留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

转移法制备顶电极在钙钛矿太阳能电池中的应用

肖俊彦 彭超 程一兵

肖俊彦, 彭超, 程一兵. 转移法制备顶电极在钙钛矿太阳能电池中的应用[J]. 复合材料学报, 2022, 39(5): 1924-1936. doi: 10.13801/j.cnki.fhclxb.20211215.001
引用本文: 肖俊彦, 彭超, 程一兵. 转移法制备顶电极在钙钛矿太阳能电池中的应用[J]. 复合材料学报, 2022, 39(5): 1924-1936. doi: 10.13801/j.cnki.fhclxb.20211215.001
XIAO Junyan, PENG Chao, CHENG Yibing. Application of transferred top electrode in perovskite solar cells[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 1924-1936. doi: 10.13801/j.cnki.fhclxb.20211215.001
Citation: XIAO Junyan, PENG Chao, CHENG Yibing. Application of transferred top electrode in perovskite solar cells[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 1924-1936. doi: 10.13801/j.cnki.fhclxb.20211215.001

转移法制备顶电极在钙钛矿太阳能电池中的应用

doi: 10.13801/j.cnki.fhclxb.20211215.001
基金项目: 国家自然科学基金 (52002303);湖北省自然科学基金(2020CFB427)
详细信息
    作者简介:

    肖俊彦,武汉理工大学材料科学与工程学院副教授。2010年于南开大学化学学院和天津大学化工学院,分别获理学、工学学士学位。2015年于中国科学院物理研究所,获理学博士学位。2018年加入武汉理工大学材料科学与工程学院,目前讲授《材料工程基础》、《光电子材料》等专业课程。近十年来一直从事染料敏化太阳能电池、量子点太阳能电池、钙钛矿太阳能电池等新型光伏技术的研究,已发表相关论文30余篇。目前致力于低成本材料和环境友好工艺在新型太阳能电池中的应用研究

    通讯作者:

    肖俊彦,博士,副教授,硕士生导师,研究方向为新型太阳能电池材料与器件 E-mail: xiaojunyan@whut.edu.cn

  • 中图分类号: TB34; TM914.4

Application of transferred top electrode in perovskite solar cells

  • 摘要: 钙钛矿太阳能电池因为其高效率、易制备和低成本等优点,近年来发展迅速。在钙钛矿器件的多层薄膜结构制备和调控中,研究者们关注最多的是钙钛矿吸光层和电荷传输层。而顶电极部分的问题,由于蒸镀Au电极作为实验室阶段标准研究方法的成功使用,而容易被人们忽略。然而,蒸镀贵金属电极的生产设备和原材料成本问题,在钙钛矿太阳能电池未来的大面积器件制备、大范围应用中将是难以避免的。为此,研究者开发了导电膜转移法、导电浆料涂布法等非蒸镀工艺,尝试解决这些问题。本综述针对这一现状,从工艺方法的角度出发,介绍包括金属、聚合物、碳等多种材料体系的顶电极的转移法应用进展,总结具有普遍性的原理、规律,讨论目前技术的缺陷、瓶颈问题和潜在的解决方案。

     

  • 图  1  钙钛矿太阳能电池中基于转移法的薄膜顶电极(a)和厚膜顶电极(b)制备流程示意图

    Figure  1.  Schematic diagrams of the transfer process for thin film (a) and thick film (b) top electrode for PSCs

    图  2  (a)基于转移法聚苯乙烯磺酸盐(PEDOT:PSS)顶电极的钙钛矿太阳能电池结构示意图;(b)彩色钙钛矿太阳能电池照片[18]

    Figure  2.  (a) Device structure of transferred polystyrene sulfonate (PEDOT:PSS) electrode based PSCs; (b) Photographs of colorful PSCs[18]

    TCO—Transparent conductive oxide; ETL—Electron transporting layer; HTL—Hole transporting layer; PEDOT:PSST—Transferred PEDOT:PSS

    图  3  干法转印PEDOT∶PSS顶电极的流程图(a)、PEDOT:PSS转印顶电极(b)和半透明钙钛矿电池(c)的照片[19]

    Figure  3.  Schematic diagrams of the dry stamping transfer process of the PEDOT:PSS layer for PSCs (a), photographs of transferred PEDOT:PSS top electrode layer onto the device (b) and semitransparent PSCs (c) [19]

    PUA—Polyurethane acrylate; PEI—Polyethyleneimine; ITO—Indium tin oxide

    图  4  (a)自支撑碳纳米管薄膜的照片;(b)基于转移碳纳米管薄膜电极的钙钛矿器件结构示意图[8]

    Figure  4.  (a) Photograph of free-standing CNT film; (b) Device structure of PSC with transferred CNT film electrode[8]

    FTO—F-doped tin oxide; CNT—Carbon nanotube

    图  5  基于转移石墨烯电极的钙钛矿器件结构示意图、实物照片和J-V特性曲线[9]

    Figure  5.  Device structure, photograph and J-V characteristics of transferred graphene electrode based PSCs[9]

    PDMS—Polydimethylsiloxane; PMMA—Polymethyl methacrylate

    图  6  基于转移法Cu纳米线网络电极的钙钛矿器件的结构示意图(a)和SEM截面图像(b) [30]

    Figure  6.  Schematic structure (a) and SEM cross-sectional images (b) of a PSCs with transferred Cu-nanowire networks top electrode[30]

    CuNW—Cu-nanomire

    图  7  PTFE基底转印Au薄膜电极的流程示意图[12]

    Figure  7.  Schematic diagrams of the PTFE substrate pressing transferred Au electrode on PSCs[12]

    图  8  多孔Au箔电极在钙钛矿太阳能电池中的制备和循环使用示意图[11]

    Figure  8.  Schematic flow of the fabrication and restoration process of the nanoporous Au electrode in PSCs[11]

    图  9  带有PEDOT∶PSS导电胶涂层并嵌入Ni网的PET膜的SEM图像(a)和实物照片(b)以及相应的钙钛矿器件示意图 (c)[14]

    Figure  9.  SEM image (a) and photograph (b) of PEDOT:PSS conducting adhesive applied to an PET embedded Ni grid and device structure of PSCs with the composite electrode (c)[14]

    TCA—Transparent conducting adhesive

    图  10  自粘性大孔碳膜的制备流程示意图(a)和孔隙形成机制示意图(b) [35],以及相应的钙钛矿器件截面SEM图像(c) [37]

    Figure  10.  Schematic diagrams (a) and microscopic mechanism of self-adhesive macroporous carbon film electrode (b) [35], and SEM cross-sectional image of a PSCs with transferred carbon film electrode (c) [37]

    图  11  基于PEDOT∶PSS和各种导电基底的堆叠式钙钛矿太阳能电池结构示意图[38]

    Figure  11.  PEDOT:PSS based stacking structured PSCs with various electrode substrates[38]

    c&m-TiO2—Compact and mesoporous TiO2 layers

    表  1  几种代表性的转移法顶电极技术总结

    Table  1.   Summary of several transferred top electrode techniques

    Top electrodeSubstrateTransfer processPCE/%DeviceRef.
    PEDOT:PSSPlastic wrap
    (peel off)
    Assisted with one drop of isopropanol10.1
    2.9 l
    Conventional
    Semitransparent
    [17]
    PEDOT:PSSPDMS(peel off)Assisted with O2 plasma for 5 s15.1Conventional
    Colorful
    [18]
    PEI doped PEDOT:PSSPUA/PC
    (peel off)
    Roll press under 100℃13.6 f, lInverted
    Semitransparent
    [19]
    Doped CNT filmMembrane film(peel off)Assisted with 200 μL spiro-OMeTAD17.56Conventional[23]
    CNT filmSi waferAssisted with droplets of chlorobenzene11.9 fConventional[21]
    CNT filmSi waferAssisted with 100 μL PEI-isopropanol solution10.8Inverted[25]
    Graphene/
    PEDOT:PSS
    PDMS/PMMARoll press under 65℃12.37Conventional
    Semitransparent
    [9]
    Ag nanowire filmPET(peel off)Ball bearing press under 500 g force12.7Conventional
    Semitransparent
    [29]
    AuPTFE(peel off)Roll press17.14Conventional[12]
    Nanoporous AuMembrane film(peel off)Assisted with 200 μL anhydrous ethanol19.0
    17.3 f
    Conventional[11]
    Ni particles in acrylicCu foilRoll press under 70℃, 980 Pa12.5Inverted[13]
    PEDOT:PSS in acrylicNi mesh embedded PETPress onto PEDOT:PSS covered semi-cell15.5Conventional
    Semitransparent
    [14]
    Carbon paste filmFlat press under 0.7 MPa19.2Conventional[35]
    Carbon paste filmConductive clothFlat press19.36
    14.05 f, l
    Conventional[37]
    PEDOT:PSSAl foil, Cu foil, FTO etc.Stack with PEDOT:PSS covered semi-cell14.6Conventional[38]
    GrapheneAl foil, FTOStack with graphene covered semi-cell18.65
    16.42 l
    Conventional[40]
    Notes: Upper script "f" represents flexible device, and "l" represents large device area about 1 cm2; PDMS, PC, PET, PMMA, PTFE are abbreviations for common polymer materials.
    下载: 导出CSV
  • [1] KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal ha-lide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society,2009,131(17):6050-6051. doi: 10.1021/ja809598r
    [2] KIM H S, LEE C R, IM J H, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Scientific Reports,2012,2(1):1-7.
    [3] LEE M M, TEUSCHER J, MIYASAKA T, et al. Efficient hybrid solar cells based on meso-superstructured organome-tal halide perovskites[J]. Science,2012,338(6107):643-647. doi: 10.1126/science.1228604
    [4] MIN H, LEE D Y, KIM J, et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes[J]. Nature,2021,598(7881):444-450. doi: 10.1038/s41586-021-03964-8
    [5] SALIBA M, CORREA-BAENA J P, WOLFF C M, et al. How to make over 20% efficient perovskite solar cells in regular (n-i-p) and inverted (p-i-n) architectures[J]. Chemistry of Materials,2018,30(13):4193-4201. doi: 10.1021/acs.chemmater.8b00136
    [6] DOMANSKI K, CORREA-BAENA J P, MINE N, et al. Not all that glitters is gold: Metal-migration-induced degradation in perovskite solar cells[J]. ACS Nano,2016,10(6):6306-6314. doi: 10.1021/acsnano.6b02613
    [7] JIANG F, LIU T, ZENG S, et al. Metal electrode-free perovskite solar cells with transfer-laminated conducting polymer electrode[J]. Optics express,2015,23(3):83-91. doi: 10.1364/OE.23.000A83
    [8] LI Z, KULKARNI S A, BOIX P P, et al. Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells[J]. ACS Nano,2014,8(7):6797-6804. doi: 10.1021/nn501096h
    [9] YOU P, LIU Z, TAI Q, et al. Efficient semitransparent perovskite solar cells with graphene electrodes[J]. Advanced Materials,2015,27(24):3632-3638. doi: 10.1002/adma.201501145
    [10] LI X, TANG X, YE T, et al. Fully printable organic and perovskite solar cells with transfer-printed flexible electrodes[J]. ACS Applied Materials & Interfaces,2017,9(22):18730-18738.
    [11] YANG F, LIU J, LU Z, et al. Recycled utilization of a nanoporous Au electrode for reduced fabrication cost of perovskite solar cells[J]. Advanced Science,2020,7(6):1902474. doi: 10.1002/advs.201902474
    [12] LI Q, XIAO J, PENG C, et al. Efficient perovskite solar cells with pressing transferred top metal electrodes[J]. Materials Letters,2021,301:130244. doi: 10.1016/j.matlet.2021.130244
    [13] SHAO Y, WANG Q, DONG Q, et al. Vacuum-free laminated top electrode with conductive tapes for scalable manufacturing of efficient perovskite solar cells[J]. Nano Energy,2015,16:47-53. doi: 10.1016/j.nanoen.2015.06.010
    [14] BRYANT D, GREENWOOD P, TROUGHTON J, et al. A transparent conductive adhesive laminate electrode for high-efficiency organic-inorganic lead halide perovskite solar cells[J]. Advanced Materials,2014,26(44):7499-7504. doi: 10.1002/adma.201403939
    [15] ZHOU Y, KHAN T M, LIU J C, et al. Efficient recyclable organic solar cells on cellulose nanocrystal substrates with a conducting polymer top electrode deposited by film-transfer lamination[J]. Organic Electronics,2014,15(3):661-666. doi: 10.1016/j.orgel.2013.12.018
    [16] YIN L, ZHAO Z, JIANG F, et al. PEDOT:PSS top electrode prepared by transfer lamination using plastic wrap as the transfer medium for organic solar cells[J]. Organic Electronics,2014,15(10):2593-2598. doi: 10.1016/j.orgel.2014.07.028
    [17] BU L, LIU Z, ZHANG M, et al. Semitransparent fully air processed perovskite solar cells[J]. ACS Applied Materials & Interfaces,2015,7(32):17776-17781.
    [18] JIANG Y, LUO B, JIANG F, et al. Efficient colorful perovskite solar cells using a top polymer electrode simulta-neously as spectrally selective antireflection coating[J]. Nano Letters,2016,16(12):7829-7835. doi: 10.1021/acs.nanolett.6b04019
    [19] LEE J H, HEO J H, IM S H, et al. Reproducible dry stamping transfer of PEDOT:PSS transparent top electrode for flexible semitransparent metal halide perovskite solar cells[J]. ACS Applied Materials & Interfaces,2020,12(9):10527-10534.
    [20] WEI Z, YAN K, CHEN H, et al. Cost-efficient clamping solar cells using candle soot for hole extraction from ambipolar perovskites[J]. Energy & Environmental Science,2014,7(10):3326-3333.
    [21] LUO Q, MA H, HOU Q, et al. All-carbon-electrode-based endurable flexible perovskite solar cells[J]. Advanced Functional Materials,2018,28(11):1706777. doi: 10.1002/adfm.201706777
    [22] AHN N, JEON I, YOON J, et al. Carbon-sandwiched perovskite solar cell[J]. Journal of Materials Chemistry A,2018,6(4):1382-1389. doi: 10.1039/C7TA09174E
    [23] LEE J W, JEON I, LIN H S, et al. Vapor-assisted ex-situ doping of carbon nanotube toward efficient and stable perovskite solar cells[J]. Nano Letters,2018,19(4):2223-2230.
    [24] LUO Q, MA H, HAO F, et al. Carbon nanotube based inverted flexible perovskite solar cells with all-inorganic charge contacts[J]. Advanced Functional Materials,2017,27(42):1703068. doi: 10.1002/adfm.201703068
    [25] ZHOU Y, YIN X, LUO Q, et al. Efficiently improving the stability of inverted perovskite solar cells by employing polyethylenimine-modified carbon nanotubes as electrodes[J]. ACS Applied Materials & Interfaces,2018,10(37):31384-31393.
    [26] QIN L, KATTEL B, KAFLE T R, et al. Scalable graphene-on-organometal halide perovskite heterostructure fabricated by dry transfer[J]. Advanced Materials Interfaces,2019,6(1):1801419. doi: 10.1002/admi.201801419
    [27] LANG F, GLUBA M A, ALBRECHT S, et al. Perovskite solar cells with large-area CVD-graphene for tandem solar cells[J]. Journal of Physical Chemistry Letters,2015,6(14):2745-2750. doi: 10.1021/acs.jpclett.5b01177
    [28] TIAN M, WOO C Y, CHOI J W, et al. Printable free-standing hybrid graphene/dry-spun carbon nanotube films as multifunctional electrodes for highly stable perovskite solar cells[J]. ACS Applied Materials & Interfaces,2020,12(49):54806-54814.
    [29] BAILIE C D, CHRISTOFORO M G, MAILOA J P, et al. Semi-transparent perovskite solar cells for tandems with silicon and CIGS[J]. Energy & Environmental Science,2015,8(3):956-963.
    [30] HWANG H, KIM A, ZHONG Z, et al. Reducible-shell-derived pure-copper-nanowire network and its application to transparent conducting electrodes[J]. Advanced Functional Materials,2016,26(36):6545-6554. doi: 10.1002/adfm.201602094
    [31] 肖俊彦, 彭超, 李千卉. 类“烫金”和“包金”工艺制备钙钛矿太阳能电池顶电极[C]//中国可再生能源学会光化学专业委员会、中国科学院物理研究所清洁能源实验室. 第八届新型太阳能材料科学与技术学术研讨会论文集. 北京, 2021: 1.

    XIAO Junyan, PENG Chao, LI Qianhui. Top electrode on perovskite solar cells prepared by hot stamping and gold-clad like processes [C]//Photochemistry Committee of China Renewable Energy Society & Renewable Energy Laboratory, Institute of Physics, Chinese Academy of Sciences, Renewable Energy Laboratory. The 8th Conference on Science and Technology of Emerging Solar Energy Materials. Beijing, 2021: 1(in Chinese).
    [32] TROUGHTON J, BRYANT D, WOJCIECHOWSKI K, et al. Highly efficient, flexible, indium-free perovskite solar cells employing metallic substrates[J]. Journal of Materials Chemistry A,2015,3(17):9141-9145. doi: 10.1039/C5TA01755F
    [33] SPYROPOULOS G D, QUIROZ C O R, SALVADOR M, et al. Organic and perovskite solar modules innovated by adhe-sive top electrode and depth-resolved laser patterning[J]. Energy & Environmental Science,2016,9(7):2302-2313.
    [34] WEI H, XIAO J, YANG Y, et al. Free-standing flexible carbon electrode for highly efficient hole-conductor-free perovskite solar cells[J]. Carbon,2015,93:861-868. doi: 10.1016/j.carbon.2015.05.042
    [35] ZHANG H, XIAO J, SHI J, et al. Self-adhesive macroporous carbon electrodes for efficient and stable perovskite solar cells[J]. Advanced Functional Materials,2018,28(39):1802985. doi: 10.1002/adfm.201802985
    [36] SU H, XIAO J, LI Q, et al. Carbon film electrode based square-centimeter scale planar perovskite solar cells exceeding 17% efficiency[J]. Materials Science in Semiconductor Processing,2020,107:104809. doi: 10.1016/j.mssp.2019.104809
    [37] PENG C, SU H, LI J, et al. Scalable, efficient and flexible perovskite solar cells with carbon film based electrode[J]. Solar Energy Materials and Solar Cells,2021,230:111226. doi: 10.1016/j.solmat.2021.111226
    [38] WANG S, HOU K, XING Y, et al. Flexibly assembled and readily detachable photovoltaics[J]. Energy & Environmental Science,2017,10(10):2117-2123.
    [39] SHAO Y, ZHANG C, WANG S, et al. Insight into the interfacial elastic contact in stacking perovskite solar cells[J]. Advanced Materials Interfaces,2019,6(7):1900157. doi: 10.1002/admi.201900157
    [40] ZHANG C, WANG S, ZHANG H, et al. Efficient stable graphene-based perovskite solar cells with high flexibility in device assembling via modular architecture design[J]. Energy & Environmental Science,2019,12(12):3585-3594.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  1930
  • HTML全文浏览量:  1185
  • PDF下载量:  120
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-28
  • 修回日期:  2021-12-02
  • 录用日期:  2021-12-04
  • 网络出版日期:  2021-12-16
  • 刊出日期:  2022-03-23

目录

    /

    返回文章
    返回