Application of porous carbon composite carbon electrodes from different biomass sources in perovskite solar cells
-
摘要: 通过将生物质在惰性气体保护下高温热解/活化制备多孔碳材料,具有成本低,工艺简单等优点,并且是一种废物利用,减少环境污染的有效途径。将三种不同生物质通过高温热解/活化制备了多孔碳材料,将其与市售导电碳浆复合制成碳浆料后应用于钙钛矿太阳能电池(PSCs)背电极,研究了不同生物质多孔碳材料的形貌、结构和比表面积等对器件光电性能的影响。结果表明,基于不同生物质多孔碳材料的PSCs的光电性能取决于生物质多孔碳材料的形貌、结晶度、比表面积和形态以及钙钛矿/碳电极的界面接触。基于生物质多孔碳的复合碳电极结合研磨工艺制备的碳基PSCs,由于具有良好的界面性能获得最高10.18%的光电转换效率(PCE)(未复合生物质碳的PSCs的PCE为6.39%),室温下保存60天后,仍保留了初始PCE的96%。
-
关键词:
- 生物质 /
- 高温活化/热解 /
- 生物质多孔碳的复合碳电极 /
- 钙钛矿太阳能电池 /
- 界面特性
Abstract: The preparation of porous carbon materials by high-temperature pyrolysis/activation of biomass under the protection of inert gas has the advantages of low cost, simple process, etc., and is an effective way to use waste and reduce environmental pollution. In this study, three different biomass materials were prepared by high-tempe-rature pyrolysis/activation to prepare porous carbon materials, which were combined with commercially conduc-tive carbon paste to make composite carbon paste and applied to the counter electrodes of perovskite solar cells (PSCs). The morphology, structure and specific surface area of different biomass porous carbon materials affect the photoelectric performance of the device. The results show that the photoelectric performance of PSCs based on different biomass porous carbon materials depends on the morphology, crystallinity, specific surface area and morphology of the biomass porous carbon materials and the interface contact between the perovskite/carbon electrode. The carbon-based PSCs prepared by the composite carbon electrode based on biomass porous carbon combined with the grinding process can obtain the highest photoelectric conversion efficiency (PCE) of 10.18% due to its good interface performance (the PCE of the PSCs without composite biomass carbon is 6.39%). After the best device is stored in air conditions for 60 days, 96% of the initial PCE was still retained. -
图 5 (a) SDC、COC、CSC和CPC器件在经过20 s光照后的延迟开路光电压降(OCVD);(b) OCVD曲线对应的依据电子空穴复合机制得到的电子寿命τ'n和开路电压Voc的关系图
Figure 5. (a) Delayed open circuit photovoltage drop (OCVD) of SDC, COC, CSC and CPC device after 20 seconds illumination; (b) Relationship between the electron lifetime τ'n and the open circuit voltage Voc obtained by the electron hole recombination mechanism corresponding to the OCVD curve
表 1 CSC、COC和SDC生物质碳样品BET参数
Table 1. BET parameters of CSC, COC and SDC bio-carbon samples
Sample SSA
/(m2·g−1)Vtotal
/(cm3·g−1)Vmicro
/(cm3·g−1)Vmeso
/(cm3·g−1)D
/nmCSC 1067 0.374 0.314 0.060 1.74 COC 1220 0.396 0.312 0.084 1.79 SDC 1404 0.592 0.434 0.158 1.92 Notes: SSA—Specific surface area; Vtotal—Total pore volume; Vmicro—Micropore volume; Vmeso—Mesopore volume; D—Average pore diameter. 表 2 SDC、COC、CSC和CPC器件的最佳光电性能和平均光电参数
Table 2. Optimal and average optoelectronic parameters of SDC, COC, CSC and CPC device
Sample Voc/V Jsc/(mA·cm−2) FF PCE/% SDC Best 0.87 22.86 0.51 10.18 Average 0.87±0.02 20.91±0.67 0.48±0.03 9.17±0.58 COC Best 0.87 21.31 0.49 9.03 Average 0.81±0.06 20.17±1.26 0.44±0.04 7.46±0.99 CSC Best 0.83 22.40 0.41 7.62 Average 0.80±0.05 20.97±1.84 0.41±0.02 6.78±0.52 CPC Best 0.77 20.31 0.41 6.39 Average 0.75±0.04 17.10±1.49 0.43±0.02 5.48±0.59 Notes: Voc—Voltage of open circuit; Jsc—Current of short circuit; FF—Fill factor; PCE—Photoelectric conversion efficiency. 表 3 SDC、COC、CSC和CPC器件的阻抗参数
Table 3. Optical impedance parameters of SDC, COC, CSC and CPC devices
Sample Rs/Ω Rtr/Ω Rrec/Ω SDC 20.13 69.93 92.96 COC 15.8 70.76 29.75 CSC 18.7 87.13 47.89 CPC 16.5 43.12 66.71 Notes: Rs—Sheet resistance; Rtr—Transfer resistance; Rrec—Recombination resistance. 表 4 SDC、COC、CSC和CPC器件的正反扫光电性能数据和迟滞因子
Table 4. Reverse and forward scanning photoelectric performance data and hysteresis factor of SDC, COC, CSC and CPC device
Sample Voc/V Jsc/(mA·cm−2) FF PCE/% HF/% SDC-R 0.87 21.49 0.54 10.05 8 SDC-F 0.85 21.88 0.50 9.25 COC-R 0.87 19.86 0.52 8.92 14 COC-F 0.85 18.76 0.49 7.71 CSC-R 0.81 21.20 0.42 7.18 23 CSC-F 0.73 22.76 0.33 5.53 CPC-R 0.75 18.91 0.43 6.10 32 CPC-F 0.66 18.60 0.34 4.15 Note: HF—Hysteresis factor. -
[1] YOO J J, SEO G, CHUA M R, et al. Efficient perovskite solar cells via improved carrier management[J]. Nature,2021,590(7847):587-593. doi: 10.1038/s41586-021-03285-w [2] CORREA-BAENA J P, ANAYA M, LOZANO G, et al. Unbroken perovskite: interplay of morphology, electro-opti-cal properties, and ionic movement[J]. Advanced Materials,2016,28(25):5031-5037. doi: 10.1002/adma.201600624 [3] WANG S, JIANG P, SHEN W, et al. A Low-temperature carbon electrode with benign perovskite compatibility and high flexibility in perovskite solar cells[J]. Chemical Communications,2019,55(19):2765-2768. doi: 10.1039/C8CC09905G [4] BOGACHUK D, ZOUHAIR S, WOJCIECHOWSKI K, et al. Low-temperature carbon-based electrodes in perovskite solar cells[J]. Energy & Environmental Science,2020,13(11):3880-3916. [5] MANSER J S, SAIDAMINOV M I, CHRISTIANS J A, et al. Making and breaking of lead halide perovskites[J]. Accounts of Chemical Research,2016,49(2):330-338. doi: 10.1021/acs.accounts.5b00455 [6] MENG F, GAO L, YAN Y, et al. Ultra-low-cost coal-based carbon electrodes with seamless interfacial contact for effective sandwich-structured perovskite solar cells[J]. Carbon,2019,145:290-296. doi: 10.1016/j.carbon.2019.01.047 [7] FAGIOLARI L, BELLA F. Carbon-based materials for stable, cheaper and large-scale processable perovskite solar cells[J]. Energy & Environmental Science,2019,12(12):3437-3472. [8] WANG Y, ZHAO H, MEI Y, et al. Carbon nanotube bridging method for hole transport layer-free paintable carbon-based perovskite solar cells[J]. ACS Applied Materials & Interfaces,2019,11(1):916-923. [9] ZHANG C, WANG S, ZHANG H, et al. Efficient stable graphene-based perovskite solar cells with high flexibility in device assembling via modular architecture design[J]. Energy & Environmental Science,2019,12(12):3585-3594. [10] ZHANG J, TIAN J, FAN J, et al. Graphdiyne: A brilliant hole accumulator for stable and efficient planar perovskite solar cells[J]. Small,2020,16(13):1907290. doi: 10.1002/smll.201907290 [11] QIANG Y, CHENG J, QI Y, et al. Low-temperature preparation of HTM-free SnO2-based planar heterojunction perovskite solar cells with commercial carbon as counter electrode[J]. Journal of Alloys and Compounds,2019,809:151817. doi: 10.1016/j.jallcom.2019.151817 [12] ZHONG Y, XU L, LI C, et al. Needle coke: A predominant carbon black alternative for printable triple mesoscopic perovskite solar cells[J]. Carbon,2019,153:602-608. doi: 10.1016/j.carbon.2019.07.038 [13] WEI Z H, CHEN H N, YAN K Y, et al. Inkjet printing and instant chemical transformation of a CH3NH3PbI3/nanocarbon electrode and interface for planar perovskite solar cells[J]. Angewandte Chemie International Edition,2015,53(48):13239-13243. [14] ZHANG L J, LIU T F, LIU L F, et al. The effect of carbon counter electrodes on fully printable mesoscopic perovskite solar cells[J]. Journal of Materials Chemistry A,2015,3(17):9165-9170. doi: 10.1039/C4TA04647A [15] MALI S S, KIM H, PATIL J V, et al. Bio-inspired carbon hole transporting layer derived from aloe vera plant for cost-effective fully printable mesoscopic carbon perovskite solar cells[J]. ACS Applied Materials & Interfaces,2018,10(37):31280-31290. [16] GAO L, ZHOU Y, MENG F, et al. Several economical and eco-friendly bio-carbon electrodes for highly efficient perovskite solar cells[J]. Carbon,2020,162:267-272. doi: 10.1016/j.carbon.2020.02.049 [17] LIU H C, XIE Y H, WEI P, et al. Interface optimization of hole-conductor free perovskite solar cells using porous carbon materials derived from biomass soybean dregs as a cathode[J]. Journal of Alloys and Compounds,2020,842:155851. doi: 10.1016/j.jallcom.2020.155851 [18] 鲍磊, 白永辉, 李凡. 生物质炭材料的制备及应用研究进展[J]. 化工新型材料, 2019, 47(7):54-59.BAO Lei, BAI Yonghui, LI Fan. Research progress on the preparation and application of biomass carbon materials[J]. New Chemical Materials,2019,47(7):54-59(in Chinese). [19] CHENG J, QIANG Y, ZHOU C, et al. Effective improvement of the photovoltaic performance of carbon-based perovskites solar cells by grinding process and its capacitor model[J]. Journal of Power Sources,2019,422:131-137. doi: 10.1016/j.jpowsour.2019.03.035 [20] XIE Y H, CHENG J, LIU H C, et al. Co-Ni alloy@carbon aerogels for improving the efficiency and air stability of perovskite solar cells and its hysteresis mechanism[J]. Carbon,2019,154:322-329. doi: 10.1016/j.carbon.2019.08.015 [21] LI Z W, BAI Z Y, MI H Y, et al. Biowaste-derived porous carbon with tuned microstructure for high-energy quasi-solid-state supercapacitors[J]. ACS Sustainable Chemistry & Engineering,2019,7(15):13127-13135. [22] LI Z W, MI H Y, BAI Z Y, et al. Sustainable biowaste strategy to fabricate dual-doped carbon frameworks with remarkable performance for flexible solid-state supercapaci-tors[J]. Journal of Power Sources,2019,418:112-121. doi: 10.1016/j.jpowsour.2019.02.034 [23] WEI Z, YAN K, CHEN H, et al. Cost-efficient clamping solar cells using candle soot for hole extraction from ambipolar perovskites[J]. Energy & Environmental Science,2014,7(10):3326-3333. [24] CHEN C, LI F, ZHU L, et al. Efficient and stable perovskite solar cells thanks to dual functions of oleyl amine-coated PbSO4(PbO)4 quantum dots: Defect passivation and moisture/oxygen blocking[J]. Nano Energy,2020,68:104313. doi: 10.1016/j.nanoen.2019.104313 [25] CHEN C, ZHAI Y, LI F, et al. High efficiency CH3NH3PbI3: CdS perovskite solar cells with CuInS2 as the hole transporting layer[J]. Journal of Power Sources,2017,341:396-403. doi: 10.1016/j.jpowsour.2016.12.027 [26] GENG C, XIE Y, WEI P, et al. An efficient Co-NC composite additive for enhancing interface performance of carbon-based perovskite solar cells[J]. Electrochimica Acta,2020,358:136883. doi: 10.1016/j.electacta.2020.136883 [27] QIANG Y, XIE Y, QI Y, et al. Enhanced performance of carbon-based perovskite solar cells with a Li+-doped SnO2 electron transport layer and Al2O3 scaffold layer[J]. Solar Energy,2020,201:523-529. doi: 10.1016/j.solener.2020.03.046 [28] XIA G J, LIU H L, ZHAO X M, et al. Seeding-method-processed anatase TiO2 film at low temperature for efficient planar perovskite solar cell[J]. Chemical Engineering Journal,2019,370:1111-1118. doi: 10.1016/j.cej.2019.03.257 [29] SHI X, WU Y, CHEN J, et al. Thermally stable perovskite solar cells with efficiency over 21% via a bifunctional addi-tive[J]. Journal of Materials Chemistry A,2020,8(15):7205-7213. doi: 10.1039/D0TA01255F [30] YANG Y, LIU Z, NG W K, et al. An ultrathin ferroelectric perovskite oxide layer for high-performance hole transport material free carbon based halide perovskite solar cells[J]. Advanced Functional Materials,2019,29(1):1806506. doi: 10.1002/adfm.201806506 [31] YU Z H, CHEN B L, LIU P, et al. Stable organic-inorganic perovskite solar cells without hole-conductor layer achieved via cell structure design and contact engi-neering[J]. Advanced Functional Materials,2016,26(27):4866-4873. doi: 10.1002/adfm.201504564