A review of solar cells: Materials, policy-driven mechanisms and application prospects
-
摘要: 太阳能是清洁无污染的可再生能源,对其进行高效开发利用是推进国家“双碳”工作的重要举措。利用光伏电池将太阳能转化为电能是利用太阳能的重要方式之一。本论文总结了光伏电池材料的研究进展、行业政策与商业模式及发展应用前景。首先,阐述了各类光伏电池的效率、成本、优缺点及应用场景受材料因素的影响,并结合最新的研究进展分析了各类光伏电池未来的发展方向。其次,结合光伏产业的商业模式及扶持政策,探讨光伏电池材料及产业发展受政策驱动机制的影响。最后,以光伏电池材料的研究进展及光伏产业的发展方向为基础,对该领域了进行总结与展望,分析在“双碳”愿景下光伏产业如何助力国家“双碳”工作。Abstract: Solar energy is a clean and pollution-free renewable energy, and its efficient development and utilization can significantly promote national “dual carbon” work. Using photovoltaic cells to convert solar energy into electricity is one of the ways to use solar energy. In this review, the research progress, industry policies, business models and development and application prospects of photovoltaic cell materials were summarized. First of all, the efficiency, cost, advantages and disadvantages of various photovoltaic cells and the impact of material factors on application scenarios were clarified, and combined with the latest research progress, the future development direction of various photovoltaic cells was analyzed. Secondly, combined with the business model and supporting policies of the photovoltaic industry, the influence of policy driving mechanisms on the development of photovoltaic cell materials and industry was discussed. Finally, based on the research progress of photovoltaic cell materials and the development direction of the photovoltaic industry, this field was summarized and prospected. The way that photovoltaic industry contributes to the national "dual carbon" work under the "dual carbon" vision was analyzed.
-
Key words:
- carbon neutral /
- solar cells /
- distributed photovoltaic /
- cell material /
- efficiency /
- photovoltaic industry
-
表 1 各类光伏电池对比
Table 1. Comparison of various photovoltaic cells
Cell types Conversion
efficiencyAdvantages Disadvantage Applicable
scenarioCost (Cells) Monocrystalline silicon photovoltaic cells 24.2%[6] Mature technology High cost Photovoltaic power station, etc. 1.04-1.12 Yuan/W Polycrystalline silicon photovoltaic cells 22.8%[24] Mature technology Low efficiency Photovoltaic power station, etc. 0.73-0.83 Yuan/W Silicon-based thin film photovoltaic cells 11.9%[25] Translucent, flexible substrate Low efficiency BIPV application etc. 4.54 Yuan/W
(Mitsubishi heavy industries)Copper indium gallium Selenium thin film photovoltaic cell
(CIGS)23.4%[26] Lightweight; Low light performance is good Contains the rare element In BIPV application etc. 5 Yuan/W Cadmium telluride thin film photovoltaic cell
(CdTe)22.1%[27] Stable performance Component rarity BIPV application etc. 4.6 Yuan/W
(First solar)Gallium arsenide thin film photovoltaic cell
(GaAs)35.5%[12] High efficiency; High temperature and radiation resistance High cost Aerospace
engineering38 Yuan/W Dye-sensitized thin film photovoltaic cells
(DSSC)11.7%[13] Long cell life; Simple structure Liquid electrolyte is volatile; Poor stability In the lab — Perovskite photovoltaic cells
(PSCs)26.7%[28] Low cost; Abundant raw materials Short life BIPV application etc. 1 Yuan/W
(Golden concord nano)表 2 国内外新型太阳能电池研究进展
Table 2. Research progress of new solar cells at home and abroad
Types Time and authors Description Efficiency Perovskite
photovoltaic cells2019
HU Jingsong[30]The invention relates to a perovskite solar cell coated with a perovskite precursor by an air knife 19% 2018
ZHAO Qin[31]Perovskite polycrystalline films with larger grains and lower defect density were obtained by using cesium chloride enhanced lead iodide precursor solution two-step method 22.1% 2018
PAN Xu[14]Introduction of mixed cation perovskite cells 19.94% 2018
WANG Zhaokui[32]Ternary Pb-Sn-Cu perovskite solar cell 21.08% 2021
JACKI Jeong[21]An anionic engineering technique was developed to improve the crystallinity of thin films 26.7% Dye-sensitized solar cells 2018
ZHU Weihong[33]Structurally stable and efficient dye-sensitized cells with additional auxiliary receptors 11.7% 2019
YUMA Kurumisawa[34]The team achieved high conversion efficiency with the help of a new dye molecule (DfZnP-iPr) 10.7% Organic solar cell 2018
LI Yongfang[35]PTQ10, a low-cost and efficient polymer donor material, is a simple D-A copolymer 12.7% 2021
ZHANG Tao[36]PB2F was added to the PBDB-TF: BTP-EC9 blend as the third component 18.6% Quantum dot solar cells 2018
MA Wangli[37]A solvent-processable quantum dot solar cell was prepared by using polymer hole transport materials 13% 表 3 分布式光伏的商业模式
Table 3. Distributed photovoltaic business model
Mode name Owner of photovoltaic
power stationSource of investment
fundsSource of income Personal investment mode Unit or individual Domestic investment Save the electricity charge, the extra electricity to surf the Internet, get the government subsidy Contract energy
management modelEnergy companies Bank loan, lease financing Charge users' electricity, access the Internet with excess electricity, and obtain government subsidies Network crowd-funding mode Energy companies Raise many investors Charge users' electricity, access the Internet with excess electricity, and obtain government subsidies Personal rooftop PV power station rental model Energy companies financing The end user signs a contract with the energy company, pays a rental fee and shares the revenue 表 4 光伏产业相关政策
Table 4. Photovoltaic industry-related policies
Policy type Number of policies Representative policies Content of representative policies Development and planning policies 28 Guidelines on Energy Work in 2021 Wind power and photovoltaic power generation should account for about 11% of the total electricity consumption in China. Given policies 9 Notice on the Weight of Responsibility for Consumption of Renewable Energy Electricity in 2021 and Related Matters Starting from 2021, weights for provincial consumption will be released at the beginning of each year, while weights for the current year and the following year will be issued. Weights for the current year are mandatory indicators for provincial assessment, and weights for the next year are prospective indicators for provincial project reserve. Subsidy policies 14 Notice on Accelerating the Review of the List of Subsidized Renewable Energy Power Generation Projects Make it clear that all projects that have completed the approval (filing) procedures and completed full capacity grid connection in 2006 and later years can be declared into the subsidy list. -
[1] 张志国, 陈祺. 向具有商业化前景的光伏材料迈进: 一类低成本高效率的聚合物给体材料[J]. 功能高分子学报, 2020, 33(5):415-420.ZHANG Zhiguo, CHEN Qi. Towards commercial photovoltaic materials: A new class of polymeric donor materials with low cost and high efficiency[J]. Journal of Functional Polymers,2020,33(5):415-420(in Chinese). [2] 殷志刚. 太阳能光伏发电材料的发展现状[J]. 可再生能源, 2008(5):17-20. doi: 10.3969/j.issn.1671-5292.2008.05.006YIN Zhigang. Research status of solar PV generate power materials[J]. Renewable Energy Resources,2008(5):17-20(in Chinese). doi: 10.3969/j.issn.1671-5292.2008.05.006 [3] MENG L, ZHANG Y, WAN X, et al. Organic and solution-processed tandem solar cells with 17.3% efficiency[J]. Science, 2018, 361(6407): 1094-1098. [4] NEELAM R, LAL P N, FATIHA Y, et al. A comprehensive review of different types of solar photovoltaic cells and their applications[J]. International Journal of Ambient Energy, 2021, 42(10): 1200-1217. [5] 严大洲, 刘艳敏, 万烨, 等. 晶硅太阳能在“双碳”经济中的作用与影响[J]. 中国有色冶金, 2021, 50(5):1-6.YAN Dazhou, LIU Yanmin, WAN Ye, et al. Effect and impact of crystalline silicon solar energy in the "double carbon" economy[J]. China Nonferrous Metallurgy,2021,50(5):1-6(in Chinese). [6] 中国可再生能源学会光伏专业委员会. 2020年中国光伏技术发展报告—晶体硅太阳电池研究进展(1)[J]. 太阳能, 2020(10):5-12. doi: 10.3969/j.issn.1003-0417.2020.10.001China Photovoltaic Society. Report on 2020 China PV technology development—Research progress of crystalline silicon solar cells (1)[J]. Solar Energy,2020(10):5-12(in Chinese). doi: 10.3969/j.issn.1003-0417.2020.10.001 [7] 孙良芳, 李儒, 邸江涛, 等. (PEDOT-PSS)-碳纳米管复合膜硅基太阳能电池[J]. 复合材料学报, 2017, 34(11):2385-2391.SUN Liangfang, LI Ru, DI Jiangtao, et al. (PEDOT-PSS)-carbon nanotubes composite films for Si solar cells[J]. Acta Materiae Compositae Sinica,2017,34(11):2385-2391(in Chinese). [8] YANG R, LEE C, CUI B, et al. Flexible semi-transparent a-Si:H pin solar cells for functional energy-harvesting appli-cations[J]. Materials Science & Engineering B,2018,229:1-5. [9] 齐鹏飞, 谢春梅, 王焜, 等. CdTe薄膜电池组件在光伏建筑一体化应用分析[J]. 玻璃, 2021, 48(7):52-55. doi: 10.3969/j.issn.1003-1987.2021.07.013QI Pengfei, XIE Chunmei, WANG Kun, et al. Application analysis of CdTe solar module in integrated photovoltaic building[J]. Glass,2021,48(7):52-55(in Chinese). doi: 10.3969/j.issn.1003-1987.2021.07.013 [10] 张战战, 叶华胜, 吴佳铭, 等. 碲化镉薄膜电池在建筑中的应用[J]. 能源研究与管理, 2020(3):70-74.ZHANG Zhanzhan, YE Huasheng, WU Jiaming, et al. Application of CdTe thin film battery in building[J]. Energy Research and Management,2020(3):70-74(in Chinese). [11] 张双双, 赵超亮, 郑直. 薄膜光伏与建筑集成化研究进展[J]. 化工新型材料, 2021, 49(10):71-75.ZHANG Shuangshuang, ZHAO Chaoliang, ZHENG Zhi. Progress on building integrated thin-film photovoltaic[J]. New Chemical Materials,2021,49(10):71-75(in Chinese). [12] 中国可再生能源学会光伏专业委员会. 2019年中国光伏技术发展报告(1)[J]. 太阳能, 2020(1):25-32. doi: 10.3969/j.issn.1003-0417.2020.01.004China Photovoltaic Society. Report on 2019 China PV technology development (1)[J]. Solar Energy,2020(1):25-32(in Chinese). doi: 10.3969/j.issn.1003-0417.2020.01.004 [13] 郝安林. 染料敏化太阳能电池研究现状[J]. 安阳工学院学报, 2018, 17(6):7-10.HAO Anlin. Research of the dye-sensitized solar cells[J]. Journal of Anyang Institute of Technology,2018,17(6):7-10(in Chinese). [14] 中国可再生能源学会光伏专业委员会. 2019年中国光伏技术发展报告—新型太阳电池的研究进展(4)[J]. 太阳能, 2020(8):5-9. doi: 10.3969/j.issn.1003-0417.2020.08.001China Photovoltaic Society. Report on 2020 China PV technology development—Research progress of new solar cells (4)[J]. Solar Energy,2020(8):5-9(in Chinese). doi: 10.3969/j.issn.1003-0417.2020.08.001 [15] 张晴, 黄其煜. 碳材料在染料敏化太阳能电池和钙钛矿太阳能电池对电极中的应用进展[J]. 材料工程, 2018, 46(5):56-63.ZHANG Qing, HUANG Qiyu. Novel progress on application of carbon materials as counter electrode in dye-sensi-tized solar cells and perovskite solar cells[J]. Journal of Materials Engineering,2018,46(5):56-63(in Chinese). [16] 刘俊, 魏爱香, 刘传标, 等. ZnO-TiO2染料敏化太阳能电池的制备和性能[J]. 复合材料学报, 2011, 28(6):159-165.LIU Jun, WEI Aixiang, LIU Chuanbiao, et al. Preparation and property of dye-sensitized solar cells based on ZnO-TiO2 composite photoanodes[J]. Acta Materiae Compositae Sinica,2011,28(6):159-165(in Chinese). [17] MENKE T, WEI P, RAY D, et al. A comparison of two air-stable molecular n-dopants for C60 [J]. Organic Electronics, 2012, 13(12): 3319-3325. [18] 中国可再生能源学会光伏专业委员会. 2019年中国光伏技术发展报告—新型太阳电池的研究进展(1)[J]. 太阳能, 2020(5):5-15. doi: 10.3969/j.issn.1003-0417.2020.05.001China Photovoltaic Society. Report on 2019 China PV technology development—Research progress of new solar cells (1)[J]. Solar Energy,2020(5):5-15(in Chinese). doi: 10.3969/j.issn.1003-0417.2020.05.001 [19] 赵聆然, 熊艳. 钙钛矿太阳电池光吸收层的研究进展[J]. 现代化工, 2021, 41(5):68-72.ZHAO Lingran, XIONG Yan. Recent development on light absorbing layer of perovskite solar cells[J]. Modern Che-mical Industry,2021,41(5):68-72(in Chinese). [20] AKIHIRO K, KENJIRO T, YASUO S, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131(17): 6050–6051. [21] JAEKI J, MINJIN K, JONGDEUK S, et al. Pseudo-halide anion engineering for α-FAPbI perovskite solar cells[J]. Nature, 2021, 592(7854): 381-385. [22] 段家顺, 彭丽萍, 于华阳, 等. 二维卤化物钙钛矿太阳能电池稳定性和效率的研究进展[J]. 复合材料学报, 2022, 39(5):1890-1906.DUAN Jiashun, PENG Liping, YU Huayang, et al. Research progress on the stability and efficiency of the two-dimensional halide perovskite solar cells[J]. Acta Materiae Compositae Sinica,2022,39(5):1890-1906(in Chinese). [23] 刘海潮, 谢亚红, 魏鹏, 等. 不同生物质来源的多孔碳复合碳电极在钙钛矿太阳能电池中的应用[J]. 复合材料学报, 2022, 39(5):1956-1966.LIU Haichao, XIE Yahong, WEI Peng, et al. Application of porous carbon composite carbon electrodes from different biomass sources in perovskite solar cells[J]. Acta Materiae Compositae Sinica,2022,39(5):1956-1966(in Chinese). [24] 中国可再生能源学会光伏专业委员会. 2020年中国光伏技术发展报告—晶体硅太阳电池研究进展(2)[J]. 太阳能, 2020(11):24-31. doi: 10.3969/j.issn.1003-0417.2020.11.003China Photovoltaic Society. Report on 2020 China PV technology development—Research progress of crystalline silicon solar cells (2)[J]. Solar Energy,2020(11):24-31(in Chinese). doi: 10.3969/j.issn.1003-0417.2020.11.003 [25] 柴甜甜. 硅基薄膜太阳能电池发展现状[J]. 科技创新与应用, 2020(34):53-54, 56.CHAI Tiantian. Development status of silicon based thin film solar cells[J]. Technology Innovation and Application,2020(34):53-54, 56(in Chinese). [26] 中国可再生能源学会光伏专业委员会. 2019年中国光伏技术发展报告(3)[J]. 太阳能, 2020(3):5-13.China Photovoltaic Society. Report on 2019 China PV technology development (3)[J]. Solar Energy,2020(3):5-13(in Chinese). [27] 中国可再生能源学会光伏专业委员会. 2019年中国光伏技术发展报告(4)[J]. 太阳能, 2020(4): 5-11.China Photovoltaic Society. Report on 2019 China PV technology development (4) [J]. Solar Energy, 2020(4): 5-11(in Chinese). [28] 中国可再生能源学会光伏专业委员会. 2019年中国光伏技术发展报告—新型太阳电池的研究进展(2)[J]. 太阳能, 2020 (6): 5-16.China Photovoltaic Society. Report on 2019 China PV technology development—Research progress of new solar cells (2)[J]. Solar Energy, 2020(6): 5-16(in Chinese). [29] 杨志胜, 柯蔚芳, 王艳香, 等. 无铅Cu基杂化钙钛矿太阳电池[J]. 硅酸盐学报, 2018, 46(4): 455-460.YANG Zhisheng, KE Weifang, WANG Yanxiang, et al. Lead-free Cu based hybrid perovskite solar cell[J]. Journal of the Chinese Ceramic Society, 2018, 46(4): 455-460(in Chinese). [30] LI Minghua, ZUO Chuantian, HU Jinsong, et al. Carrier management makes perovskite solar cells approaching Shockley-Queisser limit[J]. Science Bulletin,2021,66(14):1372-1374. doi: 10.1016/j.scib.2021.04.036 [31] 赵清, 骆超, 赵耀, 等. 钙钛矿太阳能电池中的量子点钝化和Ⅰ型能带结构的构建[C]//第八届新型太阳能材料科学与技术学术研讨会论文集. 北京, 2021: 16.ZHAO Qing, LUO Chao, ZHAO Yao, et al. Quantum dot passi-vation and type I band structure construction in perovskite solar cells[C]//Proceedings of the 8th Symposium on New Solar Materials Science and Technology. Beijing, 2021: 16(in Chinese). [32] WANG Kaili, LI Xiaomei , LOU Yanhui, et al. CsPbBrI2 perovskites with low energy loss for high-performance indoorand outdoor photovoltaics[J]. Science Bulletin,2021,66(4):347-353. doi: 10.1016/j.scib.2020.09.017 [33] 张地伟, 吴永真, 朱为宏. 金属离子掺杂提升全无机CsPbX3钙钛矿太阳能电池稳定性研究进展[J]. 应用技术学报, 2020, 20(2):111-117. doi: 10.3969/j.issn.2096-3424.2020.02.001ZHANG Diwei, WU Yongzhen, ZHU Weihong. Stability enhancement for all inorganic CsPbX3 perovskite solar cells via metal ions doping[J]. Journal of Technology,2020,20(2):111-117(in Chinese). doi: 10.3969/j.issn.2096-3424.2020.02.001 [34] YUMA K, TOMOHIRO H, SHIMPEI N, et al. Renaissance of fused porphyrins: Substituted methylene-bridged thiophene-fused strategy for high-performance dye-sensi-tized solar cells[J]. Journal of the American Chemical Society, 2019, 141(25): 9910-9919. [35] 李永舫. 共轭聚合物受体光伏材料和全聚合物太阳电池[J]. 高分子材料科学与工程, 2021, 37(1):200-208.LI Yongfang. Conjugated polymer acceptor materials and all polymer solar cells[J]. Polymer Materials Science & Engineering,2021,37(1):200-208(in Chinese). [36] ZHANG T, AN C, BI P, et al. A thiadiazole-based conju-gated polymer with ultradeep HOMO Level and strong electroluminescence enables 18.6% efficiency in organic solar cell [J]. Advanced Energy Materials, 2021, 11(35): 2101705. [37] 李波, 赵建红, 赵鑫波, 等. 新型太阳能电池的研究进展及发展趋势[J]. 能源研究与信息, 2021, 37(1):32-39.LI Bo, ZHAO Jianhong, ZHAO Xingbo, et al. Research progress and development trend of new type of solar cells[J]. Energy Research and Information,2021,37(1):32-39(in Chinese). [38] 王永杰, 王若男. 德国《可再生能源法》(EEG-2021)的最新进展及对我国的启示[J]. 中外能源, 2021, 26(6):17-24.WANG Yongjie, WANG Ruonan. Latest development of Germany′s renewable energy law (EEG-2021) and its enlightenment to China[J]. Sino-global Energy,2021,26(6):17-24(in Chinese). [39] 裴海天. 绿色发展理念下光伏产业法律制度优化研究[J]. 河南理工大学学报(社会科学版), 2021, 22(4):24-30.PEI Haitian. Research on the optimization of the legal system in photovoltaic industry underthe concept of green development[J]. Journal of Henan Polytechnic University (Social Sciences),2021,22(4):24-30(in Chinese). [40] 吴高翔, 王凯. 光伏建筑一体化存在的问题及解决方法分析[J]. 智能城市, 2021, 7(7): 39-40.WU Gaoxiang, WANG Kai. Analysis of existing problems and solutions of photovoltaic building integration[J]. Intelligent City, 2021, 7(7): 39-40(in Chinese). [41] 邵丹, 李涵. 城市客运交通电动化碳减排效益和碳达峰目标—以上海市为例[J]. 城市交通, 2021, 19(5):53-58, 42.SHAO Dan, LI Han. Decarbonization benefits and carbon peak goals of urban passenger transport electrification: Case study of shanghai[J]. Urban Transport of China,2021,19(5):53-58, 42(in Chinese). [42] 王玲俊, 陈健. 光伏与农业结合的相关研究综述[J]. 安徽农业科学, 2021, 49(18):18-21, 29. doi: 10.3969/j.issn.0517-6611.2021.18.005WANG Lingjun, CHEN Jian. Review of related research on the integration of photovoltaic and agirculture[J]. Journal of Anhui Agricultural Sciences,2021,49(18):18-21, 29(in Chinese). doi: 10.3969/j.issn.0517-6611.2021.18.005