Recent progress of interfacial layers for inverted inorganic perovskite solar cells
-
摘要: 铯基无机钙钛矿(CsPbX3)因其耐热性好、低成本和带隙可调等优点,近年来备受关注,并广泛用于制备新型薄膜太阳能电池。目前,虽然具有倒置结构的无机钙钛矿太阳能电池(PSC)更稳定且有望应用于构筑叠层电池的顶电池,其性能仍落后于正置结构的电池。因此,倒置电池的结构,特别是其界面层亟待进一步优化。近年来,研究者们设计和开发了一系列有机、无机界面层(包括空穴传输层和电子传输层),尝试优化基于无机钙钛矿的倒置电池。本综述针对这一现状,从材料和制备工艺的角度出发,综述了基于有机、无机材料体系的多种界面层的制备和应用进展,总结各类界面层材料的特点,讨论目前界面层的瓶颈问题和潜在的解决方案。Abstract: In recent years, cesium based inorganic perovskites (CsPbX3) are of great interest due to their high thermal resistance, low cost and tunable bandgap, which have been used as absorbers to for the development of novel thin-film solar cells. Currently, the photovoltaic performance of inverted perovskite solar cells (PSC) still leg behind that of regular solar cells, though the inverted solar cells are more stable and more promising as top layer of tandem solar cells. Therefore, the device structure of inverted solar cell remains to be further optimized. To approach this aim, researchers have developed a series of organic and inorganic interfacial layers, including hole-transport-layer and electron-transport-layer, with the aim of optimizing the inverted inorganic perovskite solar cells. Herein, we address the recent progress of organic and inorganic interfacial layers from the perspective of materials and processing techniques. A variety of material systems are compared to summarize their features. This work also discuss their bottlenecks and try to provide potential solutions for achieving ideal interfacial layers.
-
图 3 (a)基于Spiro-OMeTAD/TS-CuPc的倒置电池结构示意图;((b)~(c)) 在不同基底层上生长的CsPbI2Br薄膜的深度依赖的GIXRD图谱;(d) 从 CsPbI2Br (100)晶面获得的晶面间距随掠入角变化的点及拟合曲线;(e) CsPbI2Br和无掺杂的Spiro-OMeTAD的晶格间距随XRD测试温度变化的线性图;(f) 在HTL/CsPbI2Br界面上的应力释放示意图[8]
Figure 3. (a) Schematic diagram of the inverted CsPbI2Br PSC with Spiro-OMeTAD/TS-CuPc based HTL; ((b)-(c)) Depth-dependent GIXRD patterns of CsPbI2Br (100) plane deposited on different underlayers; (d) Plot of d-spacing values derived from CsPbI2Br (100) plane versus incidence angle; (e) Plot of d-spacing values of CsPbI2Br perovskite and dopant-free Sipro-OMeTAD versus temperature for XRD measurement; (f) Schematic illustration of the strain release at the HTL/CsPbI2Br interface[8]
Bphen—4,7-Diphenyl-1,10-phenanthroline; ITO—Indium tin oxide
图 4 (a)基于PEDOT:PSS和CsPbI3的倒置电池能带图;(b) 基于β-CsPbI3和γ-CsPbI3电池的J-V曲线[10];(c) 基于P3CT-N和CsPbI3的倒置电池的结构示意图;(d) 最优电池的J-V曲线[11]
Figure 4. (a) Proposed energy band diagram exhibiting charge carriers transportation under illumination for PEDOT:PSS/β-CsPbI3 or γ-CsPbI3 based inverted PSC; (b) J-V curves of the champion devices based on β-CsPbI3 or γ-CsPbI3[10]; (c) Schematic diagram of the inverted CsPbI3 PSC with P3CT-N based ETL; (d) J-V curves of the champion device[11]
BCP—2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline
图 5 (a) 二维c-Nb2O5纳米片的AFM高度图;(b) 基于c-Nb2O5/PC61BM电子传输层的倒置电池结构示意图[16];(c) 二维Nano-Eu2O3纳米片的AFM高度图;(d) 基于Nano-Eu2O3/PC61BM电子传输层的倒置电池能带分布示意图[17]
Figure 5. (a) AFM height image of 2D c-Nb2O5 nanosheets; (b) Schematic illustration of inverted perovskite solar cell based on c-Nb2O5/PC61BM ETL [16]; (c) AFM height image of 2D Nano-Eu2O3 nanosheets; (d) Schematic illustration of band alignment for inverted perovskite solar cell based on Nano-Eu2O3/PC61BM ETL [17]
表 1 近期文献报道的倒置无机钙钛矿太阳能电池(PSC)的结构和性能
Table 1. Structure and performance of inverted inorganic perovskite solar cells (PSC) reported in recent literature
Device structure Key improvement VOC/V JSC
/(mA·cm−2 )FF/% PCE/% Ref. ITO/PTAA/CsPb(I0.98Cl0.02)3/PC61BM/C60/BCP/Al Sulfobetaine zwitterions were used as additives in CsPbI3 precursor solution to stabilize the α phase of CsPbI3 films 1.09 14.9 70 11.4 [5] ITO/PTAA/γ-CsPbI3/PC61BM/BCP/Ag Tuning the crystallization of γ-CsPbI3 by co-evaporating the phenethylammonium iodide (PEAI) along with CsI and PbI2 1.09 17.33 79.41 15.00 [6] ITO/SpiPAII/CsPbI2Br/ZnO@C60/Ag Dopant-free mixture (SpiPA) of Spiro-OMeTAD and PTAA was applied as HTL 1.14 14.30 76.43 12.52 [7] ITO/PEDOT:PSS/CsPbI3/C60/BCP/Al Preparation of β-CsPbI3 film at low temperature on PEDOT:PSS HTL 0.96 11.34 67.2 7.3 [10] FTO/P3CT-N/CsPbI3/PC61BM/C60/BCP/Ag Doping perovskite with Si-Cl to improve its humidity stability 1.176 20.1 80.04 18.93 [11] ITO/PEDOT:PSS/CsPbI3/PC61BM/BCP/LiF/Al Using PEDOT:PSS as HTL 0.87 8.17 69 4.88 [12] FTO/P3CT-N/CsPbI2Br/PC61BM/C60/BCP/Ag Surface treatment with FABr followed by a high-temperature annealing 1.223 16.35 79.62 15.92 [13] ITO/NiOx/CsPbI2Br/c−Nb2O5/PC61BM/Bphen/Ag Introducing 2D c−Nb2O5 to the CsPbI2Br/PC61BM interface for inverted PeSCs 1.06 14.13 78.4 11.74 [16] ITO/NiOx/CsPbI2Br/Nano-Eu2O3/PC61BM/ Bphen/Ag Use the solution-processed nano-Eu2O3 as the buffer layer between CsPbI2Br and PC61BM films 1.17 15.50 77.9 14.09 [17] FTO/NiOx/CsPbI2Br/ZnO@C60/Ag Construction of all-inorganic PSCs with inverted configuration 1.14 15.2 77 13.3 [19] SLG/FTO/NiOx/CsPbI2Br/ZnO@C60/Ag NiOx HTL prepared by direct current (DC) reactive magnetron sputtering 1.1 15.1 75.6 12.6 [20] FTO/NiOx/CsPbI2Br/c-Nb2O5/PC61BM/Bphen/Ag Doping CsPbI2Br perovskite with S8 1.16 15.91 78.35 14.46 [21] FTO/NiOx/CsPbI2Br/ZnO@C60/Ag Doping CsPbI2Br perovskite with Cr-MOF 1.30 16.51 79 17.02 [22] ITO/NiMgLiO/MAPbI3/PC61BM/(Ti)NbOx/Ag Preparation of NiMgLiO HTL by spray thermal decomposition 1.072 20.62 74.8 16.2 [24] FTO/NiMgLiO/CsPbI2Br/PC61BM/BCP/Ag Inverted inorganic PSCs based on NiMgLiO 0.98 14.18 66 9.14 [25] FTO/NiMgLiO/CsPbI2Br/C-MOX/Ag Carbon-coated metal oxide nanocrystals (C-MOX) as ETL 1.26 14.72 76 14.00 [26] FTO/NiOx/CsPbI2Br/ZnO@C60/
AgDoping ZnO@C60 ETL with TPFPB and LiClO4 1.23 15.87 78 15.19 [27] ITO/P3CT/CsPbI2Br/ZnO@C60/
AgModifying ZnO layer with Zwitterionic molecules TPPPS 1.228 15.51 76.83 14.62 [28] Notes: HTL—Hole transport layer; ETL—Electron transport layer; PEAI—2-Phenylethylamine hydroiodide; SpiPAII—Spiro-OMeTAD:PTAA; FABr—Formamidinium bromide; FTO—Fluorine-doped tin oxide; SLG—Soda-lime glass; Cr-MOF—Terpyridyl chromium; C-MOX—Carbon-coated metal oxide; TPPPS—3-Triphenylphosphaniumylpropane-1-sulfonate; TPFPB—Tris(pentafluoro-phenyl)borane; VOC—Open-circuit voltage; JSC—Short-circuit current density; FF—Fill factor; PCE—Power conversation efficiency. -
[1] The National Renewable Energy Laboratory (NREL). Best Research-Cell Efficiency Chart [EB/OL]. https://www.nrel.gov/pv/cellefficiency.html (2022-01-26). [2] TAI Q, TANG K C, YAN F. Recent progress of inorganic perovskite solar cells[J]. Energy & Environmental Science,2019,12(8):2375-2405. [3] ROMBACH F M, HAQUE S A, MACDONALD T J. Lessons learned from Spiro-OMeTAD and PTAA in perovskite solar cells[J]. Energy & Environmental Science,2021,14(10):5161-5190. [4] WANG M, WANG H, LI W, et al. Defect passivation using ultrathin PTAA layers for efficient and stable perovskite solar cells with a high fill factor and eliminated hysteresis[J]. Journal of Materials Chemistry A,2019,7(46):26421-26428. doi: 10.1039/C9TA08314F [5] WANG Q, ZHENG X, DENG Y, et al. Stabilizing the α-phase of CsPbI3 perovskite by sulfobetaine zwitterions in one-step spin-coating films[J]. Joule,2017,1(2):371-382. doi: 10.1016/j.joule.2017.07.017 [6] ZHANG Z, JI R, KROLL M, et al. Efficient thermally evapo-rated γ-CsPbI3 perovskite solar cells[J]. Advanced Energy Materials,2021,11(29):2100299. doi: 10.1002/aenm.202100299 [7] YANG Y, YUAN Q, LI H, et al. Dopant free mixture of Spiro-OMeTAD and PTAA with tunable wettability as hole transport layer enhancing performance of inverted CsPbI2Br perovskite solar cells[J]. Organic Electronics,2020,86:105873. doi: 10.1016/j.orgel.2020.105873 [8] HAN D, YI S, YUAN Q, et al. Managing defects density and interfacial strain via underlayer engineering for inverted CsPbI2Br perovskite solar cells with all-layer dopant-free[J]. Small,2021,17(28):2101902. doi: 10.1002/smll.202101902 [9] LIU P, WANG C, ZHOU D, et al. WOx@PEDOT core–shell nanorods: hybrid hole-transporting materials for efficient and stable perovskite solar cells[J]. ACS Applied Energy Materials, American Chemical Society,2018,1(4):1742-1752. doi: 10.1021/acsaem.8b00277 [10] MAHATO S, GHORAI A, SRIVASTAVA S K, et al. Highly air-stable single-crystalline β-CsPbI3 nanorods: A platform for inverted perovskite solar cells[J]. Advanced Energy Materials,2020,10(30):2001305. doi: 10.1002/aenm.202001305 [11] FU S, ZHANG W, LI X, et al. Humidity-assisted chlorination with solid protection strategy for efficient air-fabri-cated inverted CsPbI3 perovskite solar cells[J]. ACS Energy Letters,2021,6(10):3661-3668. doi: 10.1021/acsenergylett.1c01817 [12] KIM Y G, KIM T-Y, OH J H, et al. Cesium lead iodide solar cells controlled by annealing temperature[J]. Physical Chemistry Chemical Physics,2017,19(8):6257-6263. doi: 10.1039/C6CP08177K [13] FU S, LI X, WAN L, et al. Effective surface treatment for high-performance inverted CsPbI2Br perovskite solar cells with efficiency of 15.92%[J]. Nano-Micro Letters,2020,12(1):170. doi: 10.1007/s40820-020-00509-y [14] ZHANG F, SHI W, LUO J, et al. Isomer-pure Bis-PCBM-assisted crystal engineering of perovskite solar cells showing excellent efficiency and stability[J]. Advanced Materials,2017,29(17):1606806. doi: 10.1002/adma.201606806 [15] ZHONG Y, HUFNAGEL M, THELAKKAT M, et al. Role of PCBM in the suppression of hysteresis in perovskite solar cells[J]. Advanced Functional Materials,2020,30(23):1908920. doi: 10.1002/adfm.201908920 [16] HAN D, XIN Y, YUAN Q, et al. Solution-processed 2D Nb2O5(001) nanosheets for inverted CsPbI2Br perovskite solar cells: Interfacial and diffusion engineering[J]. Solar RRL,2019,3(7):1900091. doi: 10.1002/solr.201900091 [17] YI S, HAN D, YUAN Q, et al. Redox-active Eu2O3 nanoflakes as a buffer layer for inverted CsPbI2Br perovskite solar cells with enhanced performance[J]. Journal of Materials Chemistry C,2020,8(39):13754-13761. doi: 10.1039/D0TC03345F [18] YIN X, GUO Y, XIE H, et al. Nickel oxide as efficient hole transport materials for perovskite solar cells[J]. Solar RRL,2019,3(5):1900001. doi: 10.1002/solr.201900001 [19] LIU C, LI W, ZHANG C, et al. All-inorganic CsPbI2Br perovskite solar cells with high efficiency exceeding 13%[J]. Journal of the American Chemical Society,2018,140(11):3825-3828. doi: 10.1021/jacs.7b13229 [20] PAN L, LIU C, ZHU H, et al. Fine modification of reactively sputtered NiOx hole transport layer for application in all-inorganic CsPbI2Br perovskite solar cells[J]. Solar Energy,2020,196:521-529. doi: 10.1016/j.solener.2019.12.056 [21] YUAN Q, YI S, HAN D, et al. S8 additive enables CsPbI2Br perovskite with reduced defects and improved hydrophobicity for inverted solar cells[J]. Solar RRL,2021,5(3):2000714. doi: 10.1002/solr.202000714 [22] YUAN S, XIAN Y, LONG Y, et al. Chromium-based metal-organic framework as A-site cation in CsPbI2Br perovskite solar cells[J]. Advanced Functional Materials,2021,31(51):2106233. doi: 10.1002/adfm.202106233 [23] PATIL J V, MALI S S, HONG C K. A-site rubidium cation-incorporated CsPbI2Br all-inorganic perovskite solar cells exceeding 17% efficiency[J]. Solar RRL,2020,4(7):2000164. doi: 10.1002/solr.202000164 [24] CHEN W, WU Y, YUE Y, et al. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers[J]. Science,2015,350(6263):944-948. doi: 10.1126/science.aad1015 [25] ZHANG J, BAI D, JIN Z, et al. 3D-2D-0D interface profiling for record efficiency all-inorganic CsPbBrI2 perovskite solar cells with superior stability[J]. Advanced Energy Materials,2018,8(15):1703246. doi: 10.1002/aenm.201703246 [26] ZHANG S, CHEN W, WU S, et al. A general strategy to prepare high-quality inorganic charge-transporting layers for efficient and stable all-layer-inorganic perovskite solar cells[J]. Journal of Materials Chemistry A,2019,7(31):18603-18611. doi: 10.1039/C9TA05802H [27] LIU C, YANG Y, ZHANG C, et al. Tailoring C60 for efficient inorganic CsPbI2Br perovskite solar cells and modules[J]. Advanced Materials,2020,32(8):1907361. doi: 10.1002/adma.201907361 [28] CHEN L, YIN Z, MEI S, et al. Enhanced photoelectric performance of inverted CsPbI2Br perovskite solar cells with zwitterion modified ZnO cathode interlayer[J]. Journal of Power Sources,2021,499:229909. doi: 10.1016/j.jpowsour.2021.229909 [29] CHEN Y, LIU X, ZHAO Y. Organic matrix assisted low-temperature crystallization of black phase inorganic perovskites[J]. Angewandte Chemie International Edition,2021:anie.202110603.