Recent progress of interface engineering for lead halide perovskite solar cells
-
摘要: 铅卤钙钛矿太阳能电池因其优良的光电转换效率以及相对低廉的制备成本而受到广泛关注。然而铅卤钙钛矿太阳能电池的长期稳定性限制了其商业化的进程。界面非辐射复合导致铅卤钙钛矿太阳能电池产生能量损失、影响器件稳定性,是造成器件性能恶化的主要原因。界面工程作为一种有效的策略被用于抑制界面非辐射复合,在制备高效稳定的铅卤钙钛矿太阳能电池方面取得了切实的成效。本文阐述了铅卤钙钛矿太阳能电池的工作原理以及界面上的非辐射复合过程,分析了界面非辐射复合产生的原因,总结了近期n-i-p正式结构铅卤钙钛矿太阳能电池中界面工程的研究进展,讨论了其作用机制。基于目前铅卤钙钛矿太阳能电池中的界面工程发展现状,对其未来的发展方向进行了展望。Abstract: Lead halide perovskite solar cells have attracted extensive attention on account of their excellent photoelectric conversion efficiency and relatively low fabrication cost. However, the poor long-term stability becomes a barrier that hinders the commercialization of lead halide perovskite solar cells. It is reported that interfacial non-radiative recombination in lead halide perovskite solar cells is the main cause that leads to energy loss, affects device stability and then deteriorates the device performance. To solve this issue, interface engineering is applied as a valid strategy to suppress interfacial non-radiative recombination and fabricate efficient and stable lead halide perovskite solar cells, achieving tangible results. In this review, the working principle of lead halide perovskite solar cells and interfacial non-radiactive recombination process are explained in detail. The origin of interfacial non-radiative recombination is also analyzed, which highlights the important role of interface engineering for lead halide perovskite solar cells. Meanwhile, the recent research advances of interface engineering in lead halide perovskite solar cells with normal n-i-p structure are summarized with the discussion of the modification mechanism. What’s more, based on the development status of the interface engineering in lead halide perovskite solar cells, we prospect the development directions for the interface engineering in lead halide perovskite solar cells in the future.
-
图 2 钙钛矿太阳能电池的常见结构示意图:(a) n-i-p型介孔结构;(b) n-i-p型平面结构;(c) p-i-n型平面结构;(d)无电子传输层(ETL)结构;((e), (f)) 无空穴传输层(HTL)结构
Figure 2. Schematic diagram of the regular structure of perovskite solar cells: (a) n-i-p mesoporous structure; (b) n-i-p planar structure; (c) p-i-n planar structure; (d) Electron transport layer (ETL)-free structure; ((e), (f)) Hole transport layer (HTL)-free structure
图 3 n-i-p型钙钛矿太阳能电池的工作原理图:(a)激子的产生与分离;(b)电荷扩散;(c)电荷提取;(d)电荷传输;(e)钙钛矿光吸收层内部的载流子复合;(f)界面陷阱态导致的电荷复合
Figure 3. Schematic diagram of the working principle of n-i-p perovskite solar cell: (a) Generation and separation of excitons; (b) Charge diffusion; (c) Charge extraction; (d) Charge transfer; (e) Carriers recombination in perovskite light absorber; (f) Charge recombination induced by interface trap states
图 4 MAPbI3中点缺陷的能级位置[26]
Figure 4. Energy level positions of point defects in MAPbI3[26]
Ii—I− interstitials; MAPb—MA+ on Pb sites; VMA—MA+ vacancies; VPb—Pb2+ vacancies; IMA—I− on MA sites; IPb—I− on Pb sites; MAi—MA+ interstitials; PbMA—Pb2+ on MA sites; VI—I− vacancies; Pbi—Pb2+ interstitials; MAI—MA+ on I sites; PbI—Pb2+ on I sites
图 10 聚苯乙烯(PS)缓冲层释放应力示意图:(a)具有PS缓冲层的预制钙钛矿薄膜;(b)具有PS缓冲层的退火钙钛矿薄膜;(c)没有PS缓冲层的预制钙钛矿薄膜;(d)没有S缓冲层的退火钙钛矿薄膜[67]
Figure 10. Schematic illustration of the polystyrene (PS) buffer layer to release the stress: (a) As-prepared perovskite films with PS; (b) Annealed perovskite films with PS; (c) As-prepared perovskite films without PS; (d) Annealed perovskite films without PS[67]
图 14 (a) 1-[N-(2-羟乙基)-4'-哌啶基]-3-(4'-哌啶基)丙烷(PPPDE)在FTO表面的静电自组装示意图;PPPDE修饰前(b)与修饰后(c) ITO/钙钛矿界面处的能级示意图[107]
Figure 14. (a) Electrostatic self-assembly of 1-[N-(2-Hydroxyethyl)-4’-piperidyl]-3-(4’-piperidyl) (PPPDE) on the FTO surface; Energy level diagram of the ITO/perovskite interface before (b) and after (c) the PPPDE modification [107]
-
[1] DE WOLF S, HOLOVSKY J, MOON S J, et al. Organometallic halide perovskites: Sharp optical absorption edge and its relation to photovoltaic performance[J]. Journal of Physical Chemistry Letters,2014,5(6):1035-1039. doi: 10.1021/jz500279b [2] STRANKS S D, EPERON G E, GRANCINI G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber[J]. Science,2013,342(6156):341-344. doi: 10.1126/science.1243982 [3] DONG Q F, FANG Y J, SHAO Y C, et al. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals[J]. Science,2015,347(6225):967-970. doi: 10.1126/science.aaa5760 [4] GIORGI G, FUJISAWA J I, SEGAWA H, et al. Small photocarrier effective masses featuring ambipolar transport in methylammonium lead iodide perovskite: A density functional analysis[J]. Journal of Physical Chemistry Letters,2013,4(24):4213-4216. doi: 10.1021/jz4023865 [5] NOH J H, IM S H, HEO J H, et al. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells[J]. Nano Letters,2013,13(4):1764-1769. doi: 10.1021/nl400349b [6] HUANG J, YUAN Y, SHAO Y, et al. Understanding the physical properties of hybrid perovskites for photovoltaic applications[J]. Nature Reviews Materials,2017,2(7):17042. doi: 10.1038/natrevmats.2017.42 [7] YANG W S, NOH J H, JEON N J, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange[J]. Science,2015,348(6240):1234-1237. doi: 10.1126/science.aaa9272 [8] KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society,2009,131(17):6050-6051. doi: 10.1021/ja809598r [9] KIM H S, LEE C R, IM J H, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Scientific Reports,2012,2(1):591. doi: 10.1038/srep00591 [10] MIN H, LEE D Y, KIM J, et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes[J]. Nature,2021,598(7881):444-450. doi: 10.1038/s41586-021-03964-8 [11] JEON N J, NOH J H, YANG W S, et al. Compositional engineering of perovskite materials for high-performance solar cells[J]. Nature,2015,517(7535):476-480. doi: 10.1038/nature14133 [12] JEONG J, KIM M, SEO J, et al. Pseudo-halide anion engi-neering for α-FAPbI3 perovskite solar cells[J]. Nature,2021,592:381-385. doi: 10.1038/s41586-021-03406-5 [13] HEO J H, HAN H J, KIM D, et al. Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency[J]. Energy & Environmental Science,2015,8(5):1602-1608. [14] KIM M, KIM G H, LEE T K, et al. Methylammonium chlo-ride induces intermediate phase stabilization for efficient perovskite solar cells[J]. Joule,2019,3(9):2179-2192. doi: 10.1016/j.joule.2019.06.014 [15] WU Y, XIE F, CHEN H, et al. Thermally stable MAPbI3 perovskite solar cells with efficiency of 19.19% and area over 1 cm2 achieved by additive engineering[J]. Advanced Materials,2017,29(28):1701073. doi: 10.1002/adma.201701073 [16] ZHANG F, ZHU K. Additive engineering for efficient and stable perovskite solar cells[J]. Advanced Energy Materials,2020,10(13):1902579. doi: 10.1002/aenm.201902579 [17] GRANCINI G, ROLDAN-CARMONA C, ZIMMERMANN I, et al. One-year stable perovskite solar cells by 2D/3D interface engineering[J]. Nature Communications,2017,8:15684. doi: 10.1038/ncomms15684 [18] JIANG Q, CHU Z, WANG P, et al. Planar-structure perovskite solar cells with efficiency beyond 21%[J]. Advanced Materials,2017,29(46):1703852. doi: 10.1002/adma.201703852 [19] LI Y, ZHAO Y, CHEN Q, et al. Multifunctional fullerene derivative for interface engineering in perovskite solar cells[J]. Journal of the American Chemical Society,2015,137(49):15540-15547. doi: 10.1021/jacs.5b10614 [20] ZHOU H, CHEN Q, LI G, et al. Interface engineering of highly efficient perovskite solar cells[J]. Science,2014,345(6196):542-546. doi: 10.1126/science.1254050 [21] GAO P, YUSOFF A R B M, NAZEERUDDIN M K. Dimensionality engineering of hybrid halide perovskite light absorbers[J]. Nature Communications,2018,9:5028. doi: 10.1038/s41467-018-07382-9 [22] KE W, MAO L, STOUMPOS C C, et al. Compositional and solvent engineering in Dion-Jacobson 2D perovskites boosts solar cell efficiency and stability[J]. Advanced Energy Materials,2019,9(10):1803384. doi: 10.1002/aenm.201803384 [23] ZHANG H, NAZEERUDDIN M K, CHOY W C H. Perovskite photovoltaics: The significant role of ligands in film formation, passivation, and stability[J]. Advanced Materials,2019,31(8):e1805702. doi: 10.1002/adma.201805702 [24] LI C, LU X, DING W, et al. Formability of ABX3 (X = F, Cl, Br, I) halide perovskites[J]. Acta Crystallographica Section B-Structural Science Crystal Engineering and Materials,2008,64:702-707. doi: 10.1107/S0108768108032734 [25] TANAKA H, OKU T, UEOKA N. Structural stabilities of organic-inorganic perovskite crystals[J]. Japanese Journal of Applied Physics, 2018, 57(8S3):08RE12. [26] YIN W J, SHI T, YAN Y. Unique properties of halide perovskites as possible origins of the superior solar cell performance[J]. Advanced Materials,2014,26(27):4653-4658. doi: 10.1002/adma.201306281 [27] LEE J W, BAE S H, DE MARCO N, et al. The role of grain boundaries in perovskite solar cells[J]. Materials Today Energy,2018,7:149-160. doi: 10.1016/j.mtener.2017.07.014 [28] YIN W J, CHEN H, SHI T, et al. Origin of high electronic quality in structurally disordered CH3NH3PbI3 and the passivation effect of Cl and O at grain boundaries[J]. Advanced Electronic Materials,2015,1(6):1500044. doi: 10.1002/aelm.201500044 [29] SHAO Y, FANG Y, LI T, et al. Grain boundary dominated ion migration in polycrystalline organic-inorganic halide perovskite films[J]. Energy & Environmental Science,2016,9(5):1752-1759. [30] NIU T, LU J, MUNIR R, et al. Stable high-performance perovskite solar cells via grain boundary passivation[J]. Advanced Materials,2018,30(16):1706576. doi: 10.1002/adma.201706576 [31] LI Y, XIE H, LIM E L, et al. Recent progress of critical interface engineering for highly efficient and stable perovskite solar cells[J]. Advanced Energy Materials,2022,12(5):2102730. doi: 10.1002/aenm.202102730 [32] AYDIN E, DE BASTIANI M, DE WOLF S. Defect and contact passivation for perovskite solar cells[J]. Advanced Materials,2019,31(25):1900428. doi: 10.1002/adma.201900428 [33] WANG R, XUE J J, WANG K L, et al. Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics[J]. Science,2019,366(6472):1509. doi: 10.1126/science.aay9698 [34] NI Z Y, BAO C X, LIU Y, et al. Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells[J]. Science,2020,367(6484):1352. doi: 10.1126/science.aba0893 [35] SHAO S, LOI M A. The role of the interfaces in perovskite solar cells[J]. Advanced Materials Interfaces,2020,7(1):1901469. doi: 10.1002/admi.201901469 [36] CHEN J, PARK N G. Materials and methods for interface engineering toward stable and efficient perovskite solar cells[J]. ACS Energy Letters,2020,5(8):2742-2786. doi: 10.1021/acsenergylett.0c01240 [37] ZHU Y, PODDAR S, SHU L, et al. Recent progress on interface engineering for high-performance, stable perovskites solar cells[J]. Advanced Materials Interfaces,2020,7(11):2000118. doi: 10.1002/admi.202000118 [38] AHN N, KWAK K, JANG M S, et al. Trapped charge-driven degradation of perovskite solar cells[J]. Nature Communications,2016,7(1):13422. doi: 10.1038/ncomms13422 [39] PARK N G. Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell[J]. Journal of Physical Chemistry Letters,2013,4(15):2423-2429. doi: 10.1021/jz400892a [40] YANG Z, DOU J, WANG M. Interface engineering in n-i-p metal halide perovskite solar cells[J]. Solar RRL,2018,2(12):1800177. doi: 10.1002/solr.201800177 [41] QIN X, ZHAO Z, WANG Y, et al. Recent progress in stabi-lity of perovskite solar cells[J]. Journal of Semiconductors,2017,38(1):011002. doi: 10.1088/1674-4926/38/1/011002 [42] ROOSE B, WANG Q, ABATE A. The role of charge selec-tive contacts in perovskite solar cell stability[J]. Advanced Energy Materials,2019,9(5):1803140. [43] YANG J, SIEMPELKAMP B D, MOSCONI E, et al. Origin of the thermal instability in CH3NH3PbI3 thin films depo-sited on ZnO[J]. Chemistry of Materials,2015,27(12):4229-4236. doi: 10.1021/acs.chemmater.5b01598 [44] NING J, ZHU Y, HU Z, et al. Gaining insight into the effect of organic interface layer on suppressing ion migration induced interfacial degradation in perovskite solar cells[J]. Advanced Functional Materials,2020,30(35):2000837. doi: 10.1002/adfm.202000837 [45] DI GIROLAMO D, PHUNG N, KOSASIH F U, et al. Ion migration-induced amorphization and phase segregation as a degradation mechanism in planar perovskite solar cells[J]. Advanced Energy Materials,2020,10(25):2000310. doi: 10.1002/aenm.202000310 [46] DOMANSKI K, ROOSE B, MATSUI T, et al. Migration of cations induces reversible performance losses over day/night cycling in perovskite solar cells[J]. Energy & Environmental Science,2017,10(2):604-613. [47] LEIJTENS T, EPERON G E, PATHAK S, et al. Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells[J]. Nature Communications,2013,4(1):2885. doi: 10.1038/ncomms3885 [48] LIN L, YANG Z, JIANG E, et al. Zno-modified anode for high-performance SnO2-based planar perovskite solar cells[J]. ACS Applied Energy Materials,2019,2(10):7062-7069. doi: 10.1021/acsaem.9b00845 [49] MA J, YANG G, QIN M, et al. MgO nanoparticle modified anode for highly efficient SnO2-based planar perovskite solar cells[J]. Advanced Science,2017,4(9):1700031. doi: 10.1002/advs.201700031 [50] WANG Y, XIANG P, REN A, et al. MXene-modulated electrode/SnO2 interface boosting charge transport in perovskite solar cells[J]. ACS Applied Materials & Interfaces,2020,12(48):53973-53983. [51] ZHANG D, TIAN H, BU S, et al. Efficient planar heterojunction perovskite solar cells with enhanced FTO/SnO2 interface electronic coupling[J]. Journal of Alloys and Compounds,2020,831:154717. doi: 10.1016/j.jallcom.2020.154717 [52] 柴磊, 钟敏. 钙钛矿太阳能电池近期进展[J]. 物理学报, 2016, 65(23):18-32.CHAI Lei, ZHONG Min. Recent research progress in perovskite solar cells[J]. Acta Physica Sinica,2016,65(23):18-32(in Chinese). [53] CHENG Y, YANG Q D, XIAO J, et al. Decomposition of organometal halide perovskite films on zinc oxide nanoparticles[J]. ACS Applied Materials & Interfaces,2015,7(36):19986-19993. [54] MAHMOOD K, MEHRAN M T, REHMAN F, et al. Electrosprayed polymer-hybridized multidoped ZnO mesoscopic nanocrystals yield highly efficient and stable perovskite solar cells[J]. ACS Omega,2018,3(8):9648-9657. doi: 10.1021/acsomega.8b01412 [55] WANG Y, ZHONG M, WANG W, et al. Effects of ZnSe modification on the perovskite films and perovskite solar cells based on ZnO nanorod arrays[J]. Applied Surface Science,2019,495:143552. [56] LEE Y L, LO Y S. Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of Cds/CdSe[J]. Advanced Functional Materials,2009,19(4):604-609. doi: 10.1002/adfm.200800940 [57] ZHONG M, CHAI L, WANG Y. Core-shell structure of ZnO@TiO2 nanorod arrays as electron transport layer for perovskite solar cell with enhanced efficiency and stabi-lity[J]. Applied Surface Science,2019,464:301-310. doi: 10.1016/j.apsusc.2018.09.080 [58] CAO J, WU B, CHEN R, et al. Efficient, hysteresis-free, and stable perovskite solar cells with ZnO as electron-transport layer: Effect of surface passivation[J]. Advanced Materials,2018,30(11):1705596. doi: 10.1002/adma.201705596 [59] MEI A, LI X, LIU L, et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability[J]. Science,2014,345(6194):295-298. doi: 10.1126/science.1254763 [60] LEE M M, TEUSCHER J, MIYASAKA T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites[J]. Science,2012,338(6107):643-647. doi: 10.1126/science.1228604 [61] LI W, ZHANG W, VAN REENEN S, et al. Enhanced UV-light stability of planar heterojunction perovskite solar cells with caesium bromide interface modification[J]. Energy & Environmental Science,2016,9(2):490-498. [62] LI W, LI J, NIU G, et al. Effect of cesium chloride modification on the film morphology and UV-induced stability of planar perovskite solar cells[J]. Journal of Materials Chemistry A,2016,4(30):11688-11695. doi: 10.1039/C5TA09165A [63] LIU X, ZHANG Y, SHI L, et al. Exploring inorganic binary alkaline halide to passivate defects in low-temperature-processed planar-structure hybrid perovskite solar cells[J]. Advanced Energy Materials,2018,8(20):1800138. doi: 10.1002/aenm.201800138 [64] YANG Y, WU L, HAO X, et al. Beneficial effects of potas-sium iodide incorporation on grain boundaries and interfaces of perovskite solar cells[J]. RSC Advances,2019,9(49):28561-28568. doi: 10.1039/C9RA05371A [65] MA J, GUO X, ZHOU L, et al. Enhanced planar perovskite solar cell performance via contact passivation of TiO2/perovskite interface with NaCl doping approach[J]. ACS Applied Energy Materials,2018,1(8):3826-3834. doi: 10.1021/acsaem.8b00602 [66] JACOBSSON T J, SCHWAN L J, OTTOSSON M, et al. Determination of thermal expansion coefficients and locating the temperature-induced phase transition in methylammonium lead perovskites using X-ray diffraction[J]. Inorganic Chemistry,2015,54(22):10678-10685. doi: 10.1021/acs.inorgchem.5b01481 [67] WU J, CUI Y, YU B, et al. A simple way to simultaneously release the interface stress and realize the inner encapsulation for highly efficient and stable perovskite solar cells[J]. Advanced Functional Materials,2019,29(49):1905336. doi: 10.1002/adfm.201905336 [68] KAWAMURA Y, MASHIYAMA H, HASEBE K. Structural study on cubic-tetragonal transition of CH3NH3PbI3[J]. Journal of the Physical Society of Japan,2002,71(7):1694-1697. doi: 10.1143/JPSJ.71.1694 [69] ZHAO J, DENG Y, WEI H, et al. Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells[J]. Science Advances, 2017, 3(11): eaao5616. [70] TIAN C, LIN K, LU J, et al. Interfacial bridge using a cis-fulleropyrrolidine for efficient planar perovskite solar cells with enhanced stability[J]. Small Methods,2020,4(5):1900476. doi: 10.1002/smtd.201900476 [71] WANG H, LI F, WANG P, et al. Chlorinated fullerene dimers for interfacial engineering toward stable planar perovskite solar cells with 22.3% efficiency[J]. Advanced Energy Materials,2020,10(21):2000615. doi: 10.1002/aenm.202000615 [72] PENG J, WU Y, YE W, et al. Interface passivation using ultrathin polymer–fullerene films for high-efficiency perovskite solar cells with negligible hysteresis[J]. Energy & Environmental Science,2017,10(8):1792-1800. [73] MOHD YUSOFF A R B, VASILOPOULOU M, GEORGIADOU D G, et al. Passivation and process engineering approaches of halide perovskite films for high efficiency and stability perovskite solar cells[J]. Energy & Environ-mental Science,2021,14(5):2906-2953. [74] ZHANG Z, GAO Y, LI Z, et al. Marked passivation effect of naphthalene-1, 8-dicarboximides in high-performance perovskite solar cells[J]. Advanced Materials,2021,33(31):2008405. doi: 10.1002/adma.202008405 [75] LIU Z, QIU L, ONO L K, et al. A holistic approach to interface stabilization for efficient perovskite solar modules with over 2, 000-hour operational stability[J]. Nature Energy,2020,5(8):596-604. doi: 10.1038/s41560-020-0653-2 [76] LI H, SHI J, DENG J, et al. Intermolecular π-π conjugation self-assembly to stabilize surface passivation of highly efficient perovskite solar cells[J]. Advanced Materials,2020,32(23):1907396. doi: 10.1002/adma.201907396 [77] LIN Y, SHEN L, DAI J, et al. π-conjugated lewis base: Efficient trap-passivation and charge-extraction for hybrid perovskite solar cells[J]. Advanced Materials,2017,29(7):1604545. doi: 10.1002/adma.201604545 [78] SONG C, LI X, WANG Y, et al. Sulfonyl-based non-fullerene electron acceptor-assisted grain boundary passivation for efficient and stable perovskite solar cells[J]. Journal of Materials Chemistry A,2019,7(34):19881-19888. doi: 10.1039/C9TA06439G [79] LIU B, BI H, HE D, et al. Interfacial defect passivation and stress release via multi-active-site ligand anchoring enables efficient and stable methylammonium-free perovskite solar cells[J]. ACS Energy Letters,2021,6(7):2526-2538. doi: 10.1021/acsenergylett.1c00794 [80] WANG R, MUJAHID M, DUAN Y, et al. A review of perovskites solar cell stability[J]. Advanced Functional Materials,2019,29(47):1808843. doi: 10.1002/adfm.201808843 [81] LI S Q, WU Y K, ZHANG C X, et al. Interface modification of a perovskite/hole transport layer with tetraphenyldibenzoperiflanthene for highly efficient and stable solar cells[J]. ACS Applied Materials & Interfaces,2020,12(40):45073-45082. [82] ZHENG X, CHEN B, DAI J, et al. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations[J]. Nature Energy,2017,2(7):17102. doi: 10.1038/nenergy.2017.102 [83] CHEN B, RUDD P N, YANG S, et al. Imperfections and their passivation in halide perovskite solar cells[J]. Chemical Society Reviews,2019,48(14):3842-3867. doi: 10.1039/C8CS00853A [84] LIANG L, LUO H, HU J, et al. Efficient perovskite solar cells by reducing interface-mediated recombination: A bulky amine approach[J]. Advanced Energy Materials,2020,10(14):2000197. doi: 10.1002/aenm.202000197 [85] ZOU Y, LIANG Y, MU C, et al. Enhancement of open-circuit voltage of perovskite solar cells by interfacial modifi-cation with p-aminobenzoic acid[J]. Advanced Materials Interfaces,2020,7(1):1901584. doi: 10.1002/admi.201901584 [86] LIU Z, CAO F, WANG M, et al. Observing defect passivation of the grain boundary with 2-aminoterephthalic acid for efficient and stable perovskite solar cells[J]. Angewandte Chemie, International Edition in English,2020,59(10):4161-4167. doi: 10.1002/anie.201915422 [87] WANG Y, ZHANG T, KAN M, et al. Efficient α-CsPbI3 photovoltaics with surface terminated organic cations[J]. Joule,2018,2(10):2065-2075. doi: 10.1016/j.joule.2018.06.013 [88] ZHANG H, SHI J, ZHU L, et al. Polystyrene stabilized perovskite component, grain and microstructure for improved efficiency and stability of planar solar cells[J]. Nano Energy,2018,43:383-392. doi: 10.1016/j.nanoen.2017.11.024 [89] KIM M, MOTTI S G, SORRENTINO R, et al. Enhanced solar cell stability by hygroscopic polymer passivation of metal halide perovskite thin film[J]. Energy & Environmental Science,2018,11(9):2609-2619. [90] PENG J, WALTER D, REN Y, et al. Nanoscale localized contacts for high fill factors in polymer-passivated perovskite solar cells[J]. Science,2021,371(6527):390. doi: 10.1126/science.abb8687 [91] PENG J, KHAN J I, LIU W, et al. A universal double-side passivation for high open-circuit voltage in perovskite solar cells: Role of carbonyl groups in poly(methyl metha-crylate)[J]. Advanced Energy Materials,2018,8(30):1801208. doi: 10.1002/aenm.201801208 [92] QIN P L, YANG G, REN Z W, et al. Stable and efficient organo-metal halide hybrid perovskite solar cells via π-conjugated lewis base polymer induced trap passivation and charge extraction[J]. Advanced Materials, 2018, 30(12): 1706126. [93] CHEN P, BAI Y, WANG S, et al. In situ growth of 2D perovskite capping layer for stable and efficient perovskite solar cells[J]. Advanced Functional Materials,2018,28(17):1706923. doi: 10.1002/adfm.201706923 [94] ZHANG T, DAR M I, LI G, et al. Bication lead iodide 2D perovskite component to stabilize inorganic α-CsPbI3 perovskite phase for high-efficiency solar cells[J]. Science Advances, 2017, 3(9): e1700841. [95] CHEN J, LEE D, PARK N G. Stabilizing the Ag electrode and reducing J-V hysteresis through suppression of iodide migration in perovskite solar cells[J]. ACS Applied Materials & Interfaces,2017,9(41):36338-36349. [96] DOMANSKI K, CORREA-BAENA J P, MINE N, et al. Not all that glitters is gold: Metal-migration-induced degradation in perovskite solar cells[J]. ACS Nano,2016,10(6):6306-6314. doi: 10.1021/acsnano.6b02613 [97] ARORA N, DAR M I, HINDERHOFER A, et al. Perovskite solar cells with CuSCN hole extraction layers yield stabi-lized efficiencies greater than 20%[J]. Science,2017,358(6364):768-771. doi: 10.1126/science.aam5655 [98] HAN Q, YU F, WANG L, et al. High-performance carbon-based CsPbI2Br perovskite solar cells via small molecule modification[J]. Journal of Power Sources,2021,516:230676. [99] LI Y, YANG J, XIE L, et al. 4-Bromoaniline passivation for efficient and stable all-inorganic CsPbI2Br planar perovskite solar cells[J]. ACS Applied Energy Materials,2021,4(6):5415-5423. doi: 10.1021/acsaem.0c03034 [100] MARIDEVARMATH C V, MALIMATH G H. Computational and experimental studies on dielectric relaxation and dipole moment of some anilines and phenol[J]. Journal of Molecular Liquids,2017,241:845-851. doi: 10.1016/j.molliq.2017.06.059 [101] WU W Q, YANG Z, RUDD P N, et al. Bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells[J]. Science Advances,2019,5(3):eaav8925. doi: 10.1126/sciadv.aav8925 [102] ZHUANG J, WEI Y, LUAN Y, et al. Band engineering at the interface of all-inorganic CsPbI2Br solar cells[J]. Nanoscale,2019,11(31):14553-14560. doi: 10.1039/C9NR03638E [103] JIANG Q, ZHAO Y, ZHANG X, et al. Surface passivation of perovskite film for efficient solar cells[J]. Nature Photo-nics,2019,13(7):460-466. doi: 10.1038/s41566-019-0398-2 [104] ZHANG G, XIE P, HUANG Z, et al. Modification of energy level alignment for boosting carbon-based CsPbI2Br solar cells with 14% certified efficiency[J]. Advanced Functional Materials,2021,31(19):2011187. doi: 10.1002/adfm.202011187 [105] LIAO J F, WU W Q, JIANG Y, et al. Maze-like halide perovskite films for efficient electron transport layer-free perovskite solar cells[J]. Solar RRL,2019,3(3):1800268. doi: 10.1002/solr.201800268 [106] LI D, CHAO L, CHEN C, et al. In situ interface engineering for highly efficient electron-transport-layer-free perovskite solar cells[J]. Nano Letters,2020,20(8):5799-5806. doi: 10.1021/acs.nanolett.0c01689 [107] HUANG S, DONG Q, LU Y, et al. Outstanding perfor-mance of electron-transport-layer-free perovskite solar cells using a novel small-molecule interlayer modified FTO substrate[J]. Chemical Engineering Journal,2021,422:130001. doi: 10.1016/j.cej.2021.130001 [108] JANG C W, SHIN D H, CHOI S H. Photostable electron-transport-layer-free flexible graphene quantum dots/perovskite solar cells by employing bathocuproine inter-layer[J]. Journal of Alloys and Compounds,2021,886:161355. doi: 10.1016/j.jallcom.2021.161355