留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气相二氧化硅的异氰酸酯改性及其对浇注型聚氨酯弹性体力学性能的影响

周鑫 易玉华

周鑫, 易玉华. 气相二氧化硅的异氰酸酯改性及其对浇注型聚氨酯弹性体力学性能的影响[J]. 复合材料学报, 2023, 40(2): 852-859. doi: 10.13801/j.cnki.fhclxb.20220303.002
引用本文: 周鑫, 易玉华. 气相二氧化硅的异氰酸酯改性及其对浇注型聚氨酯弹性体力学性能的影响[J]. 复合材料学报, 2023, 40(2): 852-859. doi: 10.13801/j.cnki.fhclxb.20220303.002
ZHOU Xin, YI Yuhua. Isocyanate modified fumed silica and its effects on the mechanical properties of casting polyurethane elastomer[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 852-859. doi: 10.13801/j.cnki.fhclxb.20220303.002
Citation: ZHOU Xin, YI Yuhua. Isocyanate modified fumed silica and its effects on the mechanical properties of casting polyurethane elastomer[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 852-859. doi: 10.13801/j.cnki.fhclxb.20220303.002

气相二氧化硅的异氰酸酯改性及其对浇注型聚氨酯弹性体力学性能的影响

doi: 10.13801/j.cnki.fhclxb.20220303.002
基金项目: 广州市科技计划项目(202102080477)Guangzhou Science and Technology Plan Project (202102080477)
详细信息
    通讯作者:

    易玉华,硕士,高级工程师,硕士生导师,研究方向为橡塑改性及其复合材料 E-mail: mmyhyi@scut.edu.cn

  • 中图分类号: TB332

Isocyanate modified fumed silica and its effects on the mechanical properties of casting polyurethane elastomer

  • 摘要: 为了改善气相二氧化硅(FS)/浇注型聚氨酯(PU)体系成型流动性,在制备预聚体的过程中,采用2, 4-甲苯二异氰酸酯(TDI)进行改性获得异氰酸酯改性的二氧化硅(NCO@FS),通过原位聚合法制备了NCO@FS/PU弹性体复合材料。采用FTIR、XPS及动态接触角对NCO@FS及FS进行了表征。结果表明:FS的表面羟基与TDI的—NCO基团发生反应生成了氨酯基(—NHCOO),改善了FS与PU间的界面相容性及界面结合。复合材料中NCO@FS质量分数为1.5wt%时,NCO@FS/PU复合材料的拉伸和撕裂强度分别为57 MPa和110.5 kN/m,比纯浇注型PU分别提高了31.6%和23.6%;玻璃化转变温度由3.4℃下降到−11.2℃,损耗因子tanδ由0.59下降到0.46。异氰酸酯改性FS适合制备FS增强浇注型聚氨酯复合材料。

     

  • 图  1  主要原材料结构式

    Figure  1.  Structural formula of main raw materials

    图  2  FS、2, 4-甲苯二异氰酸酯(TDI)和TDI改性的二氧化硅(NCO@FS)的FTIR图谱

    Figure  2.  FTIR spectra of FS, 2, 4-toluene diisocyanate (TDI) and TDI modified silica (NCO@FS)

    图  3  FS的原位异氰酸酯改性及增强PU机制

    Figure  3.  In situ isocyanate modification of FS and its mechanism schematic of reinforcing PU

    图  4  FS和NCO@FS的XPS图谱

    Figure  4.  XPS spectra of FS and NCO@FS

    图  5  FS和NCO@FS的Si2p高分辨XPS图谱

    Figure  5.  High-resolution XPS spectra of Si2p for FS and NCO@FS

    图  6  FS和NCO@FS的水 (a) 和PU预聚体 (b) 接触角

    Figure  6.  Contact angle of FS and NCO@FS with water (a) and PU prepolymer (b)

    图  7  不同FS含量的NCO@FS/PU复合材料的动态热机械分析(DMA)曲线:(a) 储能模量与温度曲线;(b) 损耗因子与温度曲线

    Figure  7.  Dynamic mechanical analysis (DMA) curves of NCO@FS/PU composites with different FS loading: (a) Storage modulus versus temperature; (b) Loss factor versus temperature

    图  8  FS/PU和NCO@FS/PU复合材料界面形貌

    Figure  8.  Interface morphologies of the FS/PU and NCO@FS/PU composites

    图  9  不同PU体系黏度对比

    Figure  9.  Comparison of viscosity for different PU systems

    表  1  不同2, 4-甲苯二异氰酸酯改性的二氧化硅(NCO@FS)和气相二氧化硅(FS)含量的聚氨酯 (PU)试样

    Table  1.   Polyurethane (PU) samples with different content of 2, 4-toluene diisocyanate modified silica (NCO@FS) and fumed silica (FS)

    Sample NCO@FS/wt% FS/wt%
    NCO@FS/PU-0.5 0.5
    NCO@FS/PU-1.0 1.0
    NCO@FS/PU-1.5 1.5
    NCO@FS/PU-3.0 3.0
    FS/PU-1.0 1.0
    FS/PU-1.5 1.5
    FS/PU-3.0 3.0
    下载: 导出CSV

    表  2  FS和NCO@FS的XPS图谱中元素含量比较

    Table  2.   XPS atomic content for elements in FS and NCO@FS

    SystemC/at%O/at%Si/at%N/at%C/SiO/Si
    FS45.7438.0316.230.00 2.822.34
    NCO@FS71.9614.06 4.899.0914.722.88
    下载: 导出CSV

    表  3  FS/PU和NCO@FS/PU复合材料力学性能随FS质量分数的变化

    Table  3.   Variations in mechanical properties of FS/PU and NCO@FS/PU with the mass fraction of FS

    SampleTensile strength
    /MPa
    Tear strength
    /(kN·m−1)
    Elongation at break/%Hardness
    (Shore D)
    PU 43.3(0.9) 89.4(1.6) 447(10) 40(1)
    NCO@FS/PU-0.5 45.4(1.3) 88.7(1.9) 424(18) 41(1)
    NCO@FS/PU-1 51.6(1.0) 95.1(2.3) 576(14) 43(1)
    NCO@FS/PU-1.5 57.0(0.8) 110.5(1.3) 516(10) 43(1)
    NCO@FS/PU-3 17.7(1.5) 87.2(2.9) 303(23) 43(1)
    FS/PU-1 47.7(0.8) 82.8(2.0) 459(15) 40(1)
    FS/PU-1.5 28.0(0.6) 51.9(1.3) 478(20) 41(1)
    FS/PU-3 7.9(1.2) 36.3(2.6) 243(21) 42(2)
    下载: 导出CSV
  • [1] GHOLAMIPOUR N, SADEGHI M, SHAFIEI M. Effect of silica nanoparticles on the performance of polysulfone membranes for olefin-paraffin separation[J]. Chemical Engineering & Technology,2019,42(11):2292-2301.
    [2] GORKY F, GUTHRIE S R, SMOLJAN C S, et al. Plasma ammonia synthesis over mesoporous silica SBA-15[J]. Journal of Physics D: Applied Physics,2021,54(26):1-10.
    [3] JALIL R R, HUSSEIN H. Influence of nano fluid on interfacial tension oil/water and wettability alteration of limestone[J]. IOP Conference Series: Materials Science and Engineering,2019,518(6):1-7.
    [4] SALAHUDDIN N, ABO-EI-ENEIN S A, SELIM A, et al. Synthesis and characterization of polyurethane-urea clay nanocomposites using montmorillonite modified by oxyethylene-oxypropylene copolymer[J]. Polymers for Advanced Technologies,2010,21(8):533-542. doi: 10.1002/pat.1449
    [5] AKRAM D, AHMAD S, SHARMIN E, et al. Silica reinforced organic-inorganic hybrid polyurethane nanocomposites from sustainable resource[J]. Macromolecular Chemistry & Physics,2010,211(4):412-419.
    [6] KURIYAGAWA M, KAWAMURA T, HAYASHI S, et al. Reinforcement of polyurethane-based shape memory polymer by hindered phenol compounds and silica particles[J]. Journal of Applied Polymer Science,2010,117(3):1695-1702.
    [7] ZHANG J, JIANG G, HUANG T, et al. Preparation and characterization of polyurethane-silica hybrid films[J]. Pigment and Resin Technology,2019,48(5):357-362. doi: 10.1108/PRT-03-2019-0029
    [8] NAVIDFAR A, SANCAK A, YILDIRIM K B, et al. A study on polyurethane hybrid nanocomposite foams reinforced with multiwalled carbon nanotubes and silica nanoparticles[J]. Journal of Macromolecular Science: Part D-Reviews in Polymer Processing,2018,57(14):1463-1473.
    [9] CHUNG Y C, CHUNG K H, CHOI J W, et al. Preparation of hybrid polyurethane-silica composites by a lateral sol-gel process using tetraethyl orthosilicate[J]. Journal of Composite Materials,2017,52(2):159-168.
    [10] 李灵琦, 叶伟华, 童真, 等. 聚氨酯预聚物对沉淀法SiO2表面改性的研究[J]. 聚氨酯工业, 2012, 27(3):21-23. doi: 10.3969/j.issn.1005-1902.2012.03.006

    LI Lingqi, YE Weihua, TONG Zhen, et al. Study on surface modification of precipitation method SiO2 with polyurethane prepolymer[J]. Polyurethane Industry,2012,27(3):21-23(in Chinese). doi: 10.3969/j.issn.1005-1902.2012.03.006
    [11] NGUYEN T V, NGUYEN T A, NGUYEN T H. The synergistic effects of SiO2 nanoparticles and organic photo stabilizers for enhanced weathering resistance of acrylic polyurethane coating[J]. Journal of Composites Science,2020,4(23):1-11.
    [12] 穆晓东, 崔雨果, 方庆红, 等. 白炭黑的功能化改性及其改性橡胶基复合材料的制备与表征[J]. 复合材料学报, 2017, 34(1):67-74.

    MU Xiaodong, CUI Yuguo, FANG Qinghong, et al. Preparation and characterization of functionalization of silica and its rubber matrix composites[J]. Acta Materiae Compositae Sinica,2017,34(1):67-74(in Chinese).
    [13] XIA T, CHEN X, XU J H, et al. Key role of network formation in rutting, fatigue and brittle performance of bitumen/PEG/MDI/SiO2 composites[J]. Construction and Building Materials,2021,296:1-8.
    [14] HU F, QI F, XIANG Z H, et al. Synergistic enhancement effect of nano-SiO2 and ionic liquids on mechanical properties and impact resistance of polyurethane elastomer[J]. Composites Communications,2021,27:1-7.
    [15] 李嘉晋, 范仁祥, 李雅迪, 等. 三种形貌纳米SiO2的调控合成及其原位增强亲水性聚氨酯注浆复合材料[J]. 复合材料学报, 2017, 34(5):957-962.

    LI Jiajin, FAN Renxiang, LI Yadi, et al. Synthesis and characterization of three kinds of nano SiO2 particles with different morphologies and their application in reinforced polyurethane grouting composities[J]. Acta Materiae Compositae Sinica,2017,34(5):957-962(in Chinese).
    [16] 中国国家标准化管理委员会. 硫化橡胶或热塑性橡胶拉伸应力应变性能的测定: GB/T 528—2009[S]. 北京: 中国标准出版社, 2009.

    Standardization Administration of the People’s Republic of China. Rubber, vulcanized or thermoplastic—Determination of tensile stress-strain properties: GB/T 528—2009[S]. Beijing: China Standards Press, 2009(in Chinese).
    [17] 中国国家标准化管理委员会. 硫化橡胶或热塑性橡胶撕裂强度的测定(裤形、直角形和新月形试样): GB/T 529—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People’s Republic of China. Rubber, vulcanized or thermoplastic—Determination of tear strength (Trouser, angle and crescent test pieces): GB/T 529—2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [18] 中国国家标准化管理委员会. 橡胶袖珍硬度计压入硬度试验方法: GB/T 531—1999[S]. 北京: 中国标准出版社, 1999.

    Standardization Administration of the People’s Republic of China. Rubber—Determination of indentation hardness by means of pocket hardness meters: GB/T 531—1999[S]. Beijing: China Standards Press, 1999(in Chinese).
    [19] 陈和生, 孙振亚, 邵景昌. 八种不同来源二氧化硅的红外光谱特征研究[J]. 硅酸盐通报, 2011, 30(4):934-937.

    CHEN Hesheng, SUN Zhenya, SHAO Jingchang. Investigation on FTIR spectroscopy for eight different sources of SiO2[J]. Bulletin of the Chinese Ceramic Society,2011,30(4):934-937(in Chinese).
    [20] 李延洁, 周竹发, 王春蓉, 等. 纳米白碳黑的复合改性及性能表征[J]. 化工学报, 2010, 61(3):789-794.

    LI Yanjie, ZHOU Zhufa, WANG Chunrong, et al. Compo-site modification and characterization of nano silica[J]. Journal of Chemical Engineering,2010,61(3):789-794(in Chinese).
    [21] CHEN L J, WANG X P, JIA Z X, et al. Use of precipitated silica with silanol groups as an inorganic chain extender in polyurethane[J]. Materials & Design,2015,87:324-330.
    [22] 艾青松, 陈虹, 赵磊, 等. 反应温度对PTMG-MDI型聚氨酯弹性体结构及性能的影响[J]. 塑料科技, 2017, 45(1):46-50.

    AI Qingsong, CHEN Hong, ZHAO Lei, et al. Influence of reaction temperature on structure and properties of PTMG-MDI type polyurethane elastomer[J]. Plastics Science and Technology,2017,45(1):46-50(in Chinese).
    [23] 谭井华. 聚氨酯/白炭黑有机-无机杂化材料及其对橡胶的互穿网络改性研究[D]. 广州: 华南理工大学, 2012.

    TAN Jinghua. PU/silica organic-inorganic hybrid materials and their interpenetrating networks with rubber[D]. Guangzhou: South China University of Technology, 2012(in Chinese).
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  1348
  • HTML全文浏览量:  579
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-11
  • 修回日期:  2022-02-17
  • 录用日期:  2022-02-26
  • 网络出版日期:  2022-03-06
  • 刊出日期:  2023-02-15

目录

    /

    返回文章
    返回