Preparation of phenanthrenequinone modified porous carbon nanotube composite material for symmetric supercapacitor
-
摘要: 为获得具有优异电化学性能的超级电容器电极材料,首先依次对实验合成的聚吡咯(PPy)纳米管进行碳化处理和活化处理来制备层级多孔碳纳米管(PCNTs)。然后用一步溶剂热法将9,10-菲醌(PQ)分子通过 π-π 堆积作用进一步修饰到PCNTs表面得到PQ分子非共价修饰的PCNTs复合材料(PQ/PCNTs)。不仅对合成的复合材料进行了形貌表征,而且还通过循环伏安法(CV)、恒电流充放电(GCD)和电化学阻抗谱(EIS)研究了具有不同PQ分子负载率的复合材料(PQ/PCNTs)的超级电容性能。实验结果表明:PQ分子与PCNTs质量比为5∶5的复合材料的电化学性能最好,在1 A∙g−1的电流密度下的比容量可以达到407.7 C∙g−1。同时复合材料表现出优异的倍率性能(电流密度为50 A∙g−1 时的比容量为307.3 C∙g−1)和循环稳定性能(在10 A∙g−1 电流密度下循环10,000次后电容保持率为91.4%)。为了进一步研究复合材料的实际应用性能,以
PQ与PCNTs质量比为5∶5作为电极材料组装了对称超级电容器,组装后的对称超级电容器可提供高达 21.5 W∙h∙kg−1 的能量密度和 0.8 kW∙kg−1 的功率密度。 Abstract: In purpose of obtaining electrode materials with superior electrochemical properties for supercapacitor, porous carbon nanotubes (PCNTs) were firstly prepared by the carbonization and activation of polypyrrole (PPy) nanotubes. The obtained PCNTs were further modified with 9,10-phenanthrenequinone(PQ) molecules via π-π stacking interaction through one-step solvothermal method. The electrochemical performance of the obtained composites (PQ/PCNTs) with different mass ratios of PQ to PCNTs as the electrode materials for supercapacitors were investigated by cyclic voltammetry (CV), galvonostantic charging-discharging (GCD) and electrochemical impedance spectroscopy (EIS). The experimental results show that the composites with the mass ratio of PQ molecule to PCNTs of 5∶5 achieves the largest specific capacity of 407.7 C∙g−1 at a current density of 1 A∙g−1. The resultant composite also exhibits excellent rate capability (the specific capacity at a current density of 50 A∙g−1 is equal to 307.3 C∙g−1) and cycling stability (capacitance retention of 91.4% after 10,000 cycles at the current density of 10 A∙g−1). Furthermore, a symmetric supercapacitor was assembled with the mass ratio of PQ molecule to PCNTs of 5∶5 as electrode materials to investigate the practical applications of the composites. And the assembled symmetric supercapacitor delivers an energy density as high as 21.5 W∙h∙kg−1 and a power density of 0.8 kW∙kg−1. -
图 1 9,10-菲醌(PQ)与多孔碳纳米管(PCNTs)相互作用图((a)、(b));PQ/PCNTs差分电荷密度图((c)、 (d)),浅色和深色区域分别表示电荷减少和增加
Figure 1. Diagram of the interaction between 9,10-phenanthrenequinone (PQ) and porous carbon nanotubes (PCNTs) ((a), (b)); Difference of charge density of PQ/PCNTs in stacked site ((c), (d)), the light and dark regions indicate depletion and accumulation of electrons, respectively
图 5 (a)不同质量比PQ/PCNTs和PCNTs电极材料在三电极体系1 mol/L H2SO4中的CV曲线;(b) PQ/PCNTs 5∶5在不同扫描速率下的CV曲线;(c)不同质量比PQ/PCNTs和PCNTs电极材料的恒电流充放电曲线;(d) PQ/PCNTs 5∶5不同电流密度下的充放电曲线
Figure 5. (a) CV curves of PQ/PCNTs with different mass ratios and PCNTs in the three-electrode system in 1 mol/L H2SO4; (b) CV curves of PQ/PCNTs 5∶5 at different scan rates; (c) GCD curves of PQ/PCNTs with different mass ratios and PCNTs ; (d) GCD curves of PQ/PCNTs 5∶5 at different current densities
SCE—Saturated calomel electrode
图 6 (a) PQ/PCNTs 5∶5和PCNTs电极材料在三电极体系中不同电流密度下的比容量;(b) PQ/PCNTs 5∶5 电极材料在10 A·g−1电流密度下的电容保持率;(c) PQ/PCNTs 5∶5电极材料在不同扫速下阴阳极的峰电流;(d) PQ/PCNTs 5∶5和PCNTs电极材料的交流阻抗谱
Figure 6. (a) Specific capacity of PQ/PCNTs 5∶5 and PCNTs at different current densities in a three-electrode system; (b) Capacitance retention of PQ/PCNTs 5∶5 at a current density of 10 A·g−1; (c) Cathodic and anodic peak currents of PQ/PCNTs 5∶5 at different scan rates; (d) EIS of PQ/PCNTs 5∶5 and PCNTs
图 7 (a) PQ/PCNTs // PQ/PCNTs(SSC)在1 mol/L H2SO4 中10 mV∙s-1的扫速下的CV曲线(两电极模型);(b) SSC在1 mol/L H2SO4 中不同扫描速率下的CV曲线;(c) SSC在1 mol/L H2SO4中不同电流密度下的充放电曲线;(d)不同电流密度下SSC的比电容值;(e) SSC在3 A∙g−1电流密度下循环10000次;(f) SSC的Ragone图
Figure 7. (a) Cyclic voltammogram (two-electrode mode) at 10 mV∙s−1 for PQ/PCNTs // PQ/PCNTs (SSC) in 1 mol/L H2SO4; (b) CV curves of SSC at different scan rates in 1 mol/L H2SO4; (c) GCD curves of SSC at different current densities in 1 mol/L H2SO4; (d) Specific capacitance of SSC at various current densities; (e) Cycle life of the SSC at 3 A∙g−1 for 10000 cycles; (f) Ragone plot of SSC
-
[1] AZMAN N H N, MAMAT MAT NAZIR M S, NGEE L H, et al. Graphene-based ternary composites for supercapacitors[J]. International Journal of Energy Research,2018,42(6):2104-2116. doi: 10.1002/er.4001 [2] GAO Y. Graphene and polymer composites for supercapacitor applications: A review[J]. Nanoscale Research Letters,2017,12(1):387. [3] 王 健, 胡稳茂, 王庚超. 功能化碳纳米管膜负载聚(2, 5-二羟基-1, 4-苯醌硫)柔性电极的制备及在柔性非对称超级电容器中的应用[J]. 功能高分子学报, 2019, 32(2):184-191.WANG Jian, HU Wenmao, WANG Gengchao. Preparation of poly(2, 5-dihydroxy-1, 4-benzoquinonesulfur) flexible electrode supported by functionalized carbon nanotube film and its application in flexible asymmetric supercapacitors[J]. Function Acta Polymerica Sinica,2019,32(2):184-191(in Chinese). [4] HUANG L, SANTIAGO D, LOYSELLE P, et al. Graphene-based nanomaterials for flexible and wearable supercapacitors[J]. Small,2018,14(43):e1800879. doi: 10.1002/smll.201800879 [5] SIMON P, GOGOTSI Y. Materials for electrochemical capacitors[J]. Nature Materials,2008,7(11):845-854. doi: 10.1038/nmat2297 [6] CHEN J, LI C, SHI G. Graphene materials for electrochemical capacitors[J]. The Journal of Physical Chemistry Letters,2013,4(8):1244-1253. doi: 10.1021/jz400160k [7] ZHAO J, BURKE A F. Electrochemical capacitors: Materials, technologies and performance[J]. Energy Storage Materials,2021,36:31-55. [8] YANG X, YANG Y, ZHANG Q, et al. Dissected carbon nanotubes functionalized by 1-hydroxyanthraquinone for high-performance asymmetric supercapacitors[J]. RSC Advances,2017,7(76):48341-48353. doi: 10.1039/C7RA09534A [9] CHEN X, WANG H, YI H, et al. Anthraquinone on porous carbon nanotubes with improved supercapacitor performance[J]. The Journal of Physical Chemistry C,2014,118(16):8262-8270. doi: 10.1021/jp5009626 [10] WU Q, SUN Y Q, BAI H, et al. High-performance supercapacitor electrodes based on graphene hydrogels modified with 2-aminoanthraquinone moieties[J]. Physical Chemistry Chemical Physics,2011,13(23):11193-11198. doi: 10.1039/c1cp20980a [11] BOOTA M, CHEN C, BÉCUWE M, et al. Pseudocapacitance and excellent cyclability of 2, 5-dimethoxy-1, 4-benzoquinone on graphene[J]. Energy & Environmental Science,2016,9(8):2586-2594. [12] YANG X, ZHU Z, DAI T, et al. Facile fabrication of functional polypyrrole nanotubes via a reactive self-degraded template[J]. Macromolecular Rapid Communications,2005,26(21):1736-1740. doi: 10.1002/marc.200500514 [13] 李文光, 李梅, 姚金, 等. 聚吡咯/多壁碳纳米管复合材料的制备与性能研究[J]. 材料导报B:研究篇, 2012, 26(7):63-67.LI Wenguang, LI Mei, YAO Jin, et al. Preparation and properties of polypyrrole/multi-wall carbon nanotube composites[J]. Materials Review B:Research,2012,26(7):63-67(in Chinese). [14] GIANNOZZI P, BARONI S, BONINI N, et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials[J]. Journal of Physics-Condensed Matter,2009,21(39):395502. doi: 10.1088/0953-8984/21/39/395502 [15] HOU L, KONG C, HU Z, et al. Non-covalently self-assembled organic molecules graphene aerogels to enhance supercapacitive performance[J]. Applied Surface Science,2020,508:145192. doi: 10.1016/j.apsusc.2019.145192 [16] LV L, HU Z, AN N, et al. A green and sustainable organic molecule electrode prepared by fluorenone for more efficient energy storage[J]. Electrochimica Acta,2021,377:138088. doi: 10.1016/j.electacta.2021.138088 [17] SENOH H, YAO M, SAKAEBE H, et al. A two-compartment cell for using soluble benzoquinone derivatives as active materials in lithium secondary batteries[J]. Electrochimica Acta,2011,56(27):10145-10150. doi: 10.1016/j.electacta.2011.08.115 [18] LI C, XUE J, MA J, et al. Conjugated dicarboxylate with extended naphthyl skeleton as an advanced organic anode for potassium-ion battery[J]. Journal of The Electrochemical Society,2018,166(3):A5221-A5225. [19] LE COMTE A, CHHIN D, GAGNON A, et al . Spontaneous grafting of 9, 10-phenanthrenequinone on porous carbon as an active electrode material in an electrochemical capacitor in an alkaline electrolyte[J]. Journal of Materials Chemistry A,2015,3(11):6146-6156. doi: 10.1039/C4TA05536E [20] LEE S, CHOI C, CHUNG M, et al. Dimensional tailoring of nitrogen-doped graphene for high performance supercapacitors[J]. RSC Advances,2016,6(60):55577-55583. doi: 10.1039/C6RA07825G [21] SONG Z, ZHAN H, ZHOU Y. Anthraquinone based polymer as high performance cathode material for rechargeable lithium batteries[J]. Chemical Communications (Camb),2009(4):448-450. doi: 10.1039/B814515F [22] GUO B, YANG Y, HU Z, et al. Redox-active organic molecules functionalized nitrogen-doped porous carbon derived from metal-organic framework as electrode materials for supercapacitor[J]. Electrochimica Acta,2017(223):74-84. [23] LE FEVRE L, CAO J, KINLOCH I, et al. Systematic comparison of graphene materials for supercapacitor electrodes[J]. ChemistryOpen,2019,8(4):418-428. doi: 10.1002/open.201900004 [24] LI Z, QIN P, WANG L, et al. Amine-enriched graphene quantum dots for high-pseudocapacitance supercapacitors[J]. Electrochimica Acta,2016(208):260-266. [25] YANG H, KANNAPPAN S, PANDIAN A S, et al. Graphene supercapacitor with both high power and energy density[J]. Nanotechnology,2017,28(44):445401. doi: 10.1088/1361-6528/aa8948 [26] CHEN W, RAKHI R B, ALSHAREEF H N. Capacitance enhancement of polyaniline coated curved-graphene supercapacitors in a redox-active electrolyte[J]. Nanoscale,2013,5(10):4134-4138. doi: 10.1039/c3nr00773a [27] POTPHODE D, SINHA L, SHIRAGE P. Redox additive enhanced capacitance: Multi-walled carbon nanotubes/polyaniline nanocomposite based symmetric supercapacitors for rapid charge storage[J]. Applied Surface Science,2019(469):162-172. [28] AN N, HU Z, WU H, et al. Organic multi-electron redox couple-induced functionalization for enabling ultrahigh rate and cycling performances of supercapacitors[J]. Journal of Materials Chemistry A,2017,5(48):25420-25430. doi: 10.1039/C7TA07389E [29] GAO M, WANG L, ZHAO B, et al. Sandwich construction of chitosan/reduced graphene oxide composite as additive-free electrode material for high-performance supercapacitors[J]. Carbohydrate Polymers,2021,255:117397.