Design of gel materials with cellulose and its derivatives
-
摘要: 凝胶(水凝胶与气凝胶)是一种具有多孔结构的三维材料,其在诸多领域具有广泛应用。纤维素的可降解性及生物相容性等特性使其在凝胶材料设计中备受关注,前景巨大。纤维素及其衍生物通常可通过溶解或在水溶液中均匀分散形成稳定的体系,再经适当交联制成水凝胶。纤维素气凝胶一般是由水凝胶经超临界干燥或冷冻干燥处理制得。系统总结了纤维素基水凝胶的制备方式及机制,分析了气凝胶不同的干燥制备方式对其形态结构的影响,并重点讨论了纤维素基凝胶材料在环境保护、生物医学、能源存储等领域的应用进展,最后指出了该领域研究存在的问题并进行了展望。Abstract: Gel (hydrogel and aerogel) is a three-dimensional material of porous structures, which has found various applications. Cellulose has been widely studied in designing gel materials since it is inherently biodegradable and biocompatible. Cellulose and its derivatives can usually form a stable system by dissolving or uniformly dispersing in aqueous solution, and then be made into hydrogels via the proper crosslinking. In addition, cellulosic hydrogels can be further transformed into aerogels with supercritical drying or freeze drying. This work herein provides a systematical review of gel materials designed with cellulose and its derivatives. Firstly, a thorough analysis is implemented on the technologies in cellulosic hydrogel preparation and the mechanisms therein. The influence of different drying methods of aerogel on its morphology and structure are discussed. Furthermore, the applications of cellulosic gel in environmental protection, biomedicine, energy storage and other fields are summarized. Finally, the existing issues in this area are pointed out and prospected.
-
Key words:
- cellulose /
- hydrogel /
- aerogel /
- composite /
- covalent bond /
- noncovalent bond
-
图 2 物理水凝胶:(a) 基于氢键作用交联的纤维素水凝胶[22];(b) 基于疏水作用交联的纤维素水凝胶[27];(c)基于疏水作用和离子键作用交联的纤维素水凝胶[30];(d) 基于离子键作用交联的纤维素水凝胶[34]
Figure 2. Physical hydrogel: (a) Cellulose hydrogel crosslinked by hydrogen bonding[22]; (b) Cellulose hydrogel crosslinked by hydrophobic interaction[27]; (c) Cross-linked cellulose hydrogel based on hydrophobic and ionic bonding[30]; (d) Cellulose hydrogel crosslinked by ionic bonding[34]
MC—Methyl cellulose; AAm—Acrylamide; SMA—Stearyl methacrylate; PSMA—Poly(stearyl methacrylate); SDS—Sodium dodecyl sulfate; CMC—Carboxymethyl cellulose; HPC—Hydroxypropyl cellulose; SA—Sodium alginate; PVA—Poly(vinyl alcohol)
图 3 (a) 纤维素和丙烯酸的自由基引发机制[37];(b) 纤维素与环氧氯丙烷(ECH)的醚化交联[44];(c) 羧甲基纤维素、聚乙二醇与柠檬酸的酯化交联[49];(d) 氧化羧甲基纤维素与聚丙烯酰胺的席夫碱反应[52]
Figure 3. (a) Free radical initiation mechanism of cellulose and acrylic acid[37]; (b) Etherification crosslinking with cellulose and ECH[44]; (c) Esterification crosslinking of carboxymethyl cellulose, polyethylene glycol and citric acid[49]; (d) Oxidized carboxymethyl cellulose reacts with Schiff base of polyacrylamide[52]
AA—Acrylic acid; PEG—Polyethylene glycol; PAH—Polyacryloyl hydrazide
图 4 (a) 超拉伸、坚韧、防冻和导电纤维素水凝胶应变传感器[87];(b) 自愈、坚固耐用且高灵敏度的纤维素水凝胶传感器[17]
Figure 4. (a) Ultra-tensile, tough, antifreeze and conductive cellulose hydrogel strain sensor[87]; (b) Self-healing, robust and highly sensitive cellulose hydrogel sensor[17]
AM—Acrylamide; AN—Acrylonitrile; PANI—Polyaniline; R0—Initial resistance; R—Current resistance; GF—Gauge factor
图 5 中空聚吡咯/纤维素(PC)杂化水凝胶[93]:(a) 中空PC杂化水凝胶的合成;((b)、(c)) 纤维素水凝胶、中空PPy网络和PC杂化凝胶的应力应变曲线及其在力学上的比较;((d)~(f)) PC杂化水凝胶的横截面结构
Figure 5. Hollow polypyrrole/cellulose (PC) hybrid hydrogel[93]: (a) Synthesis of hollow PC hybrid hydrogel; ((b), (c)) Stress-strain curves of cellulose hydrogel, hollow PPy network and PC hybrid gel and their mechanical comparison; ((d)~(f)) The cross-sectional structure of PC hybrid hydrogel
图 6 (a) 纤维素纳米纤维(CNF)基气凝胶的制备[113];((b)、(c)) 未经叔丁醇处理、经叔丁醇处理的CNF基气凝胶SEM图像[113];(d) 不同温度下的气凝胶热导率[113];(e) 气凝胶的热阻测试[113];(f) 纯纤维素气凝胶(NCA)和纤维素/二氧化硅复合气凝胶(CSA)的HRR曲线[125];(g) CSA和NCA的燃烧测试[125];(h) 不同二氧化硅含量的CSA的SEM图像[125];(i) CNFA的制备[126];(j) CNFA 的TEM放大图像[126];((k)、(l))CNFA、CNF的SEM图像[126];(m) CNF和CNFA气凝胶的燃烧试验[126]
Figure 6. (a) Preparation of CNF-based aerogel[113]; ((b), (c)) SEM images of CNF-based aerogels treated with tert-butyl alcohol and without tert-butyl alcohol[113]; (d) Thermal conductivity of aerogel at different temperatures[113]; (e) Thermal resistance test of aerogel[113]; (f) HRR curves of pure cellulose aerogel (NCA) and CSA[125]; (g) The combustion test of CSA and NCA[125]; (h) SEM images of CSA with different silica content[126]; (I) Preparation of CNFA[126]; (j) TEM enlargement of CNFA[126]; ((k), (l)) SEM images of CNFA and CNF[126]; (m) The combustion test of CNF and CNFA aerogel[126]
MTMX—Methyltrimethoxysilane; CNF—Cellulose nanofiber; CNFA—Cellulose nanofiber/AlOOH; NCA—Neat cellulose aerogels; CSA—Cellulose–silica composite aerogels; RH—Relative humidity
表 1 纤维素水凝胶在超级电容器中的功能
Table 1. Function of cellulose hydrogel in supercapacitor
Hydrogel component Active ingredient Functional hydrogel Ref. Cellulose nanofibers, polyaniline, Fe3+ Polyaniline Electrode [97] Carboxymethyl cellulose, polypyrrole Polypyrrole Electrode [95] Cellulose, ZnCl2 ZnCl2 Electrolyte [94] Nanocellulose, polyvinyl alcohol, borax, ZnSO4 ZnSO4 Electrolyte [98] Cellulose, polyacrylamide, polyaniline Polyacrylamide Electrolyte [99] Hydroxypropyl cellulose, PVA, glycerol, LiClO4 LiClO4 Electrolyte [100] Cellulose, polyacrylamide, Fe3+ Polyacrylamide, Fe3+ Electrolyte separator [101] Cellulose, polyvinyl alcohol, Li2SO4 Li2SO4 Electrolyte separator [102] Cellulose, Li2SO4 Li2SO4 Electrolyte separator [103] -
[1] GHORBANI S, HOSSEIN E, BAZAZ S R, et al. Hydrogels based on cellulose and its derivatives: applications, synthesis, and characteristics[J]. Polymer Science, Series A,2018,60(6):707-722. doi: 10.1134/S0965545X18060044 [2] RICO-GARCÍA D, RUIZ-RUBIO L, PÉREZ-ALVAREZ L, et al. Lignin-based hydrogels: Synthesis and applications[J]. Polymers,2020,12(1):81. doi: 10.3390/polym12010081 [3] MUHAMAD I I, PA'E N, YUSOF A M. Bacterial nanocellulose and its application in wastewater treatment[J]. Sustainable Nanocellulose and Nanohydrogels from Natural Sources,2020:299-314. [4] LONG L, WENG Y, WANG Y. Cellulose aerogels: Synthesis, applications, and prospects[J]. Polymers,2018,10(6):623. doi: 10.3390/polym10060623 [5] JIA Y, WANG X, HUO M, et al. Preparation and characterization of a novel bacterial cellulose/chitosan bio-hydrogel[J]. Nanomaterials and Nanotechnology,2017,7:1847980417. [6] LI M, WU Q, MOON R J, et al. Rheological aspects of cellulose nanomaterials: Governing factors and emerging applications[J]. Advanced Materials (Deerfield Beach, Fla. ),2021,33(21):e2006052. doi: 10.1002/adma.202006052 [7] CHEN Y, ZHANG L, YANG Y, et al. Recent progress on nanocellulose aerogels: Preparation, modification, composite fabrication, applications[J]. Advanced Materials, 2021, 33(11): e2005569. [8] DE FRANCE K J, HOARE T, CRANSTON E D. Review of hydrogels and aerogels containing nanocellulose[J]. Chemistry of Materials,2017,29(11):4609-4631. [9] PEREDA M, DUFRESNE. Cellulose nanocrystals and related polymer nanocomposites[M]. Britain: Smithers Rapra Technology, 2013: 305-348. [10] CHEN W, YU H, LI Q, et al. Ultralight and highly flexible aerogels with long cellulose i nanofibers[J]. Soft Matter,2011,7(21):10360-10368. doi: 10.1039/c1sm06179h [11] GHORPADE V S. Preparation of hydrogels based on natural polymers via chemical reaction and cross-Linking[M]. Netherlands: Elsevier Science, 2020: 91-118. [12] SAPUTRA A H, HAPSARI M, PITALOKA A B, et al. Synthesis and characterization of hydrogel from cellulose derivatives of water hyacinth (Eichhornia crassipes) through chemical cross-linking method by using citric acid[J]. Journal of Engineering Science and Technology,2015,10:75-86. [13] FAN H, GONG J P. Fabrication of bioinspired hydrogels: Challenges and opportunities[J]. Macromolecules, 2020, 53(8): 2769–2782 . [14] BHATTACHARJEE M, DHAR A K, RAHMAN F, et al. Cellulose-Based hydrogels for wastewater treatment: a concise review[J]. GELS,2021,7(1):1-28. [15] SHEN X, SHAMSHINA J L, BERTON P, et al. Hydrogels based on cellulose and chitin: Fabrication, properties, and applications[J]. Green Chemistry,2015,18(1):53-75. [16] ZAINAL S H, MOHD N H, SUHAILI N, et al. Preparation of cellulose-based hydrogel: A review[J]. Journal of Materials Research and Technology,2021,10(6):935-952. [17] SONG M, YU H, ZHU J, et al. Constructing stimuli-free self-healing, robust and ultrasensitive biocompatible hydrogel sensors with conductive cellulose nanocrystals[J]. Chemical Engineering Journal,2020,398:125547. doi: 10.1016/j.cej.2020.125547 [18] LI P, LIU R. Cellulose gels and microgels: Synthesis, service, and supramolecular interactions[J]. Advances in Polymer Science,2015,268:209-251. [19] BUDTOVA T. Cellulose II aerogels: A review[J]. Cellulose,2019,26(32):81-121. [20] AHMED E M. Hydrogel: Preparation, characterization, and applications: A review[J]. Journal of Advanced Research,2015,6(2):105-121. doi: 10.1016/j.jare.2013.07.006 [21] ECHALIER C, VALOT L, MARTINEZ J, et al. Chemical cross-linking methods for cell encapsulation in hydrogels[J]. Materials Today Communications,2019,20(1):100536. [22] 陈裙凤, 刘茜, 杨嘉玮, 等. 纤维素离子凝胶的制备及性能[J]. 复合材料学报, 2021, 38(12):4247-4254.CHEN Qunfeng, LIU Xi, YANG Jiawei, et al. Preparation and properties of cellulose ionic gel[J]. Acta Materiae Compositae Sinica,2021,38(12):4247-4254(in Chinese). [23] ZHAO D, HUANG J, ZHONG Y, et al. High-strength and high-toughness double-cross-linked cellulose hydrogels: A new strategy using sequential chemical and physical cross-linking[J]. Advanced Functional Materials,2018,28(5):1707147. doi: 10.1002/adfm.201707147 [24] SHAO C, YANG J. Dynamics in cellulose-based hydrogels with reversible cross-links[M]. Berlin: Springer Berlin Heidelberg, 2020: 319-354. [25] LI L, SHAN H, YUE C Y, et al. Thermally induced association and dissociation of methylcellulose in aqueous solutions[J]. Langmuir,2002,18(20):7291-7298. doi: 10.1021/la020029b [26] ROTBAUM Y, PARVARI G, EICHEN Y, et al. Static and dynamic large strain properties of methyl cellulose hydrogels[J]. Macromolecules,2017,50(12):4817-4826. doi: 10.1021/acs.macromol.7b00270 [27] JUNG H, KIM H C, HO PARK W. Robust methylcellulose hydrogels reinforced with chitin nanocrystals[J]. Carbohydrate Polymers,2019,213:311-319. doi: 10.1016/j.carbpol.2019.03.009 [28] ROTBAUM Y, PARVARI G, EICHEN Y, et al. Mechanical reinforcement of methylcellulose hydrogels by rigid particle additives[J]. Mechanics of Materials,2019,132:57-65. doi: 10.1016/j.mechmat.2019.02.013 [29] CIOLACU D E, SUFLET D M. Cellulose-based hydrogels for medical/pharmaceutical applications[J]. Biomass as Renewable Raw Material to Obtain Bioproducts of High-Tech Value,2018:401-439. [30] ZHANG H, WU X, QIN Z, et al. Dual physically cross-linked carboxymethyl cellulose-based hydrogel with high stretchability and toughness as sensitive strain sensors[J]. Cellulose,2020,27(17):9975-9989. doi: 10.1007/s10570-020-03463-5 [31] XU H, LIU Y, XIE Y, et al. Doubly cross-linked nanocellulose hydrogels with excellent mechanical properties[J]. Cellulose,2019,26(6):8645-8654. [32] DAI L, CHENG T, XI X, et al. A versatile TOCN/CGG self-assembling hydrogel for integrated wastewater treatment[J]. Cellulose,2020,27(1):915-925. [33] DAI L, CHENG T, WANG Y, et al. Injectable all-polysaccharide self-assembling hydrogel: A promising scaffold for localized therapeutic proteins[J]. Cellulose,2019,26(25):6891-6901. [34] GAN S, BAI S, CHEN C, et al. Hydroxypropyl cellulose enhanced ionic conductive double-network hydrogels[J]. International Journal of Biological Macromolecules,2021,181(21):418-425. [35] DUQUETTE D, DUMONT M. Comparative studies of chemical crosslinking reactions and applications of bio-based hydrogels[J]. Polymer Bulletin,2019,76(5):2683-2710. doi: 10.1007/s00289-018-2516-6 [36] KUMAR M, GEHLOT P, PARIHAR D, et al. Promising grafting strategies on cellulosic backbone through radical polymerization processes—A review[J]. European Polymer Journal,2021,152(4):110448. [37] KADRY G, ABOELMAGD E, IBRAHIM M. Cellulosic-based hydrogel from biomass material for removal of metals from waste water[J]. Journal of Macromolecular Science, Part A,2019,56(10):1-14. [38] MAITRA J, SHUKLA V. Cross-linking in hydrogels—A review[J]. American Journal of Polymer Science,2014,4(2):25-31. [39] CHAN E, HUANG C, CHIA P, et al. Swelling behaviour and methylene blue absorption of carboxymethyl cellulose hydrogels prepared from malaysian agricultural wastes by electron beam irradiation[J]. Cellulose Chemistry and Technology,2020,54(5/6):421-428. [40] IBRAHIM S, SALMAWI K, ZAHRAN A. Synthesis of crosslinked superabsorbent carboxymethyl cellulose/acrylamide hydrogels through electron-beam irradiation[J]. Journal of Applied Polymer Science,2007,104(3):2003-2008. doi: 10.1002/app.25916 [41] ISLAM M S, ALAM M N, VEN T. Sustainable cellulose-based hydrogel for dewatering of orange juice[J]. Cellulose, 2020, 27(5): 7637-7648. [42] TAVSANLI B, OKAY O. Preparation and fracture process of high strength hyaluronic acid hydrogels cross-linked by ethylene glycol diglycidyl ether[J]. Reactive and Functional Polymers, 2016, 109: 42-51. [43] LIU H, WANG A, XU X, et al. Porous aerogels prepared by crosslinking of cellulose with 1,4-butanediol diglycidyl ether in NaOH/urea solution[J]. RSC Advances, 2016, 6(49): 42854-42862. [44] YANG B, HUA W, LI L, et al. Robust hydrogel of regenerated cellulose by chemical crosslinking coupled with polyacrylamide network[J]. Journal of Applied Polymer Science, 2019, 136(30): 47811. [45] MARIA N, CHIARA D B, JUDITH S M, et al. Synthesis and characterization of cellulose-based hydrogels to be used as gel electrolytes[J]. Membranes, 2015, 5(4): 810-823. [46] JEONG D, KIM C, KIM Y, et al. Dual crosslinked carboxymethyl cellulose/polyacrylamide interpenetrating hydrogels with highly enhanced mechanical strength and superabsorbent properties[J]. European Polymer Journal, 2020, 127(2): 109586. [47] YOSHIMURA T, MATSUO K, FUJIOKA R. Novel biodegradable superabsorbent hydrogels derived from cotton cellulose and succinic anhydride: Synthesis and characterization[J]. Journal of Applied Polymer Science, 2006, 99(6): 3251-3256. [48] DILAVER M, YURDAKOC K. Fumaric acid cross-linked carboxymethylcellulose/poly(vinyl alcohol) hydrogels[J]. Polymer Bulletin, 2016, 73(10): 2661-2675. [49] GHORPADE V, YADAV A, DIAS R, et al. Citric acid crosslinked carboxymethylcellulose-poly(ethylene glycol) hydrogel films for delivery of poorly soluble drugs[J]. International Journal of Biological Macromolecules, 2018, 118: 783-791. [50] GHORPADE V S, YADAV A V, DIAS R J. Citric acid crosslinked cyclodextrin/hydroxypropylmethylcellulose hydrogel films for hydrophobic drug delivery[J]. International Journal of Biological Macromolecules, 2016, 93: 75-86. [51] DILAVER M, YURDAKOC K. Fumaric acid cross-linked carboxymethylcellulose/poly(vinyl alcohol) hydrogels[J]. Polymer Bulletin,2016,73(10):2661-2675. [52] SHENG X Y, LI X, LI M T, et al. An injectable oxidized carboxymethyl cellulose/polyacryloyl hydrazide hydrogel via schiff base reaction[J]. Australian Journal of Chemistry, 2018, 71(1): 74-79. [53] TANG J, JAVAID M U, PAN C, et al. Self-healing stimuli-responsive cellulose nanocrystal hydrogels[J]. Carbohydrate Polymers, 2019, 229(21): 115486. [54] FITZSIMONS T, OENTORO F, SHANBHAG T V, et al. Preferential control of forward reaction kinetics in hydrogels crosslinked with reversible conjugate additions[J]. Macromolecules, 2020, 53(10): 3738-3746. [55] GENG H. A one-step approach to make cellulose-based hydrogels of various transparency and swelling degrees[J]. Carbohydrate Polymers, 2018, 186: 208-216. [56] KAYA M, DEMIR A, AKÇAY H. A novel highly porous cellulosic aerogel regenerated by solvent exchange mechanism[J]. Journal of Polymers and the Environment, 2019, 27(8): 1801-1806. [57] LEE S, KANG K, JEONG M, et al. Evaluation of supercritical CO2 dried cellulose aerogels as nano-biomaterials[J]. Journal of the Korean Physical Society,2017,71(8):483-486. doi: 10.3938/jkps.71.483 [58] LI Y, GRISHKEWICH N, LIU L, et al. Construction of functional cellulose aerogels via atmospheric drying chemically cross-linked and solvent exchanged cellulose nanofibrils[J]. Chemical Engineering Journal,2019,366:531-538. doi: 10.1016/j.cej.2019.02.111 [59] LIU S, YAO F, ODERINDE O, et al. Green synthesis of oriented xanthan gum–graphene oxide hybrid aerogels for water purification[J]. Carbohydrate Polymers,2017,174(1):392-399. [60] GENG H J. A facile approach to light weight, high porosity cellulose aerogels[J]. International Journal of Biological Macromolecules,2018,118:921-931. doi: 10.1016/j.ijbiomac.2018.06.167 [61] WANG Z, ZHU W, HUANG R, et al. Fabrication and characterization of cellulose nanofiber aerogels prepared via two different drying techniques[J]. Polymers,2020,12(11):2583. doi: 10.3390/polym12112583 [62] BORISOVA A, DE BRUYN M, BUDARIN V L, et al. A sustainable freeze-drying route to porous polysaccharides with tailored hierarchical meso- and macroporosity[J]. Macromolecular Rapid Communications,2015,36(8):774-779. doi: 10.1002/marc.201400680 [63] SHAMSKAR K R, HEIDARI H, RASHIDI A. Study on nanocellulose properties processed using different methods and their aerogels[J]. Journal of Polymers and the Environment,2019,27(7):1418-1428. doi: 10.1007/s10924-019-01438-7 [64] SCHWAN M, NEFZGER S, ZOGHI B, et al. Improvement of solvent exchange for supercritical dried aerogels[J]. Frontiers in Materials,2021,8(102):662487. [65] LIN W, JANA S C. Analysis of porous structures of cellulose aerogel monoliths and microparticles[J]. Microporous and Mesoporous Materials,2021,310(1):110625. [66] GURIKOV P, RAMAN S P, GRIFFIN J S, et al. 110th anniversary: Solvent exchange in the processing of biopolymer aerogels: Current status and open questions[J]. Industrial & Engineering Chemistry Research,2019,58(40):18590-18600. [67] VARGHESE A G, PAUL S A, LATHA M S. Remediation of heavy metals and dyes from wastewater using cellulose-based adsorbents[J]. Environmental Chemistry Letters,2019,17(2):867-877. doi: 10.1007/s10311-018-00843-z [68] LIANG H, HU X. A quick review of the applications of nano crystalline cellulose in wastewater treatment[J]. Journal of Bioresources and Bioproducts,2016,1(4):199-204. [69] HAMEED A, KHURSHID S, ADNAN A. Synthesis and characterization of carboxymethyl cellulose based hydrogel and its applications on water treatment[J]. Desalination and Water Treatment,2020,195:214-227. doi: 10.5004/dwt.2020.26041 [70] GODIYA C B, CHENG X, LI D, et al. Carboxymethyl cellulose/polyacrylamide composite hydrogel for cascaded treatment/reuse of heavy metal ions in wastewater[J]. Journal of Hazardous Materials,2019,364(15):28-38. [71] TRAN V V, PARK D, LEE Y C. Hydrogel applications for adsorption of contaminants in water and wastewater treatment[J]. Environmental Science & Pollution Research International,2018,25(25):24569-24599. [72] SANTOSO S P, KURNIAWAN A, SOETAREDJO F E, et al. Eco-friendly cellulose–bentonite porous composite hydrogels for adsorptive removal of azo dye and soilless culture[J]. Cellulose,2019,26(5):3339-3358. doi: 10.1007/s10570-019-02314-2 [73] PENG N, HU D N, ZENG J. Superabsorbent cellulose-clay nanocomposite hydrogels for highly efficient removal of dye in water[J]. ACS Sustainable Chemistry & Engineering,2016,4(12):7217-7224. [74] NING F, ZHANG J, KANG M, et al. Hydroxyethyl cellulose hydrogel modified with tannic acid as methylene blue adsorbent[J]. Journal of Applied Polymer Science,2021,138(8):49880. doi: 10.1002/app.49880 [75] WANG F, LI J, SU Y, et al. Adsorption and recycling of Cd(II) from wastewater using straw cellulose hydrogel beads[J]. Journal of Industrial and Engineering Chemistry,2019,80:361-369. doi: 10.1016/j.jiec.2019.08.015 [76] OGIHARA H, JING X, OKAGAKI J, et al. Simple method for preparing superhydrophobic paper: Spray-deposited hydrophobic silica nanoparticle coatings exhibit high water-repellency and transparency[J]. Langmuir,2012,28(10):4605-4608. doi: 10.1021/la204492q [77] XUE Z, WANG R, LIN R, et al. A novel superhydrophilic and underwater superoleophobic hydrogel-coated MESH for oil/water separation[J]. Advanced Materials,2011,23(37):4270-4273. doi: 10.1002/adma.201102616 [78] XIE X, LIU L, NA N, et al. Strong cellulose hydrogel as underwater superoleophobic coating for efficient oil/water separation[J]. Carbohydrate Polymers,2019,229(334):115467. [79] CIOLACU D E, NICU R, CIOLACU F. Cellulose-based hydrogels as sustained drug-delivery systems[J]. Materials,2020,13(22):5270. [80] FAN X, YANG L, WANG T, et al. pH-responsive cellulose-based dual drug-loaded hydrogel for wound dressing[J]. European Polymer Journal,2019,121(6):109290. [81] ZHOU F, WU S H, RADER C, et al. Crosslinked ionic alginate and cellulose-based hydrogels for photoresponsive drug release systems[J]. Fibers and Polymers,2020,21(1):45-54. doi: 10.1007/s12221-020-9418-6 [82] CHEN N, WANG H, LING C, et al. Cellulose-based injectable hydrogel composite for pH-responsive and controllable drug delivery[J]. Carbohydrate Polymers,2019,225(7):115207. [83] JEONG D, KIM H K, JEONG J P, et al. Cyclosophoraose/cellulose hydrogels as an efficient delivery system for galangin, a hydrophobic antibacterial drug[J]. Cellulose,2016,23(4):2609-2625. doi: 10.1007/s10570-016-0975-1 [84] ADAMS M L, LAVASANIFAR A, KWON G S. Amphiphilic block copolymers for drug delivery[J]. Journal of Pharmaceutical Sciences,2003,92(7):1343-1355. doi: 10.1002/jps.10397 [85] LIU Z, ZHANG L, POYRAZ S, et al. Conducting polymer-metal nanocomposites synthesis and their sensory applications[J]. Current Organic Chemistry,2013,17(20):2256-2267. doi: 10.2174/13852728113179990048 [86] FU F, WANG J, ZENG H, et al. Functional conductive hydrogels for bioelectronics[J]. ACS Materials Letters,2020,2(10):1287-1301. doi: 10.1021/acsmaterialslett.0c00309 [87] CHEN D, ZHAO X, WEI X, et al. Ultrastretchable, tough, antifreezing, and conductive cellulose hydrogel for wearable strain sensor[J]. ACS Applied Materials and Interfaces,2020,12(47):53247-53256. doi: 10.1021/acsami.0c14935 [88] WANG W, SHUO Y, DING K, et al. Biomaterials- and biostructures inspired high-performance flexible stretchable strain sensors: A review[J]. Chemical Engineering Journal,2021,425(8):129949. [89] GONG Q, LI Y, LIU X, et al. A facile preparation of polyaniline/cellulose hydrogels for all-in-one flexible supercapacitor with remarkable enhanced performance[J]. Carbohydrate Polymers,2020,245:116611. doi: 10.1016/j.carbpol.2020.116611 [90] WANG G, ZHANG L, ZHANG J. Cheminform abstract: A review of electrode materials for electrochemical supercapacitors[J]. Chemical Society Reviews,2011,41(2):797-828. [91] ZHANG X, WANG Y, LU C, et al. Cellulose hydrogels prepared from micron-sized bamboo cellulose fibers[J]. Carbohydrate Polymers,2014,114:166-169. doi: 10.1016/j.carbpol.2014.08.012 [92] SHI Y, PAN L, LIU B, et al. Nanostructured conductive polypyrrole hydrogels as high-performance, flexible supercapacitor electrodes[J]. Journal of Materials Chemistry A,2014,2(17):6086-6091. doi: 10.1039/C4TA00484A [93] ZHANG X, ZHAO J, XIA T, et al. Hollow polypyrrole/cellulose hydrogels for high-performance flexible supercapacitors[J]. Energy Storage Materials,2020,31:135-145. doi: 10.1016/j.ensm.2020.06.016 [94] YANG L, SONG L, FENG Y, et al. Zinc ion trapping in cellulose hydrogel as solid electrolyte for safe and flexible supercapacitor[J]. Journal of Materials Chemistry A,2020,8(25):12314-12318. [95] CHENG Y, REN X, DUAN L, et al. A transparent and adhesive carboxymethyl cellulose/polypyrrole hydrogel electrode for flexible supercapacitors[J]. Journal of Materials Chemistry C,2020,8(24):8234-8242. doi: 10.1039/D0TC01039A [96] WANG H, QIU J, ZHANG K, et al. In situ formation of a renewable cellulose hydrogel electrolyte for high-performance flexible all-solid-state asymmetric supercapacitors[J]. Sustainable Energy & Fuels,2019,3(11):3109-3115. [97] LIU Z, CHEN J, ZHAN Y, et al. Fe3+ cross-linked polyaniline/cellulose nanofibril hydrogels for high-performance flexible solid-state supercapacitors[J]. ACS Sustainable Chemistry & Engineering,2019,7(21):17653-17660. [98] CHEN M, CHEN J, ZHOU W, et al. High-performance flexible and self-healable quasi-solid-state zinc-ion hybrid supercapacitor based on borax-crosslinked polyvinyl alcohol/nanocellulose hydrogel electrolyte[J]. Journal of Materials Chemistry A,2019,7(46):26524-26532. [99] KE S, WANG Z, ZHANG K, et al. Flexible conductive cellulose network-based composite hydrogel for multifunctional supercapacitors[J]. Polymers,2020,12(6):1369. doi: 10.3390/polym12061369 [100] LU N, NA R, LI L, et al. Rational design of Anti-freezing organohydrogel electrolytes for flexible supercapacitors[J]. ACS Applied Energy Materials,2020,3(2):1944-1951. doi: 10.1021/acsaem.9b02379 [101] LI L, LU F, WANG C, et al. Flexible double-cross-linked cellulose-based hydrogel and aerogel membrane for supercapacitor separator[J]. Journal of Materials Chemistry A,2018,6(47):24468-24478. [102] JI Y, LIANG N, XU J, et al. Cellulose and poly(vinyl alcohol) composite gels as separators for quasi-solid-state electric double layer capacitors[J]. Cellulose,2019,26(2):1055-1065. doi: 10.1007/s10570-018-2123-6 [103] PENG Z, ZOU Y, XU S, et al. High performance biomass-based flexible solid-state supercapacitor constructed of pressure-sensitive lignin-based and cellulose hydrogels[J]. ACS Applied Materials & Interfaces,2018,10(26):22190-22220. [104] XUE Z, SUN Z, CAO Y, et al. Superoleophilic and superhydrophobic biodegradable material with porous structures for oil absorption and oil–water separation[J]. RSC Advances,2013,3(45):23432-23437. [105] FENG L, ZHANG Z, MAI Z, et al. A super-hydrophobic and super-oleophilic coating MESH film for the separation of oil and water[J]. Angewandte Chemie International Edition,2004,43(15):2012-2014. doi: 10.1002/anie.200353381 [106] LIAO Q, SU X P, ZHU W J, et al. Flexible and durable cellulose aerogels for highly effective oil/water separation[J]. RSC Advances,2016,6(68):63773-63781. doi: 10.1039/C6RA12356B [107] PAULAUSKIENE T, UEBE J, KARASU A, et al. Investigation of cellulose-based aerogels for oil spill removal[J]. Water Air and Soil Pollution,2020,231(8):424. doi: 10.1007/s11270-020-04799-1 [108] LAM B, DÉON S, CRINI N, et al. Polymer-enhanced ultrafiltration for heavy metal removal: Influence of chitosan and carboxymethyl cellulose on filtration performances[J]. Journal of Cleaner Production,2018,171(2):927-933. [109] JI Y, WEN Y, WANG Z, et al. Eco-friendly fabrication of a cost-effective cellulose nanofiber-based aerogel for multifunctional applications in Cu(II) and organic pollutants removal[J]. Journal of Cleaner Production,2020,255(1):120276. [110] HASAN M, GOPAKUMAR D, ARUMUGHAN V, et al. Robust superhydrophobic cellulose nanofiber aerogel for multifunctional environmental applications[J]. Polymers,2019,11(3):495. doi: 10.3390/polym11030495 [111] 翟健玉, 白文浩, 李昂, 等. ZIF-67/废棉纤维素复合气凝胶的制备及其对染料的去除性能[J]. 复合材料学报, 2022, 39(3): 1259-1267ZHAI Jianyu, BAI Wenhao, LI Ang, et al. Preparation of ZIF-67/waste cotton cellulose composite aerogels and the removal performance on dyes[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1259-1267 (in Chinese). [112] ILLERA-PEROZO D, MESA J A, GOMEZ H, et al. Cellulose aerogels for thermal insulation in buildings: trends and challenges[J]. Coatings,2018,8(10):345. doi: 10.3390/coatings8100345 [113] JIANG S, ZHANG M, LI M, et al. Cellulose nanofibril (CNF) based aerogels prepared by a facile process and the investigation of thermal insulation performance[J]. Cellulose,2020,27(11):6217-6233. doi: 10.1007/s10570-020-03224-4 [114] FENG J, LE D, NGUYEN S T, et al. Silica-cellulose hybrid aerogels for thermal and acoustic insulation applications[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 506: 298-305. [115] JIANG S, ZHANG M, JIANG W, et al. Multiscale nanocelluloses hybrid aerogels for thermal insulation: The study on mechanical and thermal properties[J]. Carbohydrate Polymers,2020,247(1):116701. [116] LUO X, SHEN J, MA Y, et al. Robust, sustainable cellulose composite aerogels with outstanding flame retardancy and thermal insulation[J]. Carbohydrate Polymers,2019,230(23):115623. [117] FU Q L, MEDINA L, LI Y Y, et al. Nanostructured wood hybrids for fire-retardancy prepared by clay impregnation into the cell wall[J]. ACS Applied Materials & Interfaces,2017,9(41):36154-36163. [118] ISWAR S, GRIFFA M, KAUFMANN R, et al. Effect of aging on thermal conductivity of fiber-reinforced aerogel composites: An X-ray tomography study[J]. Microporous and Mesoporous Materials,2019,278:289-296. doi: 10.1016/j.micromeso.2018.12.006 [119] HAYASE G, KANAMORI K, ABE K, et al. Polymethylsilsesquioxane–cellulose nanofiber biocomposite aerogels with high thermal insulation, bendability, and superhydrophobicity[J]. ACS Applied Materials & Interfaces,2014,6(12):9466-9471. [120] GUPTA P, VERMA C, MAJI P K. Flame retardant and thermally insulating clay based aerogel facilitated by cellulose nanofibers[J]. The Journal of Supercritical Fluids,2019,152(9):104537. [121] ZUO B, YUAN B. Flame-retardant cellulose nanofiber aerogel modified with graphene oxide and sodium montmorillonite and its fire-alarm application[J]. Polymers for Advanced Technologies,2021,32(4):1877-1887. doi: 10.1002/pat.5231 [122] MUHAMMAD F, HENRIKKI S M, ARI S, et al. Eco-friendly flame-retardant cellulose nanofibril aerogels by incorporating sodium bicarbonate[J]. ACS Applied Materials & Interfaces,2018,10(32):27407-27415. [123] YUAN B, ZHANG J, YU J, et al. Transparent and flame retardant cellulose/aluminum hydroxide nanocomposite aerogels[J]. Science China Chemistry,2016,59(10):1335-1341. doi: 10.1007/s11426-016-0188-0 [124] WANG D, PENG H, YU B, et al. Biomimetic structural cellulose nanofiber aerogels with exceptional mechanical, flame-retardant and thermal-insulating properties[J]. Chemical Engineering Journal,2020,389:124449. doi: 10.1016/j.cej.2020.124449 [125] YUAN B, ZHANG J M, MI Q, et al. Transparent cellulose-silica composite aerogels with excellent flame retardancy via in situ sol-gel process[J]. ACS Sustainable Chemistry & Engineering,2017,5(11):11112-11117. [126] FAN B, CHEN S, YAO Q, et al. Fabrication of cellulose nanofiber/AlOOH aerogel for flame retardant and thermal insulation[J]. Materials, 2017, 10(3): 311. [127] REBELO R, FERNANDES M, FANGUEIRO R. Biopolymers in medical implants: A brief review[J]. Procedia Engineering,2017,200:236-243. doi: 10.1016/j.proeng.2017.07.034 [128] SANTAMARÍA E, MAESTRO A, PORRAS M, et al. Controlled release of ibuprofen by meso–macroporous silica[J]. Journal of Solid State Chemistry,2014,210(1):242-250. doi: 10.1016/j.jssc.2013.11.031 [129] ATHAMNEH T, AMIN A, BENKE E, et al. Alginate and hybrid alginate-hyaluronic acid aerogel microspheres as potential carrier for pulmonary drug delivery[J]. The Journal of Supercritical Fluids,2019,150:49-55. doi: 10.1016/j.supflu.2019.04.013 [130] LIU Z, ZHANG S, HE B, et al. Temperature-responsive hydroxypropyl methylcellulose-N-isopropylacrylamide aerogels for drug delivery systems[J]. Cellulose,2020,27(16):9493-9504. doi: 10.1007/s10570-020-03426-w [131] CHIN S F, JIMMY F B, PANG S C. Fabrication of cellulose aerogel from sugarcane bagasse as drug delivery carriers[J]. Journal of Physical Science,2016,27(3):159-168. doi: 10.21315/jps2016.27.3.10 [132] WAN C, JIAO Y, SUN Q, et al. Preparation, characterization, and antibacterial properties of Silver nanoparticles embedded into cellulose aerogels[J]. Polymer Composites,2016,37(4):1137-1142. doi: 10.1002/pc.23276 [133] UDDIN K, ORELMA H, MOHAMMADI P, et al. Retention of lysozyme activity by physical immobilization in nanocellulose aerogels and antibacterial effects[J]. Cellulose,2017,24(7):2837-2848. doi: 10.1007/s10570-017-1311-0 [134] TATIANA G V, SHUMILOVA A A, SHIDLOVSKIY I P, et al. Antibacterial properties of films of cellulose composites with silver nanoparticles and antibiotics[J]. Polymer Testing,2018,65:54-68. doi: 10.1016/j.polymertesting.2017.10.023 [135] SHAN Y, HE S, CHEN S, et al. Morphological, release and antibacterial performances of amoxicillin-loaded cellulose aerogels[J]. Molecules,2018,23(8):2082. doi: 10.3390/molecules23082082