留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

笼形聚倍半硅氧烷-六方氮化硼-苯胺三聚体共掺杂的改性环氧树脂防腐涂层

叶建宇 郑祥宏 祝奥奇 曾碧榕 许一婷 袁丛辉 罗伟昂 陈国荣 戴李宗

叶建宇, 郑祥宏, 祝奥奇, 等. 笼形聚倍半硅氧烷-六方氮化硼-苯胺三聚体共掺杂的改性环氧树脂防腐涂层[J]. 复合材料学报, 2022, 39(12): 5665-5677. doi: 10.13801/j.cnki.fhclxb.20211228.004
引用本文: 叶建宇, 郑祥宏, 祝奥奇, 等. 笼形聚倍半硅氧烷-六方氮化硼-苯胺三聚体共掺杂的改性环氧树脂防腐涂层[J]. 复合材料学报, 2022, 39(12): 5665-5677. doi: 10.13801/j.cnki.fhclxb.20211228.004
YE Jianyu, ZHENG Xianghong, ZHU Aoqi, et al. Epoxy resin anticorrosive coating modified by the co-doping of polyhedral silsesquioxane/hexagonal boron nitride/aniline trimer[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 5665-5677. doi: 10.13801/j.cnki.fhclxb.20211228.004
Citation: YE Jianyu, ZHENG Xianghong, ZHU Aoqi, et al. Epoxy resin anticorrosive coating modified by the co-doping of polyhedral silsesquioxane/hexagonal boron nitride/aniline trimer[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 5665-5677. doi: 10.13801/j.cnki.fhclxb.20211228.004

笼形聚倍半硅氧烷-六方氮化硼-苯胺三聚体共掺杂的改性环氧树脂防腐涂层

doi: 10.13801/j.cnki.fhclxb.20211228.004
基金项目: 国家自然科学基金(52173081);高分子材料检测公共服务平台,2019市公共技术服务平台定向项目(YDZX20193502000004)
详细信息
    通讯作者:

    曾碧榕,博士,副教授,硕士生导师,研究方向为聚合物基复合材料 E-mail: brzeng@xmu.edu.cn

    戴李宗,博士,教授,博士生导师,研究方向为高分子材料 E-mail: lzdai@xmu.edu.cn

  • 中图分类号: TB332

Epoxy resin anticorrosive coating modified by the co-doping of polyhedral silsesquioxane/hexagonal boron nitride/aniline trimer

  • 摘要: 为了改善环氧树脂(EP)涂层防腐性能,采用笼形聚倍半硅氧烷(POSS)修饰的六方氮化硼(h-BN)和苯胺三聚体(AT)作为填料加入环氧固化体系中进行共掺杂,研究两种POSS分子、两种添加方式以及不同添加量对复合涂层的性能影响。首先通过高温剥离六方氮化硼得到羟基化氮化硼(OH-BN),而后采用硅烷偶联剂KH-560对其表面进行乙氧基功能化修饰,再分别将氨丙基七异丁基POSS(APS)和八氨苯基POSS(OAPPS)与之接枝,经反应合成出两种新型的POSS杂化氮化硼功能助剂APS-BN和OAPPS-BN;进一步将它们和AT通过π-π相互作用共混,以不同的添加比例分散到环氧树脂中制备有机无机杂化的环氧复合防腐涂层材料,最后表征涂层的交流阻抗谱、塔菲尔曲线、盐雾试验、接触角、热性能和力学性能等。结果表明,与纯环氧涂层相比,掺杂0.5wt% OAPPS-BN-AT的环氧复合涂层性能提升幅度最大,阻抗值为1.27×1011 Ω·cm2;腐蚀电位提高了0.35 V,达到−0.052 V;耐盐雾性能也有明显提高,30天未出现点蚀和起泡。此外,基于POSS杂化氮化硼功能助剂中POSS表面迁移作用和h-BN屏障作用,复合涂层铅笔硬度提高到3H级别;表面疏水性有所提升,接触角从纯环氧涂层的67.1°增大到93.2°,并且还显示出优良的附着力、耐冲击性、柔韧性和耐热性能,说明0.5wt%OAPPS-BN-AT/EP防腐涂层在金属腐蚀与防护领域将具有一定的潜在应用前景。

     

  • 图  1  氨丙基七异丁基笼形聚倍半硅氧烷(POSS) (APS)-氮化硼(BN)和八氨苯基 POSS (OAPPS)-BN的合成路线图

    Figure  1.  Schematic illustration of aminopropyl heptaisobutyl polyhedral oligomeric silsesquioxane (POSS) (APS)- boron nitride (BN) and octaaminophenyl POSS (OAPPS)-BN

    图  2  六方氮化硼(h-BN)、羟基化氮化硼(OH-BN)、KH-560-BN、APS-BN、OAPPS-BN的FTIR图谱

    Figure  2.  FTIR spectra of hexagonal boron nitride (h-BN), hydroxylated boron nitride (OH-BN), KH-560-BN, APS-BN, OAPPS-BN

    图  3  (a) h-BN、OH-BN、KH-560-BN、APS-BN、OAPPS-BN的XRD图谱;(b) OAPPS-BN的XRD局部放大图谱

    Figure  3.  (a) XRD patterns of h-BN, OH-BN, KH-560-BN, APS-BN, OAPPS-BN; (b) Partial enlarged view of XRD spectrum of OAPPS-BN

    图  4  h-BN (a)、OH-BN (b)、KH-560-BN (c)、APS-BN (d)和OAPPS-BN (e)的SEM图像

    Figure  4.  SEM images of h-BN (a), OH-BN (b), KH-560-BN (c), APS-BN (d) and OAPPS-BN (e)

    图  5  环氧树脂(EP)、0.5wt%OH-BN-苯胺三聚体(AT)/EP、0.5wt%APS-BN-AT/EP、0.5wt%BN-OPPS-AT/EP、0.25wt%~0.75wt%OAPPS-BN-AT/EP浸泡1天的Bode-Phase图 (a)、1天的Nyquist图 (b)、15天的Bode-Phase图 (c)、15天的Nyquist图 (d)、30天的Bode-Phase图 (e) 和30天的Nyquist图 (f)

    Figure  5.  Bode-Phase diagram soaked for 1 day (a), 15 days (c), 30 days (e) and Nyquist diagram soaked for 1 day (b), 15 days (d), 30 days (f) of epoxy resin (EP), 0.5wt%OH-BN-aniline trimer (AT)/EP, 0.5wt%APS-BN-AT/EP, 0.5wt%BN-OPPS-AT/EP, 0.25wt%-0.75wt%OAPPS-BN-AT/EP

    Z—Polarization impedance; Z'—Real impedance; −Z''—Imaginary impedance

    图  6  EP涂层浸泡30天后的塔菲尔极化曲线

    Figure  6.  Tafel polarization curves of the EP coatings after soaking for 30 days

    i—Corrosion current density

    图  7  EP复合防腐涂层盐雾箱放置30天后的光学照片:(a) EP;(b) 0.5wt%OH-BN-AT/EP;(c) 0.5wt%APS-BN-AT/EP;(d) 0.5wt%BN-OPPS-AT/EP;((e)~(g)) 0.25wt%~0.75wt%OAPPS-BN-AT/EP

    Figure  7.  Optical photographs of EP coatings put in salt spray tank after 30 days: (a) EP; (b) 0.5wt%OH-BN-AT/EP; (c) 0.5wt%APS-BN-AT/EP; (d) 0.5wt%BN-OPPS-AT/EP; ((e)-(g)) 0.25wt%-0.75wt%OAPPS-BN-AT/EP

    图  8  EP ((a)、(f))、0.5wt%OH-BN-AT/EP ((b)、(g))、0.5wt%APS-BN-AT/EP ((c)、(h))、0.5wt%BN-OPPS-AT/EP ((d)、(i))、0.5wt%OAPPS-BN-AT/EP ((e)、(j))涂层及其分别放置30天后的表面接触角测试图

    Figure  8.  Contact angle of EP ((a), (f)), 0.5wt%OH-BN-AT/EP ((b), (g)), 0.5wt%APS-BN-AT/EP ((c),(h)), 0.5wt%BN-OPPS-AT/EP ((d), (i)) and 0.5wt%OAPPS-BN-AT/EP ((e), (j)) coatings at initial state and being placed for 30 days

    图  9  EP涂层断面SEM图像:(a) EP;(b) 0.5wt%OH-BN-AT-EP;(c) 0.5wt%APS-BN-AT-EP; (d) 0.5wt%BN-OPPS-AT-EP;(e) 0.25wt%OAPPS-BN-AT/EP;(f) 0.5wt%OAPPS-BN-AT/EP;(g) 0.75wt%OAPPS-BN-AT/EP

    Figure  9.  SEM images of EP coatings: (a) EP; (b) 0.5wt%OH-BN-AT-EP; (c) 0.5wt%APS-BN-AT-EP; (d) 0.5wt%BN-OPPS-AT-EP; (e) 0.25wt%OAPPS-BN-AT/EP; (f) 0.5wt%OAPPS-BN-AT/EP; (g) 0.75wt%OAPPS-BN-AT/EP

    图  10  EP涂层高低温交变实验后的光学照片:(a) EP;(b) 0.5wt%OH-BN-AT/EP;(c) 0.5wt%APS-BN-AT/EP;(d) 0.5wt%BN-OPPS-AT/EP;(e) 0.5wt%OAPPS-BN-AT/EP

    Figure  10.  Optical photographs of EP coatings after high and low temperature alternation experiment: (a) EP; (b) 0.5wt%OH-BN-AT/EP; (c) 0.5wt%APS-BN-AT/EP; (d) 0.5wt%BN-OPPS-AT/EP; (e) 0.5wt%OAPPS-BN-AT/EP

    图  11  EP复合涂层的防腐机制

    Figure  11.  Anti-corrosion mechanism of composite EP coating

    表  1  EP、0.5wt%OH-BN-AT/EP、0.5wt%APS-BN-AT/EP、0.5wt%BN-OPPS-AT/EP、 0.25tw%~0.75wt%OAPPS-BN-AT/EP涂层的塔菲尔曲线拟合值

    Table  1.   Tafel curves fitting value of EP, 0.5wt%OH-BN-AT/EP, 0.5wt%APS-BN-AT/EP, 0.5wt%BN-OPPS-AT/EP, 0.25wt%-0.75wt%OAPPS-BN-AT/EP coatings

    SampleEcorr /VIcorr /(A·cm−2)
    EP−0.409582.971×10−11
    0.5wt%OH-BN-AT/EP−0.143168.511×10−11
    0.5wt%APS-BN-AT/EP−0.106026.109×10−14
    0.5wt%BN-OPPS-AT/EP−0.204803.548×10−13
    0.25wt%OAPPS-BN-AT/EP−0.100138.551×10−13
    0.5wt%OAPPS-BN-AT/EP−0.052064.677×10−14
    0.75wt%OAPPS-BN-AT/EP−0.192339.898×10−11
    Notes: Ecorr—Corrosion potential; Icorr—Corrosion current density.
    下载: 导出CSV

    表  2  环氧复合防腐涂层的物理性能表

    Table  2.   Physical properties of epoxy composite anticorrosive coating

    SampleThickness/μmAdhesionImpact resistanceFlexibilityPencil hardness
    EP35Level 050 cm,
    no crack
    2 mm,
    no peeling
    2H
    0.25wt%OH-BN-AT/EP31Level 050 cm,
    no crack
    2 mm,
    no peeling
    2H
    0.5wt%OH-BN-
    AT/EP
    30Level 050 cm,
    no crack
    2 mm,
    no peeling
    2H
    0.75wt%OH-BN-AT/EP31Level 050 cm,
    no crack
    2 mm,
    no peeling
    2H
    0.25wt%APS-BN-AT/EP33Level 050 cm,
    no crack
    2 mm,
    no peeling
    2H
    0.5wt%APS-BN-
    AT/EP
    37Level 050 cm,
    no crack
    2 mm,
    no peeling
    2H
    0.75wt%APS-BN-AT/EP37Level 050 cm,
    no crack
    2 mm,
    no peeling
    3H
    0.25wt%BN-OPPS-AT/EP31Level 050 cm,
    no crack
    2 mm,
    no peeling
    3H
    0.5wt%BN-OPPS-AT/EP39Level 050 cm,
    no crack
    2 mm,
    no peeling
    3H
    0.75wt%BN-OPPS-AT/EP35Level 050 cm,
    no crack
    2 mm,
    no peeling
    3H
    0.25wt%OAPPS-BN-AT/EP39Level 050 cm,
    no crack
    2 mm,
    no peeling
    3H
    0.5wt%OAPPS-BN-AT/EP33Level 050 cm,
    no crack
    2 mm,
    no peeling
    3H
    0.75wt%OAPPS-BN-AT/EP35Level 050 cm,
    no crack
    2 mm,
    no peeling
    3H
    下载: 导出CSV
  • [1] WANG H Y, DI D Y, ZHAO Y M, et al. A multifunctional polymer composite coating assisted with pore-forming agent: Preparation, superhydrophobicity and corrosion resistance[J]. Progress in Organic Coatings,2019,132:370-378. doi: 10.1016/j.porgcoat.2019.04.027
    [2] LU H, ZHANG S T, ZHAO Z H, et al. Preparation and corrosion protection of VB 2 modified trimer aniline-reduced graphene oxide(VTA-rGO) coatings[J]. Progress in Organic Coatings,2019,132:95-99. doi: 10.1016/j.porgcoat.2019.03.030
    [3] YE Y W, LIU W, LIU Z Y, et al. Anti-corrosion performance of aniline trimer-containing sol-gel hybrid coatings for mild steel substrate[J]. Journal of Sol-Gel Science and Technology,2018,87:464-477. doi: 10.1007/s10971-018-4716-9
    [4] SHARMA V, KAGDADA H L, JHA P K, et al. Thermal transport properties of boron nitride based materials: A review[J]. Renewable and Sustainable Energy Reviews,2020,120:109622. doi: 10.1016/j.rser.2019.109622
    [5] CHILKOOR G, KARANAM S P, STAR S, et al. Hexagonal boron nitride: The thinnest insulating barrier to microbial corrosion[J]. ACS nano,2018,12(3):2242-2252. doi: 10.1021/acsnano.7b06211
    [6] WANG Y, MAO J, MENG X, et al. Catalysis with two-dimensional materials confining single atoms: Concept, design, and applications[J]. Chemical Reviews,2018,119(3):1806-1854.
    [7] LI J, GAN L, LIU Y, et al. Boron nitride nanosheets reinforced waterborne polyurethane coatings for improving corrosion resistance and antifriction properties[J]. European Polymer Journal,2018,104:57-63. doi: 10.1016/j.eurpolymj.2018.04.042
    [8] CUI M, REN S, QIN S, et al. Non-covalent functionalized hexagonal boron nitride nanoplatelets to improve corrosion and wear resistance of epoxy coatings[J]. RSC Advances,2017,7(70):44043-44053. doi: 10.1039/C7RA06835B
    [9] ZHENG Z, COX M C, LI B. Surface modification of hexagonal boron nitride nanomaterials: A review[J]. Journal of Materials Science,2018,53(1):66-99. doi: 10.1007/s10853-017-1472-0
    [10] LIU X L, CHEN S G, ZHANG Y J, et al. Preparation of graphene oxide-boron nitride hybrid to reinforce the corrosion protection coating[J]. Corrosion Reviews, 2021, 39(2): 123-136.
    [11] YE Y, ZHANG D, LI J, et al. One-step synthesis of superhydrophobic polyhedral oligomeric silsesquioxane-graphene oxide and its application in anti-corrosion and anti-wear fields[J]. Corrosion Science,2019,147:9-21.
    [12] ZHANG D, YUAN T, WEI G, et al. Preparation of self-healing hydrophobic coating on AA6061 alloy surface and its anti-corrosion property[J]. Journal of Alloys and Compounds,2018,774:495-501.
    [13] WU Y, FANG L, HUYAN J, et al. Low dielectric and high thermal conductivity epoxy nanocomposites filled with NH2-POSS/n-BN hybrid fillers[J]. Journal of Applied Polymer Science, 2015, 132(19): 41951.
    [14] GU L, LIU S, ZHAO H C, et al. Facile preparation of water-dispersible graphene sheets stabilized by carboxylated oligoanilines and their anticorrosion coatings[J]. ACS Applied Materials & Interfaces,2015,7(32):17641-17648.
    [15] KOECH J K, SHAO Q, MUTUA F N, et al. Application of hydrazine hydrate in the synthesis of octa (aminophenyl) silsesquioxane (OAPS) POSS [J]. Advances in Chemical Engineering and Science, 2013, 3(1): 93-97.
    [16] GUO Y Q, LYU Z Y, YANG X T, et al. Enhanced thermal conductivities and decreased thermal resistances of functionalized boron nitride/polyimide composites[J]. Composites Part B: Engineering,2019,164:732-739. doi: 10.1016/j.compositesb.2019.01.099
    [17] ZHAO Y, ZHOU M, CHEN G, et al. Hybridization of polyhedral oligomeric silsesquioxane and boron nitride for epoxy composites with improved dielectric, thermal and tensile properties[J]. Journal of Materials Science: Materials in Electronics,2019,30(11):10360-10368. doi: 10.1007/s10854-019-01375-0
    [18] 中国国家标准化管理委员会. 色漆和清漆 弯曲试验(圆柱轴): GB/T 6742—2007[S]. 北京: 中国标准出版社, 2007.

    Standardization Administration of China. Paints and varnishes: Bending test (cylindrical shaft): GB/T 6742—2007[S]. Beijing: China Standards Press, 2007(in Chinese).
    [19] 中国国家标准化管理委员会. 色漆和清漆 铅笔法测定漆膜硬度: GB/T 6739—2006[S]. 北京: 中国标准出版社, 2006.

    Standardization Administration of China. Paints and varnishes: Determination of film hardness by pencil test: GB/T 6739—2006[S]. Beijing: China Standards Press, 2006(in Chinese).
    [20] 中国国家标准化管理委员会. 漆膜耐冲击性测定法: GB/T 1732—1993[S]. 北京: 中国标准出版社, 1993.

    Standardization Administration of China. Paint film—Determination of impact resistance: GB/T 1732—1993[S]. Beijing: China Standards Press, 1993(in Chinese).
    [21] 中国国家标准化管理委员会. 色漆和清漆 漆膜的划格试验: GB/T 9286—1998[S]. 北京: 中国标准出版社, 1998.

    Standardization Administration of China. Paints and varnishes: Marking test of paint film: GB/T 9286—1998[S]. Beijing: China Standards Press, 1998(in Chinese).
    [22] LI J, XIAO X, XU X, et al. Activated boron nitride as an effective adsorbent for metal ions and organic pollutants[J]. Scientific Reports,2013,3:3208.
    [23] HU L, JIANG P, BIAN G, et al. Effect of octa(aminopropyl) polyhedral oligomeric silsesquioxane (OAPPOSS) functionalized graphene oxide on the mechanical, thermal, and hydrophobic properties of waterborne polyurethane composites[J]. Journal of Applied Polymer Science, 2016, 134(6): 44440.
    [24] SINGLA P, GOEL N, KUMAR V, et al. Boron nitride nanomaterials with different morphologies: Synthesis, characterization and efficient application in dye adsorption[J]. Ceramics International,2015,41(9):10565-10577. doi: 10.1016/j.ceramint.2015.04.151
    [25] LIANG H, ZHU P, GANG L, et al. Spherical and flake-like BN filled epoxy composites: Morphological effect on the thermal conductivity, thermo-mechanical and dielectric properties[J]. Journal of Materials Science Materials in Electronics,2015,26(6):3564-3572. doi: 10.1007/s10854-015-2870-1
    [26] LIU Y, SHI Z X, XU H J, et al. Preparation, characterization, and properties of novel polyhedral oligomeric silsesquio-xane-polybenzimidazole nanocomposites by Friedel-Crafts reaction[J]. Macromolecules,2010,43:6731-6738. doi: 10.1021/ma1011792
    [27] YONG N, ZHENG S, NIE K. Morphology and thermal properties of inorganic–organic hybrids involving epoxy resin and polyhedral oligomeric silsesquioxanes[J]. Polymer,2004,45(16):5557-5568. doi: 10.1016/j.polymer.2004.06.008
    [28] HUANG H, HUANG X, XIE Y, et al. Fabrication of h-BN-rGO@PDA nanohybrids for composite coatings with enhanced anticorrosion performance[J]. Progress in Organic Coatings,2019,130:124-131. doi: 10.1016/j.porgcoat.2019.01.059
    [29] ZHONG J, ZHOU G, HE P, et al. 3D printing strong and conductive geo-polymer nanocomposite structures modified by graphene oxide[J]. Carbon,2017,117:421-426. doi: 10.1016/j.carbon.2017.02.102
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  926
  • HTML全文浏览量:  563
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-03
  • 修回日期:  2021-12-09
  • 录用日期:  2021-12-21
  • 网络出版日期:  2021-12-29
  • 刊出日期:  2022-12-01

目录

    /

    返回文章
    返回