留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SnS2-Ag/g-C3N4三相复合材料的合成及其光催化性能

刘成宝 唐飞 马恬 陈丰 钱君超 许小静 孟宪荣 陈志刚

刘成宝, 唐飞, 马恬, 等. SnS2-Ag/g-C3N4三相复合材料的合成及其光催化性能[J]. 复合材料学报, 2022, 39(12): 5868-5878. doi: 10.13801/j.cnki.fhclxb.20220117.003
引用本文: 刘成宝, 唐飞, 马恬, 等. SnS2-Ag/g-C3N4三相复合材料的合成及其光催化性能[J]. 复合材料学报, 2022, 39(12): 5868-5878. doi: 10.13801/j.cnki.fhclxb.20220117.003
LIU Chengbao, TANG Fei, MA Tian, et al. Preparation and photocatalytic properties of SnS2-Ag/g-C3N4 composites[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 5868-5878. doi: 10.13801/j.cnki.fhclxb.20220117.003
Citation: LIU Chengbao, TANG Fei, MA Tian, et al. Preparation and photocatalytic properties of SnS2-Ag/g-C3N4 composites[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 5868-5878. doi: 10.13801/j.cnki.fhclxb.20220117.003

SnS2-Ag/g-C3N4三相复合材料的合成及其光催化性能

doi: 10.13801/j.cnki.fhclxb.20220117.003
基金项目: 江苏省自然科学基金(BK20180103;BK20180971);苏州市科技发展计划项目(民生科技—关键技术应用研究)(SS202036);江苏省研究生实践创新计划(SJCX20_1107)
详细信息
    通讯作者:

    刘成宝,博士,副教授,研究方向为环境功能材料 E-mail: Lcb@mail.usts.edu.cn

  • 中图分类号: TB333

Preparation and photocatalytic properties of SnS2-Ag/g-C3N4 composites

  • 摘要: 为解决单相光催化材料结构和性能上的缺陷,通过二次煅烧法获得二维石墨相氮化碳g-C3N4,通过光沉积法获得Ag/g-C3N4,选择SnS2与Ag/g-C3N4通过简单的超声和蒸发溶剂的方法制备了三相复合材料SnS2-Ag/g-C3N4,成功构建了n-n型异质结,并对材料的微观形貌、相结构、光响应能力和孔隙结构等进行了详尽表征。结果表明:材料依然保留了片层状结构并构建了浪花状形貌,各相结晶度较高且界面构建良好,形成了类似三明治结构的2D-0D-2D形貌,复合材料较单相材料具有更高的比表面积和更强的可见光响应性能。当SnS2的含量为10wt%时,所合成SnS2-Ag/g-C3N4复合材料对罗丹明B的光催化降解效率达到最高的95.6%,降解速率最快且为g-C3N4的3.5倍,经4次循环后材料的光催化效率仍然保持在85.3%以上。

     

  • 图  1  不同分散剂用量合成的SnS2 (a) 和不同质量分数的SnS2-Ag/g-C3N4 (b) 的XRD图谱

    Figure  1.  XRD patterns of SnS2 synthesized with different dispersant dosages (a) and SnS2-Ag/g-C3N4 synthesized with different proportions (b)

    图  2  0.3SnS2 (a)、0.6SnS2 (b) 和0.9SnS2 (c) 的SEM图像

    Figure  2.  SEM images of 0.3SnS2(a), 0.6SnS2 (b) and 0.9SnS2 (c)

    图  3  5wt% (a)、10wt% (b)、15wt% (c) SnS2-Ag/g-C3N4的SEM图像

    Figure  3.  SEM image of 5wt% (a), 10wt% (b), 15wt% (c) SnS2-Ag/g-C3N4

    图  4  SnS2-Ag/g-C3N4复合光催化材料的HRTEM图像 (a)、面扫图谱 (b) 和C、N、Ag、Sn和S元素 ((c)~(g))

    Figure  4.  HRTEM image (a), mapping spectrum (b) of SnS2-Ag/g-C3N4 composite photocatalytic material, elements of C, N, Ag, Sn and S, respectively ((c)-(g))

    图  5  g-C3N4和10wt%SnS2-Ag/g-C3N4的N2吸附-脱附等温线 (a) 及对应的孔径分布 (b)

    Figure  5.  N2 adsorption-desorption isotherms (a) of g-C3N4 and 10wt%SnS2-Ag/g-C3N4 and their corresponding pore size distributions (b)

    V—Pore volume; D—Pore diameter

    图  6  g-C3N4、Ag/g-C3N4和SnS2-Ag/g-C3N4催化剂材料的荧光光谱图

    Figure  6.  Fluorescence spectra of g-C3N4, Ag/g-C3N4 and SnS2-Ag/g-C3N4 catalyst materials

    图  7  SnS2-Ag/g-C3N4的X射线光电子能谱(XPS)光谱图(a)和C1s(b)、N1s(c)、Sn3d(d)、S2p(e)和Ag3d(f)的高分辨率XPS光谱

    Figure  7.  X-ray photoelectron spectroscopy (XPS) spectra(a) of SnS2-Ag/g-C3N4 and high-resolution XPS spectra of C1s(b), N1s(c), Sn3d(d), S2p(e) and Ag3d(f)

    图  8  SnS2、g-C3N4、Ag/g-C3N4、SnS2-Ag/g-C3N4的UV-Vis漫反射光谱 (a) 及其对应的带隙宽度图 (b)

    Figure  8.  UV–Vis diffuse reflectance spectras of SnS2, g-C3N4, Ag/g-C3N4, SnS2-Ag/g-C3N4(a) and band gap width diagram of catalysts, respectively (b)

    α—Absorption coefficient; hv—Optical energy

    图  9  不同SnS2含量的SnS2-Ag/g-C3N4对RhB的光催化降解速率 (a) 和动力学图 (b);(c) 不同pH条件下催化剂的降解效率; (d) 催化材料的稳定性

    Figure  9.  Photocatalytic degradation rate (a) and kinetic (b) diagram of RhB by SnS2-Ag/g-C3N4 with different SnS2 content; (c) Degradation efficiency of catalyst under different pH conditions; (d) Stability of catalytic materials

    k—Reaction rate constant; C—Concentration; C0—Original concentration

    图  10  (a) 不同清除剂加入后SnS2-Ag/g-C3N4降解罗丹明B(RhB)的效率;(b) 催化剂材料的价带谱

    Figure  10.  (a) SnS2-Ag/g-C3N4 degradation efficiency of Rhodamine B (RhB) after adding different scavengers; (b) Valence band of the catalyst material

    EDTA-2Na—C10H14N2Na2O8; t-BuOH—Tertiary butyl alcohol; BQ—Benzoquinone

    图  11  SnS2-Ag/g-C3N4光催化材料的机制示意图

    Figure  11.  Schematic diagram of the mechanism of SnS2-Ag/g-C3N4

    CB—Conduction band; VB—Valence band; E—Potential

    表  1  层状SnS2的配比

    Table  1.   Ratio of layered SnS2

    Sample PEG-6000/g Sn/mmol S/mmol
    0.3SnS2 0.3 1 2
    0.6SnS2 0.6 1 2
    0.9SnS2 0.9 1 2
    Note: PEG—Polyethylene glycol.
    下载: 导出CSV

    表  2  SnS2-Ag/石墨相氮化碳(g-C3N4)样品名及其成分配比

    Table  2.   Sample name of SnS2-Ag/graphite phase carbon nitride (g-C3N4) and composition ratio

    Sample0.3SnS2/wt%Ag/wt%
    5%SnS2-Ag/g-C3N4 55
    10%SnS2-Ag/g-C3N410
    15%SnS2-Ag/g-C3N415
    下载: 导出CSV
  • [1] FUJISHIMA Akira, HONDA Kenichi. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature,1972,238(5358):37-38. doi: 10.1038/238037a0
    [2] WEN Jiuqing, XIE Jun, CHEN Xiaobo, et al. A Review on g-C3N4-based photocatalysts[J]. Applied Surface Science,2017,391:72-123.
    [3] WANG Chuang, ZHAI Jiali, JIANG Huan, et al. CdS/Ag2S nanocomposites photocatalyst with enhanced visible light photocatalysis activity[J]. Solid State Sciences,2019,98:106020. doi: 10.1016/j.solidstatesciences.2019.106020
    [4] GUO Rui, YAN Aiguo, XU Juanjuan, et al. Effects of morphology on the visible-light-driven photocatalytic and bactericidal properties of BiVO4/CdS heterojunctions: A discussion on photocatalysis mechanism[J]. Journal of Alloys and Compounds,2020,817:153246. doi: 10.1016/j.jallcom.2019.153246
    [5] MATIMIN J, MOHAMAD A J, HAZWANEE O, et al. Photochemical synthesis of nanosheet Tin Di/sulfide with sunlight response on water pollutant degradation[J]. Nanomaterials (Basel),2019,9(2):264. doi: 10.3390/nano9020264
    [6] HUO Yao, YANG Yang, DAI Kai, et al. Construction of 2D/2D porous graphitic C3N4/SnS2 composite as a direct Z-scheme system for efficient visible photocatalytic activity[J]. Applied Surface Science,2019,481:1260-1269. doi: 10.1016/j.apsusc.2019.03.221
    [7] GUO Shengqi, ZHANG Haijun, HU Zhengzhong, et al. Composition-dependent micro-structure and photocatalytic performance of g-C3N4 quantum dots@SnS2 heterojunction[J]. Nano Research, 2021, 14(11): 4188-4196.
    [8] FENG Juan, CHEN Jibing, MU Jianglong, et al. A facile in situ solvothermal method for two-dimensional layered g-C3N4/SnS2 p-n heterojunction composites with efficient visible-light photocatalytic activity[J]. Journal of Nanoparticle Research,2018,20:38. doi: 10.1007/s11051-018-4143-4
    [9] DI Tingmin, ZHU Bicheng, CHENG Bei, et al. A direct Z-scheme g-C3N4/SnS2 photocatalyst with superior visible-light CO2 reduction performance[J]. Journal of Catalysis,2017,352:532-541.
    [10] KIM S C, KIM S M, YOON G J, et al. Gelatin-based sponge with Ag nanoparticles prepared by solution plasma: Fabrication, characteristics, and their bactericidal effect[J]. Current Applied Physics,2014,14:S172-S179. doi: 10.1016/j.cap.2013.12.032
    [11] ZHAO Wei, LI Yajuan, ZHAO Pushu, et al. Novel Z-scheme Ag-C3N4/SnS2 plasmonic heterojunction photocatalyst for degradation of tetracycline and H2 production[J]. Chemi-cal Engineering Journal,2021,405:126555. doi: 10.1016/j.cej.2020.126555
    [12] ZHANG Zhenyi, HUANG Jindou, ZHANG Mingyi, et al. Ultrathin hexagonal SnS2 nanosheets coupled with g-C3N4 nanosheets as 2D/2D heterojunction photocatalysts toward high photocatalytic activity[J]. Applied Catalysis B: Environmental,2015,163:298-305. doi: 10.1016/j.apcatb.2014.08.013
    [13] LIANG Mingxi, YU Yajing, WANG Ying, et al. Remarkably efficient charge transfer through a double heterojunction mechanism by a CdS-SnS-SnS2/rGO composite with excellent photocatalytic performance under visible light[J]. Journal of Hazardous Materials,2020,391:121016. doi: 10.1016/j.jhazmat.2019.121016
    [14] KUMAR G M, CHO H D, ILANCHEZHIYAN P, et al. Evidencing enhanced charge-transfer with superior photocatalytic degradation and photoelectrochemical water splitting in Mg modified few-layered SnS2[J]. Journal of Colloid and Interface Science,2019,540:476-485. doi: 10.1016/j.jcis.2019.01.039
    [15] DENG Lu, ZHU Zhenfeng, LIU Liu, et al. Synthesis of Ag2O and Ag co-modified flower-like SnS2 composites with enhanced photocatalytic activity under solar light irradiation[J]. Solid State Sciences,2017,63:76-83. doi: 10.1016/j.solidstatesciences.2016.11.016
    [16] PHAM M T, NGUYEN T M, BUI D T, et al. Enhancing quantum efficiency at Ag/g-C3N4 interfaces for rapid removal of nitric oxide under visible light[J]. Sustainable Chemistry and Pharmacy,2022,25:100596. doi: 10.1016/j.scp.2021.100596
    [17] XU Ge, XU Yanheng, ZHOU Zhicun, et al. Facile hydrothermal preparation of graphitic carbon nitride supercell structures with enhanced photodegradation activity[J]. Diamond and Related Materials,2019,97:107461. doi: 10.1016/j.diamond.2019.107461
    [18] NAZNEEN A, KHAN M I, NAEEM M A, et al. Structural, morphological, optical, and photocatalytic properties of Ag-doped MoS2 nanoparticles[J]. Journal of Molecular Structure,2020,1220:128735. doi: 10.1016/j.molstruc.2020.128735
    [19] FANG Yanfen, MA Wanhong, HUANG Yingping, et al. Exploring the reactivity of multicomponent photocatalysts: Insight into the complex valence band of BiOBr[J]. Che-mistry,2013,19(9):3224-3229. doi: 10.1002/chem.201202602
    [20] SINGH Jasminder, BASU Soumen. Synthesis of mesoporous magnetic Fe2O3/g-C3N4 monoliths for Rhodamine B removal[J]. Microporous and Mesoporous Materials,2020,303:110299-110308. doi: 10.1016/j.micromeso.2020.110299
    [21] JIANG Qiongji, GAN Huihui, HUANG Yin, et al. Peroxymonosulfate activation on carbon nano-onions modified graphitic carbon nitride via light-tuning radical and nonradical pathways[J]. Journal of Environmental Chemical Engineering,2021,9(6):106592. doi: 10.1016/j.jece.2021.106592
    [22] XU Y, SCHOONEN M A A. The absolute energy positions of conduction and valence bands of selected semiconducting minerals[J]. American Mineralogist,2000,85(3-4):543-556. doi: 10.2138/am-2000-0416
    [23] 郑小刚, 杜京城, 付孝锦, 等. 双金属位催化剂Ag-Ni/g-C3N4可见光催化降解亚甲基蓝[J]. 硅酸盐学报, 2018, 46(1):85-92.

    ZHENG Xiaogang, DU Jingcheng, FU Xiaojin, et al. Carbon nitride bimetallic Ag-Ni/g-C3N4 catalysts for photocatalytic degradation of methylene blue under visible-light irradiation[J]. Journal of the Chinese Ceramic Society,2018,46(1):85-92(in Chinese).
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  417
  • HTML全文浏览量:  197
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-27
  • 修回日期:  2022-01-03
  • 录用日期:  2022-01-07
  • 网络出版日期:  2022-01-18
  • 刊出日期:  2022-12-01

目录

    /

    返回文章
    返回