合材料合成图

    Figure  8.  Synthesis diagram of lignocellulose/calcium hydrogen phosphate composite material

    DNLC—Delignified nano-lignocellulose

    图  9  TEMPO-CNF薄膜双交联过程的示意图

    Figure  9.  Schematic diagram of the double crosslinking process of TEMPO-CNF film

    TEMPO—2,2,6,6-Tetramethylpiperidine-1-oxy-oxidized; ECH—Epichlorohydrin

  • [1] SIRVIÖ J A, VISANKO M, UKKOLA J, et al. Effect of plasticizers on the mechanical and thermomechanical properties of cellulose-based biocomposite films[J]. Industrial Crops and Products,2018,122:513-521. doi: 10.1016/j.indcrop.2018.06.039
    [2] ROL F, BELGACEM M N, GANDINI A, et al. Recent advances in surface-modified cellulose nanofibrils[J]. Progress in Polymer Science,2019,88:241-264. doi: 10.1016/j.progpolymsci.2018.09.002
    [3] NEGM N A, HEFNI H H H, ABD-ELAAL A A A, et al. Advancement on modification of chitosan biopolymer and its potential applications[J]. International Journal of Biological Macromolecules,2020,152:681-702. doi: 10.1016/j.ijbiomac.2020.02.196
    [4] NAGARAJAN K J, BALAJI A N, BASHA K S, et al. Effect of agro waste alpha-cellulosic micro filler on mechanical and thermal behavior of epoxy composites[J]. International Journal of Biological Macromolecules,2020,136(35):327-339.
    [5] GOLUBEV A E, KUVSHINOVA S A, BURMISTROV V A, et al. Modern advances in the preparation and modification of cellulose nitrates[J]. Russian Journal of General Chemistry,2018,88(2):368-381. doi: 10.1134/S1070363218020305
    [6] SHAO H, ZHAO Y, SUN H, et al. Barrier film of etherified hemicellulose from single-step synthesis[J]. Polymers,2020,12(10):2199. doi: 10.3390/polym12102199
    [7] SHOJAEIARANI J, BAJWA D S, HARTMAN K. Esterified cellulose nanocrystals as reinforcement in poly(lactic acid) nanocomposites[J]. Cellulose,2019,26(4):2349-2362. doi: 10.1007/s10570-018-02237-4
    [8] TANG Y, TANG S, ZHANG T. Homogeneous preparation of aerocellulose grafted acrylamide and its CO2 adsorption properties[J]. Cellulose,2020,27(6):3263-3275. doi: 10.1007/s10570-020-03009-9
    [9] SAKAKIBARA K, MORIKI Y, TSUJII Y. Preparation of high-performance polyethylene composite materials reinforced with cellulose nanofiber: Simultaneous nanofibrillation of wood pulp fibers during melt-compounding using urea and diblock copolymer dispersant[J]. ACS Applied Polymer Materials,2018,1(2):178-187.
    [10] 张艳, 孙怡然, 于飞, 等. 细菌纤维素及其复合材料在环境领域应用的研究进展[J]. 复合材料学报, 2021, 38(8):2418-2427.

    ZHANG Yan, SUN Yiran, YU Fei, et al. Research progress of bacterial cellulose and its composites in environmental applications[J]. Acta Materiae Compositae Sinica,2021,38(8):2418-2427(in Chinese).
    [11] BISWAS M C, BUSH B, FORD E. Glucaric acid additives for the antiplasticization of fibers wet spun from cellulose acetate/acetic acid/water[J]. Carbohydrate Polymers,2020,245:116510. doi: 10.1016/j.carbpol.2020.116510
    [12] 喻丽莎, 康艳辉, 何琛, 等. 氨基改性纤维素纳米晶体的自组装行为研究[J]. 高分子学报, 2020, 51(08):921-932.

    YU Lisha, KANG Yanhui, HE Chen, et al. Self-assembly behavior of amino-modified cellulose nanocrystals[J]. Acta Polymerica Sinica,2020,51(08):921-932(in Chinese).
    [13] NGWABEBHOH F A, YILDIZ U. Nature-derived fibrous nanomaterial toward biomedicine and environmental remediation: Today's state and future prospects[J]. Journal of Applied Polymer Science,2019,136(35):327-339.
    [14] SETH M, KHAN H, JANA S. Hierarchically structured alpha-nickel hydroxide based superhydrophobic and antibacterial coating on cellulosic materials for oil-water separation[J]. Materials Chemistry and Physics,2020,249:123030. doi: 10.1016/j.matchemphys.2020.123030
    [15] BIZMARK N, DU X, IOANNIDIS M A. High internal phase pickering emulsions as templates for a cellulosic functional porous material[J]. ACS Sustainable Chemistry & Engineering,2020,8(9):3664-3672.
    [16] 贺玮, 刘晓彤, 郑裕东, 等. 用于空气过滤的改性大豆蛋白-细菌纤维素复合材料的制备及性能[J]. 复合材料学报, 2021, 38(3):843-853.

    HE Wei, LIU Xiaotong, ZHENG Yudong, et al. Preparation and properties of modified soybean protein-bacterial cellulose composites for air filtration[J]. Acta Materiae Compositae Sinica,2021,38(3):843-853(in Chinese).
    [17] 陶正凯, 荆肇乾, 王郑, 等. 纳米纤维素材料在重金属废水治理中的应用[J]. 材料导报, 2023, 37(6):21030120.

    TAO Zhengkai, JING Zhaoqian, WANG Zheng, et al. Application of nanocellulose materials in heavy metal wastewater treatment[J]. Materials Reports,2023,37(6):21030120(in Chinese).
    [18] TONG X, PAN W, SU T, et al. Recent advances in natural polymer-based drug delivery systems[J]. Reactive and Functional Polymers,2020,148:104501. doi: 10.1016/j.reactfunctpolym.2020.104501
    [19] ALI N, ZHANG Q, LIU Z Y, et al. Emerging technologies for the pretreatment of lignocellulosic materials for bio-based products[J]. Applied Microbiology and Biotechnology,2020,104(2):455-473. doi: 10.1007/s00253-019-10158-w
    [20] MEHDIZADEH T, ZAMANI A, ABTAHI FROUSHANI S M. Preparation of Cu nanoparticles fixed on cellulosic walnut shell material and investigation of its antibacterial, antioxidant and anticancer effects[J]. Heliyon,2020,6(3):e03528. doi: 10.1016/j.heliyon.2020.e03528
    [21] PENG B, YAO Z, WANG X, et al. Cellulose-based materials in wastewater treatment of petroleum industry[J]. Green Energy & Environment,2020,5(1):37-49.
    [22] ZHAO J, XING T, LI Q, et al. Preparation of chitosan and carboxymethylcellulose-based polyelectrolyte complex hydrogel via SD-A-SGT method and its adsorption of anionic and cationic dye[J]. Journal of Applied Polymer Science,2020,137(34):48980. doi: 10.1002/app.48980
    [23] RAM F, SHANMUGANATHAN K. Nanocellulose based composites for electronics [M]. Netherlands: Elsevier, 2021: 259-293.
    [24] TERAMOTO Y. Functional thermoplastic materials from derivatives of cellulose and related structural polysaccharides[J]. Molecules,2015,20(4):5487-5527. doi: 10.3390/molecules20045487
    [25] CHARVET A, VERGELATI C, LONG D R. Mechanical and ultimate properties of injection molded cellulose acetate/plasticizer materials[J]. Carbohydrate Polymers,2019,204:182-189. doi: 10.1016/j.carbpol.2018.10.013
    [26] DECROIX C, CHALAMET Y, SUDRE G, et al. Thermo-mechanical properties and blend behaviour of cellulose acetate/lactates and acid systems: Natural-based plasticizers[J]. Carbohydrate Polymers,2020,237:116072. doi: 10.1016/j.carbpol.2020.116072
    [27] DREUX X, MAJESTE J C, CARROT C, et al. Viscoelastic behaviour of cellulose acetate/triacetin blends by rheology in the melt state[J]. Carbohydrate Polymers,2019,222:114973. doi: 10.1016/j.carbpol.2019.114973
    [28] DEL GAUDIO I, HUNTER-SELLARS E, PARKIN I P, et al. Water sorption and diffusion in cellulose acetate: The effect of plasticisers[J]. Carbohydrate Polymers,2021,267:118185. doi: 10.1016/j.carbpol.2021.118185
    [29] KHAN A, NIAZI M B K, NAQVI S R, et al. Influence of plasticizers on mechanical and thermal properties of methyl cellulose-based edible films[J]. Journal of Polymers and the Environment,2017,26(1):291-300.
    [30] ERDMANN R, KABASCI S, HEIM H P. Thermal properties of plasticized cellulose acetate and its beta-relaxation phenomenon[J]. Polymers (Basel),2021,13(9):1356.
    [31] SONG W, YANG L, SUN Z, et al. Study on actuation enhancement for ionic-induced IL-cellulose based biocompatible composite actuators by glycerol plasticization treatment method[J]. Cellulose,2018,25(5):2885-2899. doi: 10.1007/s10570-018-1783-6
    [32] LI L, ZHANG Y, SUN Y, et al. Manufacturing pure cellulose films by recycling ionic liquids as plasticizers[J]. Green Chemistry,2020,22(12):3835-3841. doi: 10.1039/D0GC00046A
    [33] 马若腾, 张庆, 张莉莉, 等. 低共熔溶剂体系下木质纤维素的功能化改性及应用研究进展[J]. 复合材料学报, 2021, 38(10): 3171-3183

    MA Ruoteng, ZHANG Qing, ZHANG Lili, et al. Research progress on functional modification and application of lignocellulose in deep eutectic solvent system [J]. Acta Materiae Compositae Sinica, 2021, 38(10): 3171-3183(in Chinese)
    [34] WANG S, PENG X, ZHONG L, et al. Choline chloride/urea as an effective plasticizer for production of cellulose films[J]. Carbohydrate Polymers,2015,117:133-139. doi: 10.1016/j.carbpol.2014.08.113
    [35] SU M, CHEN J, PAN Z, et al. Study on the preparation and mechanical properties of injection-moulded wood-based plastics[J]. Journal of Applied Polymer Science,2015,132(5):41376.
    [36] 宋俊, 李俊男, 侯源富, 等. 纤维素山梨酸酯膜的制备及其抗菌性能研究[J]. 高分子学报, 2019, 50(1):62-70.

    SONG Jun, LI Junnan, HOU Yuanfu, et al. Preparation of cellulose sorbate film and its antibacterial properties[J]. Acta Polymerica Sinica,2019,50(1):62-70(in Chinese).
    [37] SUN E, SUN F, ZHANG Z, et al. Interface morphology and thermoplasticization behavior of bamboo fibers benzylated with benzyl chloride[J]. Surface and Interface Analysis,2016,48(2):64-72. doi: 10.1002/sia.5889
    [38] KHANJANZADEH H, BEHROOZ R, BAHRAMIFAR N, et al. Surface chemical functionalization of cellulose nanocrystals by 3-aminopropyltriethoxysilane[J]. International Journal of Biological Macromolecules,2018,106:1288-1296. doi: 10.1016/j.ijbiomac.2017.08.136
    [39] BAO L, ZOU X, CHI S, et al. Advanced sustainable thermoplastics based on wood residue using interface nanomodification technique[J]. Advanced Sustainable Systems,2018,2(7):23667486.
    [40] HOU D F, TAN H, LI M L, et al. Synthesis of thermoplastic cellulose grafted polyurethane from regenerated cellulose[J]. Cellulose,2020,27(15):8667-8679. doi: 10.1007/s10570-020-03389-y
    [41] WIJAYA C J, ISMADJI S, APARAMARTA H W, et al. Hydrophobic modification of cellulose nanocrystals from bamboo shoots using rarasaponins[J]. ACS Omega,2020,5(33):20967-20975. doi: 10.1021/acsomega.0c02425
    [42] PAN Y, WANG F, WEI T, et al. Hydrophobic modification of bagasse cellulose fibers with cationic latex: Adsorption kinetics and mechanism[J]. Chemical Engineering Journal,2016,302:33-43. doi: 10.1016/j.cej.2016.05.022
    [43] HE X, LUZI F, YANG W, et al. Citric acid as green modifier for tuned hydrophilicity of surface modified cellulose and lignin nanoparticles[J]. ACS Sustainable Chemistry & Engineering,2018,6(8):9966-9978.
    [44] DU LE H, LOVEDAY S M, SINGH H, et al. Pickering emulsions stabilised by hydrophobically modified cellulose nanocrystals: Responsiveness to pH and ionic strength[J]. Food Hydrocolloids,2020,99:105344. doi: 10.1016/j.foodhyd.2019.105344
    [45] CHOI K H, LEE K S, LEE J H, et al. Hydrophobization of cellulose sheets by gas grafting of palmitoyl chloride by using hot press[J]. Carbohydrate Polymers,2020,246:116487. doi: 10.1016/j.carbpol.2020.116487
    [46] SIY B S C, TAN J A X C, VIRON K P, et al. Application of silane coupling agents to abaca fibers for hydrophobic modification[J]. Cellulose Chemistry and Technology,2020,54(3-4):365-369. doi: 10.35812/CelluloseChemTechnol.2020.54.37
    [47] LI Y Y, DU G M, FENG X J, et al. Extraction and hydrophobic modification of cotton stalk bark fiber[J]. International Journal of Polymer Science,2016,2016:8769360.
    [48] BARTOS A, ANGGONO J, FARKAS Á E, et al. Alkali treatment of lignocellulosic fibers extracted from sugarcane bagasse: Composition, structure, properties[J]. Polymer Testing,2020,88:01429418.
    [49] SUNNY T, PICKERING K L, LIM S H. Alkali treatment of hemp fibres for the production of aligned hemp fibre mats for composite reinforcement[J]. Cellulose,2020,27(5):2569-2582. doi: 10.1007/s10570-019-02939-3
    [50] HECKADKA S S, NAYAK S Y, JOE T, et al. Comparative evaluation of chemical treatment on the physical and mechanical properties of areca frond, banana, and flax fibers[J]. Journal of Natural Fibers,2022,19(4):1531-1543.
    [51] IBARRA D, MARTÍN-SAMPEDRO R, WICKLEIN B, et al. Production of microfibrillated cellulose from fast-growing poplar and olive tree pruning by physical pretreatment[J]. Applied Sciences,2021,11(14):6445. doi: 10.3390/app11146445
    [52] CHEN Y, DANG B, JIN C, et al. Processing lignocellulose-based composites into an ultrastrong structural material[J]. ACS Nano,2018,13(1):371-376.
    [53] WU C N, SAITO T, FUJISAWA S, et al. Ultrastrong and high gas-barrier nanocellulose/clay-layered composites[J]. Biomacromolecules,2012,13(6):1927-1932. doi: 10.1021/bm300465d
    [54] ZHANG F, LI Y, CAI H, et al. Processing nanocellulose foam into high-performance membranes for harvesting energy from nature[J]. Carbohydrate Polymers,2020,241:116253. doi: 10.1016/j.carbpol.2020.116253
    [55] VENKATESH A, THUNBERG J, MOBERG T, et al. Cellulose nanofibril-reinforced composites using aqueous dispersed ethylene-acrylic acid copolymer[J]. Cellulose,2018,25(8):4577-4589. doi: 10.1007/s10570-018-1875-3
    [56] SHEN R, XUE S, XU Y, et al. Research progress and development demand of nanocellulose reinforced polymer composites[J]. Polymers (Basel),2020,12(9):2113.
    [57] LEE K, JEON Y, KIM D, et al. Double-crosslinked cellulose nanofiber based bioplastic films for practical applications[J]. Carbohydrate Polymers,2021,260:117.
  • 加载中
图(9)
计量
  • 文章访问数:  2449
  • HTML全文浏览量:  973
  • PDF下载量:  280
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-10
  • 修回日期:  2022-02-18
  • 录用日期:  2022-03-07
  • 网络出版日期:  2022-03-15
  • 刊出日期:  2022-07-30

目录

    /

    返回文章
    返回