Application of transferred top electrode in perovskite solar cells
-
摘要: 钙钛矿太阳能电池因为其高效率、易制备和低成本等优点,近年来发展迅速。在钙钛矿器件的多层薄膜结构制备和调控中,研究者们关注最多的是钙钛矿吸光层和电荷传输层。而顶电极部分的问题,由于蒸镀Au电极作为实验室阶段标准研究方法的成功使用,而容易被人们忽略。然而,蒸镀贵金属电极的生产设备和原材料成本问题,在钙钛矿太阳能电池未来的大面积器件制备、大范围应用中将是难以避免的。为此,研究者开发了导电膜转移法、导电浆料涂布法等非蒸镀工艺,尝试解决这些问题。本综述针对这一现状,从工艺方法的角度出发,介绍包括金属、聚合物、碳等多种材料体系的顶电极的转移法应用进展,总结具有普遍性的原理、规律,讨论目前技术的缺陷、瓶颈问题和潜在的解决方案。Abstract: Recent years, perovskite solar cells have been developing rapidly because of the high efficiency, ease of preparation and low cost. To the preparation and optimization of multilayer structures for perovskite devices, researchers always pay most attention on the perovskite light absorber and charge-transporting layers. While in the case of the top electrode, evaporated Au electrodes can work well as a standard method at the current laboratory stage. Therefore, the top electrode issue is easily overlooked by researchers. However, the high cost of equipments and raw materials for evaporated precious metal electrodes will not be ignored in the large-area devices manufacturing and large-scale applications of perovskite solar cells. Several non-evaporation processes such as conductive film transferring or conductive paste coating have been developed to solve these problems. Herein, we addresses the current progress of transfer methods top electrodes from the perspective of process techniques. A variety of material systems including metals, polymers and carbon are compared to summarize some general principles. Also, the shortcomings of the transfer method, and bottlenecks of materials and potential solutions for ideal transfer electrodes are discussed.
-
Key words:
- perovskite solar cells /
- top electrode /
- transfer method /
- carbon materials /
- conductive polymers /
- conductive adhesive
-
图 2 (a)基于转移法聚苯乙烯磺酸盐(PEDOT:PSS)顶电极的钙钛矿太阳能电池结构示意图;(b)彩色钙钛矿太阳能电池照片[18]
Figure 2. (a) Device structure of transferred polystyrene sulfonate (PEDOT:PSS) electrode based PSCs; (b) Photographs of colorful PSCs[18]
TCO—Transparent conductive oxide; ETL—Electron transporting layer; HTL—Hole transporting layer; PEDOT:PSST—Transferred PEDOT:PSS
图 3 干法转印PEDOT∶PSS顶电极的流程图(a)、PEDOT:PSS转印顶电极(b)和半透明钙钛矿电池(c)的照片[19]
Figure 3. Schematic diagrams of the dry stamping transfer process of the PEDOT:PSS layer for PSCs (a), photographs of transferred PEDOT:PSS top electrode layer onto the device (b) and semitransparent PSCs (c) [19]
PUA—Polyurethane acrylate; PEI—Polyethyleneimine; ITO—Indium tin oxide
表 1 几种代表性的转移法顶电极技术总结
Table 1. Summary of several transferred top electrode techniques
Top electrode Substrate Transfer process PCE/% Device Ref. PEDOT:PSS Plastic wrap
(peel off)Assisted with one drop of isopropanol 10.1
2.9 lConventional
Semitransparent[17] PEDOT:PSS PDMS(peel off) Assisted with O2 plasma for 5 s 15.1 Conventional
Colorful[18] PEI doped PEDOT:PSS PUA/PC
(peel off)Roll press under 100℃ 13.6 f, l Inverted
Semitransparent[19] Doped CNT film Membrane film(peel off) Assisted with 200 μL spiro-OMeTAD 17.56 Conventional [23] CNT film Si wafer Assisted with droplets of chlorobenzene 11.9 f Conventional [21] CNT film Si wafer Assisted with 100 μL PEI-isopropanol solution 10.8 Inverted [25] Graphene/
PEDOT:PSSPDMS/PMMA Roll press under 65℃ 12.37 Conventional
Semitransparent[9] Ag nanowire film PET(peel off) Ball bearing press under 500 g force 12.7 Conventional
Semitransparent[29] Au PTFE(peel off) Roll press 17.14 Conventional [12] Nanoporous Au Membrane film(peel off) Assisted with 200 μL anhydrous ethanol 19.0
17.3 fConventional [11] Ni particles in acrylic Cu foil Roll press under 70℃, 980 Pa 12.5 Inverted [13] PEDOT:PSS in acrylic Ni mesh embedded PET Press onto PEDOT:PSS covered semi-cell 15.5 Conventional
Semitransparent[14] Carbon paste film Flat press under 0.7 MPa 19.2 Conventional [35] Carbon paste film Conductive cloth Flat press 19.36
14.05 f, lConventional [37] PEDOT:PSS Al foil, Cu foil, FTO etc. Stack with PEDOT:PSS covered semi-cell 14.6 Conventional [38] Graphene Al foil, FTO Stack with graphene covered semi-cell 18.65
16.42 lConventional [40] Notes: Upper script "f" represents flexible device, and "l" represents large device area about 1 cm2; PDMS, PC, PET, PMMA, PTFE are abbreviations for common polymer materials. -
[1] KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal ha-lide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society,2009,131(17):6050-6051. doi: 10.1021/ja809598r [2] KIM H S, LEE C R, IM J H, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Scientific Reports,2012,2(1):1-7. [3] LEE M M, TEUSCHER J, MIYASAKA T, et al. Efficient hybrid solar cells based on meso-superstructured organome-tal halide perovskites[J]. Science,2012,338(6107):643-647. doi: 10.1126/science.1228604 [4] MIN H, LEE D Y, KIM J, et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes[J]. Nature,2021,598(7881):444-450. doi: 10.1038/s41586-021-03964-8 [5] SALIBA M, CORREA-BAENA J P, WOLFF C M, et al. How to make over 20% efficient perovskite solar cells in regular (n-i-p) and inverted (p-i-n) architectures[J]. Chemistry of Materials,2018,30(13):4193-4201. doi: 10.1021/acs.chemmater.8b00136 [6] DOMANSKI K, CORREA-BAENA J P, MINE N, et al. Not all that glitters is gold: Metal-migration-induced degradation in perovskite solar cells[J]. ACS Nano,2016,10(6):6306-6314. doi: 10.1021/acsnano.6b02613 [7] JIANG F, LIU T, ZENG S, et al. Metal electrode-free perovskite solar cells with transfer-laminated conducting polymer electrode[J]. Optics express,2015,23(3):83-91. doi: 10.1364/OE.23.000A83 [8] LI Z, KULKARNI S A, BOIX P P, et al. Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells[J]. ACS Nano,2014,8(7):6797-6804. doi: 10.1021/nn501096h [9] YOU P, LIU Z, TAI Q, et al. Efficient semitransparent perovskite solar cells with graphene electrodes[J]. Advanced Materials,2015,27(24):3632-3638. doi: 10.1002/adma.201501145 [10] LI X, TANG X, YE T, et al. Fully printable organic and perovskite solar cells with transfer-printed flexible electrodes[J]. ACS Applied Materials & Interfaces,2017,9(22):18730-18738. [11] YANG F, LIU J, LU Z, et al. Recycled utilization of a nanoporous Au electrode for reduced fabrication cost of perovskite solar cells[J]. Advanced Science,2020,7(6):1902474. doi: 10.1002/advs.201902474 [12] LI Q, XIAO J, PENG C, et al. Efficient perovskite solar cells with pressing transferred top metal electrodes[J]. Materials Letters,2021,301:130244. doi: 10.1016/j.matlet.2021.130244 [13] SHAO Y, WANG Q, DONG Q, et al. Vacuum-free laminated top electrode with conductive tapes for scalable manufacturing of efficient perovskite solar cells[J]. Nano Energy,2015,16:47-53. doi: 10.1016/j.nanoen.2015.06.010 [14] BRYANT D, GREENWOOD P, TROUGHTON J, et al. A transparent conductive adhesive laminate electrode for high-efficiency organic-inorganic lead halide perovskite solar cells[J]. Advanced Materials,2014,26(44):7499-7504. doi: 10.1002/adma.201403939 [15] ZHOU Y, KHAN T M, LIU J C, et al. Efficient recyclable organic solar cells on cellulose nanocrystal substrates with a conducting polymer top electrode deposited by film-transfer lamination[J]. Organic Electronics,2014,15(3):661-666. doi: 10.1016/j.orgel.2013.12.018 [16] YIN L, ZHAO Z, JIANG F, et al. PEDOT:PSS top electrode prepared by transfer lamination using plastic wrap as the transfer medium for organic solar cells[J]. Organic Electronics,2014,15(10):2593-2598. doi: 10.1016/j.orgel.2014.07.028 [17] BU L, LIU Z, ZHANG M, et al. Semitransparent fully air processed perovskite solar cells[J]. ACS Applied Materials & Interfaces,2015,7(32):17776-17781. [18] JIANG Y, LUO B, JIANG F, et al. Efficient colorful perovskite solar cells using a top polymer electrode simulta-neously as spectrally selective antireflection coating[J]. Nano Letters,2016,16(12):7829-7835. doi: 10.1021/acs.nanolett.6b04019 [19] LEE J H, HEO J H, IM S H, et al. Reproducible dry stamping transfer of PEDOT:PSS transparent top electrode for flexible semitransparent metal halide perovskite solar cells[J]. ACS Applied Materials & Interfaces,2020,12(9):10527-10534. [20] WEI Z, YAN K, CHEN H, et al. Cost-efficient clamping solar cells using candle soot for hole extraction from ambipolar perovskites[J]. Energy & Environmental Science,2014,7(10):3326-3333. [21] LUO Q, MA H, HOU Q, et al. All-carbon-electrode-based endurable flexible perovskite solar cells[J]. Advanced Functional Materials,2018,28(11):1706777. doi: 10.1002/adfm.201706777 [22] AHN N, JEON I, YOON J, et al. Carbon-sandwiched perovskite solar cell[J]. Journal of Materials Chemistry A,2018,6(4):1382-1389. doi: 10.1039/C7TA09174E [23] LEE J W, JEON I, LIN H S, et al. Vapor-assisted ex-situ doping of carbon nanotube toward efficient and stable perovskite solar cells[J]. Nano Letters,2018,19(4):2223-2230. [24] LUO Q, MA H, HAO F, et al. Carbon nanotube based inverted flexible perovskite solar cells with all-inorganic charge contacts[J]. Advanced Functional Materials,2017,27(42):1703068. doi: 10.1002/adfm.201703068 [25] ZHOU Y, YIN X, LUO Q, et al. Efficiently improving the stability of inverted perovskite solar cells by employing polyethylenimine-modified carbon nanotubes as electrodes[J]. ACS Applied Materials & Interfaces,2018,10(37):31384-31393. [26] QIN L, KATTEL B, KAFLE T R, et al. Scalable graphene-on-organometal halide perovskite heterostructure fabricated by dry transfer[J]. Advanced Materials Interfaces,2019,6(1):1801419. doi: 10.1002/admi.201801419 [27] LANG F, GLUBA M A, ALBRECHT S, et al. Perovskite solar cells with large-area CVD-graphene for tandem solar cells[J]. Journal of Physical Chemistry Letters,2015,6(14):2745-2750. doi: 10.1021/acs.jpclett.5b01177 [28] TIAN M, WOO C Y, CHOI J W, et al. Printable free-standing hybrid graphene/dry-spun carbon nanotube films as multifunctional electrodes for highly stable perovskite solar cells[J]. ACS Applied Materials & Interfaces,2020,12(49):54806-54814. [29] BAILIE C D, CHRISTOFORO M G, MAILOA J P, et al. Semi-transparent perovskite solar cells for tandems with silicon and CIGS[J]. Energy & Environmental Science,2015,8(3):956-963. [30] HWANG H, KIM A, ZHONG Z, et al. Reducible-shell-derived pure-copper-nanowire network and its application to transparent conducting electrodes[J]. Advanced Functional Materials,2016,26(36):6545-6554. doi: 10.1002/adfm.201602094 [31] 肖俊彦, 彭超, 李千卉. 类“烫金”和“包金”工艺制备钙钛矿太阳能电池顶电极[C]//中国可再生能源学会光化学专业委员会、中国科学院物理研究所清洁能源实验室. 第八届新型太阳能材料科学与技术学术研讨会论文集. 北京, 2021: 1.XIAO Junyan, PENG Chao, LI Qianhui. Top electrode on perovskite solar cells prepared by hot stamping and gold-clad like processes [C]//Photochemistry Committee of China Renewable Energy Society & Renewable Energy Laboratory, Institute of Physics, Chinese Academy of Sciences, Renewable Energy Laboratory. The 8th Conference on Science and Technology of Emerging Solar Energy Materials. Beijing, 2021: 1(in Chinese). [32] TROUGHTON J, BRYANT D, WOJCIECHOWSKI K, et al. Highly efficient, flexible, indium-free perovskite solar cells employing metallic substrates[J]. Journal of Materials Chemistry A,2015,3(17):9141-9145. doi: 10.1039/C5TA01755F [33] SPYROPOULOS G D, QUIROZ C O R, SALVADOR M, et al. Organic and perovskite solar modules innovated by adhe-sive top electrode and depth-resolved laser patterning[J]. Energy & Environmental Science,2016,9(7):2302-2313. [34] WEI H, XIAO J, YANG Y, et al. Free-standing flexible carbon electrode for highly efficient hole-conductor-free perovskite solar cells[J]. Carbon,2015,93:861-868. doi: 10.1016/j.carbon.2015.05.042 [35] ZHANG H, XIAO J, SHI J, et al. Self-adhesive macroporous carbon electrodes for efficient and stable perovskite solar cells[J]. Advanced Functional Materials,2018,28(39):1802985. doi: 10.1002/adfm.201802985 [36] SU H, XIAO J, LI Q, et al. Carbon film electrode based square-centimeter scale planar perovskite solar cells exceeding 17% efficiency[J]. Materials Science in Semiconductor Processing,2020,107:104809. doi: 10.1016/j.mssp.2019.104809 [37] PENG C, SU H, LI J, et al. Scalable, efficient and flexible perovskite solar cells with carbon film based electrode[J]. Solar Energy Materials and Solar Cells,2021,230:111226. doi: 10.1016/j.solmat.2021.111226 [38] WANG S, HOU K, XING Y, et al. Flexibly assembled and readily detachable photovoltaics[J]. Energy & Environmental Science,2017,10(10):2117-2123. [39] SHAO Y, ZHANG C, WANG S, et al. Insight into the interfacial elastic contact in stacking perovskite solar cells[J]. Advanced Materials Interfaces,2019,6(7):1900157. doi: 10.1002/admi.201900157 [40] ZHANG C, WANG S, ZHANG H, et al. Efficient stable graphene-based perovskite solar cells with high flexibility in device assembling via modular architecture design[J]. Energy & Environmental Science,2019,12(12):3585-3594.