留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同生物质来源的多孔碳复合碳电极在钙钛矿太阳能电池中的应用

刘海潮 谢亚红 魏鹏 耿聪 王昊斌 郑申申

刘海潮, 谢亚红, 魏鹏, 等. 不同生物质来源的多孔碳复合碳电极在钙钛矿太阳能电池中的应用[J]. 复合材料学报, 2022, 39(5): 1956-1966. doi: 10.13801/j.cnki.fhclxb.20211209.001
引用本文: 刘海潮, 谢亚红, 魏鹏, 等. 不同生物质来源的多孔碳复合碳电极在钙钛矿太阳能电池中的应用[J]. 复合材料学报, 2022, 39(5): 1956-1966. doi: 10.13801/j.cnki.fhclxb.20211209.001
LIU Haichao, XIE Yahong, WEI Peng, et al. Application of porous carbon composite carbon electrodes from different biomass sources in perovskite solar cells[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 1956-1966. doi: 10.13801/j.cnki.fhclxb.20211209.001
Citation: LIU Haichao, XIE Yahong, WEI Peng, et al. Application of porous carbon composite carbon electrodes from different biomass sources in perovskite solar cells[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 1956-1966. doi: 10.13801/j.cnki.fhclxb.20211209.001

不同生物质来源的多孔碳复合碳电极在钙钛矿太阳能电池中的应用

doi: 10.13801/j.cnki.fhclxb.20211209.001
基金项目: 大连理工大学精细化工国家重点实验室开放项目(KF2004);新疆维吾尔自治区大学科研计划自然科学项目(XJEDU2020I006);新疆维吾尔自治区重点实验室开放项目(2019D04006)
详细信息
    作者简介:

    谢亚红,新疆大学教授,博士研究生导师,新疆优秀青年科技人才。博士毕业于日本东北大学,中国科学院新疆理化技术研究所博士后,大连理工大学、加拿大滑铁卢大学访问学者。中国可再生能源学会光化学专业委员会委员。 主要研究领域:光电功能材料,光催化材料,新型太阳能电池的开发与低温制备,油田精细化学品。研究包括微/纳米催化/光催化功能材料的合成及其催化性能研究,新型硅基材料、碳材料的合成及其性能研究,染料敏化太阳能电池、钙钛矿薄膜太阳能电池,无机半导体薄膜太阳能关键材料的开发与研究。主持和结题包括国家自然科学基金、自治区自然科学基金、国家博士后基金、自治区重点实验室开放课题在内的课题10多项。在Chem. Mater., Chem. Eng.J., ChemComm, J. Power Sources, Carbon等国际期刊上以第一作者和通讯作者发表学术论文50余篇,获得新疆大学第五届青年科研奖,新疆大学自然科学一等奖(排名第一),新疆维吾尔自治区自然科学二等奖(排名第一)

    通讯作者:

    谢亚红,博士,教授,硕士生/博士生导师,研究方向为光电转化与储存材料的设计合成与综合利用 E-mail: xyh0707@163.com

  • 中图分类号: TM914.4

Application of porous carbon composite carbon electrodes from different biomass sources in perovskite solar cells

  • 摘要: 通过将生物质在惰性气体保护下高温热解/活化制备多孔碳材料,具有成本低,工艺简单等优点,并且是一种废物利用,减少环境污染的有效途径。将三种不同生物质通过高温热解/活化制备了多孔碳材料,将其与市售导电碳浆复合制成碳浆料后应用于钙钛矿太阳能电池(PSCs)背电极,研究了不同生物质多孔碳材料的形貌、结构和比表面积等对器件光电性能的影响。结果表明,基于不同生物质多孔碳材料的PSCs的光电性能取决于生物质多孔碳材料的形貌、结晶度、比表面积和形态以及钙钛矿/碳电极的界面接触。基于生物质多孔碳的复合碳电极结合研磨工艺制备的碳基PSCs,由于具有良好的界面性能获得最高10.18%的光电转换效率(PCE)(未复合生物质碳的PSCs的PCE为6.39%),室温下保存60天后,仍保留了初始PCE的96%。

     

  • 图  1  700℃热解/活化后CSC、COC和SDC的SEM图像

    Figure  1.  SEM images of CSC, COC and SDC after 700℃ pyrolysis/activation

    图  2  CSC、COC和SDC的XRD图谱(a)、Raman图谱(b)、氮气吸脱附等温线(c)和孔径分布曲线(d)

    Figure  2.  XRD spectra (a), Raman spectra (b), nitrogen adsorption and desorption isotherms (c) and pore size distribution curves (d) of CSC, COC and SDC

    图  3  (a) 钙钛矿太阳能电池的截面SEM图像; (b) 钙钛矿太阳能电池的结构示意图

    Figure  3.  (a) Cross-sectional SEM image of PSCs; (b) Schematic diagram of the structure of PSCs

    图  4  SDC、COC、CSC和CPC器件的J-V曲线(a)、阻抗谱图和等效电路图(b)

    Figure  4.  J-V curves (a) and impedance spectrogram and equivalent circuit diagrams (b) of SDC, COC, CSC and CPC devices

    图  5  (a) SDC、COC、CSC和CPC器件在经过20 s光照后的延迟开路光电压降(OCVD);(b) OCVD曲线对应的依据电子空穴复合机制得到的电子寿命τ'n和开路电压Voc的关系图

    Figure  5.  (a) Delayed open circuit photovoltage drop (OCVD) of SDC, COC, CSC and CPC device after 20 seconds illumination; (b) Relationship between the electron lifetime τ'n and the open circuit voltage Voc obtained by the electron hole recombination mechanism corresponding to the OCVD curve

    图  6  用光电参数显示的SDC、COC、CSC和CPC器件的箱形图

    Figure  6.  Statistical box diagrams of SDC, COC, CSC and CPC device

    图  7  SDC、COC、CSC和CPC器件的正反扫曲线

    Figure  7.  Reverse and forward scan curves of SDC, COC, CSC and CPC device

    图  8  SDC (a)、COC (b)、CSC (c)和CPC (d)基C-PSCs在最大功率点的稳态光电流测试

    Figure  8.  Steady-state photocurrent output of SDC (a), COC (b), CSC (c) and CPC (d)-based C-PSCs

    图  9  SDC (a)、COC (b)、CSC (c)和CPC (d)基C-PSCs器件在空气条件下60天的稳定性测试

    Figure  9.  SDC (a), COC (b), CSC (c) and CPC (d)-based C-PSCs stability test under air conditions for 60 days

    表  1  CSC、COC和SDC生物质碳样品BET参数

    Table  1.   BET parameters of CSC, COC and SDC bio-carbon samples

    SampleSSA
    /(m2·g−1)
    Vtotal
    /(cm3·g−1)
    Vmicro
    /(cm3·g−1)
    Vmeso
    /(cm3·g−1)
    D
    /nm
    CSC10670.3740.3140.0601.74
    COC12200.3960.3120.0841.79
    SDC14040.5920.4340.1581.92
    Notes: SSA—Specific surface area; Vtotal—Total pore volume; Vmicro—Micropore volume; Vmeso—Mesopore volume; D—Average pore diameter.
    下载: 导出CSV

    表  2  SDC、COC、CSC和CPC器件的最佳光电性能和平均光电参数

    Table  2.   Optimal and average optoelectronic parameters of SDC, COC, CSC and CPC device

    SampleVoc/VJsc/(mA·cm−2)FFPCE/%
    SDCBest0.8722.860.5110.18
    Average0.87±0.0220.91±0.670.48±0.039.17±0.58
    COCBest0.8721.310.499.03
    Average0.81±0.0620.17±1.260.44±0.047.46±0.99
    CSCBest0.8322.400.417.62
    Average0.80±0.0520.97±1.840.41±0.026.78±0.52
    CPCBest0.7720.310.416.39
    Average0.75±0.0417.10±1.490.43±0.025.48±0.59
    Notes: Voc—Voltage of open circuit; Jsc—Current of short circuit; FF—Fill factor; PCE—Photoelectric conversion efficiency.
    下载: 导出CSV

    表  3  SDC、COC、CSC和CPC器件的阻抗参数

    Table  3.   Optical impedance parameters of SDC, COC, CSC and CPC devices

    SampleRsRtrRrec
    SDC20.1369.9392.96
    COC15.870.7629.75
    CSC18.787.1347.89
    CPC16.543.1266.71
    Notes: Rs—Sheet resistance; Rtr—Transfer resistance; Rrec—Recombination resistance.
    下载: 导出CSV

    表  4  SDC、COC、CSC和CPC器件的正反扫光电性能数据和迟滞因子

    Table  4.   Reverse and forward scanning photoelectric performance data and hysteresis factor of SDC, COC, CSC and CPC device

    SampleVoc/VJsc/(mA·cm−2)FFPCE/%HF/%
    SDC-R0.8721.490.5410.058
    SDC-F0.8521.880.509.25
    COC-R0.8719.860.528.9214
    COC-F0.8518.760.497.71
    CSC-R0.8121.200.427.1823
    CSC-F0.7322.760.335.53
    CPC-R0.7518.910.436.1032
    CPC-F0.6618.600.344.15
    Note: HF—Hysteresis factor.
    下载: 导出CSV
  • [1] YOO J J, SEO G, CHUA M R, et al. Efficient perovskite solar cells via improved carrier management[J]. Nature,2021,590(7847):587-593. doi: 10.1038/s41586-021-03285-w
    [2] CORREA-BAENA J P, ANAYA M, LOZANO G, et al. Unbroken perovskite: interplay of morphology, electro-opti-cal properties, and ionic movement[J]. Advanced Materials,2016,28(25):5031-5037. doi: 10.1002/adma.201600624
    [3] WANG S, JIANG P, SHEN W, et al. A Low-temperature carbon electrode with benign perovskite compatibility and high flexibility in perovskite solar cells[J]. Chemical Communications,2019,55(19):2765-2768. doi: 10.1039/C8CC09905G
    [4] BOGACHUK D, ZOUHAIR S, WOJCIECHOWSKI K, et al. Low-temperature carbon-based electrodes in perovskite solar cells[J]. Energy & Environmental Science,2020,13(11):3880-3916.
    [5] MANSER J S, SAIDAMINOV M I, CHRISTIANS J A, et al. Making and breaking of lead halide perovskites[J]. Accounts of Chemical Research,2016,49(2):330-338. doi: 10.1021/acs.accounts.5b00455
    [6] MENG F, GAO L, YAN Y, et al. Ultra-low-cost coal-based carbon electrodes with seamless interfacial contact for effective sandwich-structured perovskite solar cells[J]. Carbon,2019,145:290-296. doi: 10.1016/j.carbon.2019.01.047
    [7] FAGIOLARI L, BELLA F. Carbon-based materials for stable, cheaper and large-scale processable perovskite solar cells[J]. Energy & Environmental Science,2019,12(12):3437-3472.
    [8] WANG Y, ZHAO H, MEI Y, et al. Carbon nanotube bridging method for hole transport layer-free paintable carbon-based perovskite solar cells[J]. ACS Applied Materials & Interfaces,2019,11(1):916-923.
    [9] ZHANG C, WANG S, ZHANG H, et al. Efficient stable graphene-based perovskite solar cells with high flexibility in device assembling via modular architecture design[J]. Energy & Environmental Science,2019,12(12):3585-3594.
    [10] ZHANG J, TIAN J, FAN J, et al. Graphdiyne: A brilliant hole accumulator for stable and efficient planar perovskite solar cells[J]. Small,2020,16(13):1907290. doi: 10.1002/smll.201907290
    [11] QIANG Y, CHENG J, QI Y, et al. Low-temperature preparation of HTM-free SnO2-based planar heterojunction perovskite solar cells with commercial carbon as counter electrode[J]. Journal of Alloys and Compounds,2019,809:151817. doi: 10.1016/j.jallcom.2019.151817
    [12] ZHONG Y, XU L, LI C, et al. Needle coke: A predominant carbon black alternative for printable triple mesoscopic perovskite solar cells[J]. Carbon,2019,153:602-608. doi: 10.1016/j.carbon.2019.07.038
    [13] WEI Z H, CHEN H N, YAN K Y, et al. Inkjet printing and instant chemical transformation of a CH3NH3PbI3/nanocarbon electrode and interface for planar perovskite solar cells[J]. Angewandte Chemie International Edition,2015,53(48):13239-13243.
    [14] ZHANG L J, LIU T F, LIU L F, et al. The effect of carbon counter electrodes on fully printable mesoscopic perovskite solar cells[J]. Journal of Materials Chemistry A,2015,3(17):9165-9170. doi: 10.1039/C4TA04647A
    [15] MALI S S, KIM H, PATIL J V, et al. Bio-inspired carbon hole transporting layer derived from aloe vera plant for cost-effective fully printable mesoscopic carbon perovskite solar cells[J]. ACS Applied Materials & Interfaces,2018,10(37):31280-31290.
    [16] GAO L, ZHOU Y, MENG F, et al. Several economical and eco-friendly bio-carbon electrodes for highly efficient perovskite solar cells[J]. Carbon,2020,162:267-272. doi: 10.1016/j.carbon.2020.02.049
    [17] LIU H C, XIE Y H, WEI P, et al. Interface optimization of hole-conductor free perovskite solar cells using porous carbon materials derived from biomass soybean dregs as a cathode[J]. Journal of Alloys and Compounds,2020,842:155851. doi: 10.1016/j.jallcom.2020.155851
    [18] 鲍磊, 白永辉, 李凡. 生物质炭材料的制备及应用研究进展[J]. 化工新型材料, 2019, 47(7):54-59.

    BAO Lei, BAI Yonghui, LI Fan. Research progress on the preparation and application of biomass carbon materials[J]. New Chemical Materials,2019,47(7):54-59(in Chinese).
    [19] CHENG J, QIANG Y, ZHOU C, et al. Effective improvement of the photovoltaic performance of carbon-based perovskites solar cells by grinding process and its capacitor model[J]. Journal of Power Sources,2019,422:131-137. doi: 10.1016/j.jpowsour.2019.03.035
    [20] XIE Y H, CHENG J, LIU H C, et al. Co-Ni alloy@carbon aerogels for improving the efficiency and air stability of perovskite solar cells and its hysteresis mechanism[J]. Carbon,2019,154:322-329. doi: 10.1016/j.carbon.2019.08.015
    [21] LI Z W, BAI Z Y, MI H Y, et al. Biowaste-derived porous carbon with tuned microstructure for high-energy quasi-solid-state supercapacitors[J]. ACS Sustainable Chemistry & Engineering,2019,7(15):13127-13135.
    [22] LI Z W, MI H Y, BAI Z Y, et al. Sustainable biowaste strategy to fabricate dual-doped carbon frameworks with remarkable performance for flexible solid-state supercapaci-tors[J]. Journal of Power Sources,2019,418:112-121. doi: 10.1016/j.jpowsour.2019.02.034
    [23] WEI Z, YAN K, CHEN H, et al. Cost-efficient clamping solar cells using candle soot for hole extraction from ambipolar perovskites[J]. Energy & Environmental Science,2014,7(10):3326-3333.
    [24] CHEN C, LI F, ZHU L, et al. Efficient and stable perovskite solar cells thanks to dual functions of oleyl amine-coated PbSO4(PbO)4 quantum dots: Defect passivation and moisture/oxygen blocking[J]. Nano Energy,2020,68:104313. doi: 10.1016/j.nanoen.2019.104313
    [25] CHEN C, ZHAI Y, LI F, et al. High efficiency CH3NH3PbI3: CdS perovskite solar cells with CuInS2 as the hole transporting layer[J]. Journal of Power Sources,2017,341:396-403. doi: 10.1016/j.jpowsour.2016.12.027
    [26] GENG C, XIE Y, WEI P, et al. An efficient Co-NC composite additive for enhancing interface performance of carbon-based perovskite solar cells[J]. Electrochimica Acta,2020,358:136883. doi: 10.1016/j.electacta.2020.136883
    [27] QIANG Y, XIE Y, QI Y, et al. Enhanced performance of carbon-based perovskite solar cells with a Li+-doped SnO2 electron transport layer and Al2O3 scaffold layer[J]. Solar Energy,2020,201:523-529. doi: 10.1016/j.solener.2020.03.046
    [28] XIA G J, LIU H L, ZHAO X M, et al. Seeding-method-processed anatase TiO2 film at low temperature for efficient planar perovskite solar cell[J]. Chemical Engineering Journal,2019,370:1111-1118. doi: 10.1016/j.cej.2019.03.257
    [29] SHI X, WU Y, CHEN J, et al. Thermally stable perovskite solar cells with efficiency over 21% via a bifunctional addi-tive[J]. Journal of Materials Chemistry A,2020,8(15):7205-7213. doi: 10.1039/D0TA01255F
    [30] YANG Y, LIU Z, NG W K, et al. An ultrathin ferroelectric perovskite oxide layer for high-performance hole transport material free carbon based halide perovskite solar cells[J]. Advanced Functional Materials,2019,29(1):1806506. doi: 10.1002/adfm.201806506
    [31] YU Z H, CHEN B L, LIU P, et al. Stable organic-inorganic perovskite solar cells without hole-conductor layer achieved via cell structure design and contact engi-neering[J]. Advanced Functional Materials,2016,26(27):4866-4873. doi: 10.1002/adfm.201504564
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  1193
  • HTML全文浏览量:  607
  • PDF下载量:  142
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-06
  • 修回日期:  2021-11-16
  • 录用日期:  2021-12-13
  • 网络出版日期:  2021-12-13
  • 刊出日期:  2022-03-23

目录

    /

    返回文章
    返回