留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纳米管改性CF/PEEK复合材料的力学与电磁屏蔽性能

瞿明城 张礼颖 周剑锋 刘旋 章嘉豪 杨丽丽 朱姝

瞿明城, 张礼颖, 周剑锋, 等. 碳纳米管改性CF/PEEK复合材料的力学与电磁屏蔽性能[J]. 复合材料学报, 2022, 39(7): 3251-3261. doi: 10.13801/j.cnki.fhclxb.20211126.001
引用本文: 瞿明城, 张礼颖, 周剑锋, 等. 碳纳米管改性CF/PEEK复合材料的力学与电磁屏蔽性能[J]. 复合材料学报, 2022, 39(7): 3251-3261. doi: 10.13801/j.cnki.fhclxb.20211126.001
QU Mingcheng, ZHANG Liying, ZHOU Jianfeng, et al. Effect of carbon nanotube reinforcement on the mechanical and EMI shielding properties of CF/PEEK composites[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3251-3261. doi: 10.13801/j.cnki.fhclxb.20211126.001
Citation: QU Mingcheng, ZHANG Liying, ZHOU Jianfeng, et al. Effect of carbon nanotube reinforcement on the mechanical and EMI shielding properties of CF/PEEK composites[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3251-3261. doi: 10.13801/j.cnki.fhclxb.20211126.001

碳纳米管改性CF/PEEK复合材料的力学与电磁屏蔽性能

doi: 10.13801/j.cnki.fhclxb.20211126.001
基金项目: 国家自然科学基金面上项目(52173247);上海市科委科研计划项目(20511107200); 国家大学生创新创业训练项目(202110255086)
详细信息
    通讯作者:

    朱姝,博士,副教授,硕士生导师,研究方向为航空级热塑性复合材料、结构功能一体化复合材料  E-mail: zhushu@dhu.edu.cn

  • 中图分类号: TB332;V261.97

Effect of carbon nanotube reinforcement on the mechanical and EMI shielding properties of CF/PEEK composites

  • 摘要: 为了制备兼具优异力学性能和电磁干扰屏蔽效能的结构功能一体化耐高温热塑性复合材料,对添加不同组分碳纳米管(CNT)的连续碳纤维增强聚醚醚酮复合材料(CF-CNT/PEEK)的力学性能、电导率以及电磁干扰屏蔽效能(EMI SE)进行了研究。考察用上浆后的CNT (SCNT)作为导电填料制备的SCF-SCNT/PEEK层合板力学性能、界面形貌和屏蔽效能,并与不进行表面修饰、仅活化的CNT (ACNT)的效果做对比实验。结果表明,适量的CNT会使CF/PEEK层合板的力学性能、电导率和EMI SE得到提高;SCNT比ACNT更容易在PEEK中均匀分散,且与SCF和PEEK的结合更好。所有样品中,仅添加1wt%SCNT的SCF-SCNT/PEEK层合板与不添加CNT的层合板相比,拉伸强度提高了20.8%,达到778 MPa;弯曲强度提高了25.9%,达到1684 MPa;电导率提升5倍,达到0.15 S/cm;电磁干扰屏蔽效能提升69.76%,平均值达到34.97 dB。

     

  • 图  1  SCF-SCNT/PEEK层合板模压成型流程图

    Figure  1.  Schematic diagram for process of SCF-SCNT/PEEK Laminates

    CF—Carbon fiber; PEEK—Poly(ether-ether-ketone); CNT—Carbon nanotube; DMSO—Dimethyl sulfoxide; SPEEK—Sulfonated poly(ether-ether-ketone); SCF—Sized carbon fiber; SCNT—Sized carbon nanotube

    图  2  SPEEK和PEEK的FTIR图谱

    Figure  2.  FTIR spectras of SPEEK and PEEK

    图  3  CNT和ACNT的XPS图谱

    Figure  3.  XPS patterns of CNT and ACNT

    图  4  ACNT (a)以及ACNT与SCNT联合(b)的热重分析曲线

    Figure  4.  TGA curves of ACNT (a) and ACNT with SCNT (b)

    图  5  SPEEK热重分析图谱(a)以及ACNT与SCNT联合的FTIR图谱(b)

    Figure  5.  TGA spectra of SPEEK (a) and FTIR spectra of ACNT and SCNT (b)

    图  6  不同CNT组分的SCF-CNT/PEEK层合板的力学性能

    Figure  6.  Mechanical properties of SCF-CNT/PEEK laminates with different CNT contents

    图  7  不同CNT组分层合板拉伸断裂后断面SEM图像:(a) SCF-0wt%ACNT/PEEK;(b) SCF-1wt%ACNT/PEEK;(c) SCF-1wt%SCNT/PEEK;(d) SCF-3wt%SCNT/PEEK;(e) SCF-5wt%SCNT/PEEK

    Figure  7.  SEM images of the laminates with different contents of CNT:(a) SCF-0wt%ACNT/PEEK; (b) SCF-1wt%ACNT/PEEK; (c) SCF-1wt%SCNT/PEEK; (d) SCF-3wt%SCNT/PEEK; (e) SCF-5wt%SCNT/PEEK

    图  8  不同CNT组分层合板金相显微镜图像:(a) SCF-0wt%ACNT/PEEK;(b) SCF-1wt%ACNT/PEEK;(c) SCF-1wt%SCNT/PEEK;(d) SCF-3wt%SCNT/PEEK;(e) SCF-5wt%SCNT/PEEK

    Figure  8.  Metallurgical microscope images of the laminates with different contents of CNT:(a) SCF-0wt% ACNT/PEEK; (b) SCF-1wt%ACNT/PEEK; (c) SCF-1wt%SCNT/PEEK; (d) SCF-3wt%SCNT/PEEK; (e) SCF-5wt%SCNT/PEEK

    图  9  SCF-SCNT/PEEK中不同部位的FESEM图像:SCF与SCNT的排布((a)、(b) );PEEK中团聚的SCNT((c)、(d))

    Figure  9.  FESEM images of different parts of SCF-SCNT/PEEK: SCNT around the SCF ((a), (b)); SCNT agglomerates within the PEEK ((c), (d) )

    图  10  (a)不同CNT组分层合板的总屏蔽效能值(ETotal);(b) SCF-1wt% SCNT/PEEK层合板的反射率(R)、透射率(T)、吸收率(A)参数与电磁干扰屏蔽效能(EMI SE)组成

    Figure  10.  (a) Total shielding effectiveness (ETotal) spectra of the laminates with different contents of CNT; (b) Reflected (R), transmitted (T), absorbed (A) index and the component of the electromagnetic interference shielding effectiveness (EMI SE) of SCF-1wt% SCNT/PEEK

    表  1  不同组分SCF-CNT/PEEK层合板中原料的质量

    Table  1.   The mass of raw materials in SCF-CNT/PEEK laminates with different components

    No.SampleMass of SCNT/gMass of ACNT/gMass of PEEK/g
    1SCF-0wt%ACNT/PEEK0025.00
    2SCF-1wt%ACNT/PEEK00.2524.75
    3SCF-1wt%SCNT/PEEK0.25024.75
    4SCF-3wt%SCNT/PEEK0.75024.25
    5SCF-5wt%SCNT/PEEK1.25023.75
    Notes: PEEK—Poly(ether-ether-ketone); SCF—Sized carbon fiber; SCNT—Sized carbon nanotube; ACNT—Activated carbon nanotube.
    下载: 导出CSV

    表  2  SPEEK磺化度酸碱滴定法测定结果

    Table  2.   Sulfonation degree of SPEEK measured by acid-base titration

    No.12345
    Sulfonation degree/%7.97.67.87.77.5
    下载: 导出CSV

    表  3  CNT酸化前后表面C与O元素相对原子数分数

    Table  3.   Relative atomic fractions of C and O elements on the surface of CNT before and after acidification

    NameC/at%O/at%O/C
    CNT98.821.180.012
    ACNT86.3213.680.158
    Notes:O/C—Relative atomic fractions of C is divided by the relative atomic fractions of O.
    下载: 导出CSV
  • [1] DINI Y, ROUCHON D, FAURE V J, et al. Large improvement of CNT yarn electrical conductivity by varying chemical doping and annealing treatment[J]. Carbon,2020,156:38-48. doi: 10.1016/j.carbon.2019.09.022
    [2] EBBESEN T W, LEZEC H J, HIURA H, et al. Electrical conductivity of individual carbon nanotubes[J]. Nature,1996,382:54-56. doi: 10.1038/382054a0
    [3] LIANG J Y, GU Y Z, BAI M, et al. Electromagnetic shielding property of carbon fiber felt made of different types of short-chopped carbon fibers[J]. Composites Part A: Applied Science and Manufacturing,2019,121:289-298. doi: 10.1016/j.compositesa.2019.03.037
    [4] BALARAJU J N, RADHAKRISHNAN P, EZHILSELVI V, et al. Studies on electroless nickel polyalloy coatings over carbon fibers/CFRP composites[J]. Surface and Coatings Technology,2016,302:389-397. doi: 10.1016/j.surfcoat.2016.06.040
    [5] ZHU S, SHI R J, QU M C, et al. Simultaneously improved mechanical and electromagnetic interference shielding properties of carbon fiber fabrics/epoxy composites via interface engineering[J]. Composites Science and Technology,2021,207:108696.
    [6] HASSAN E A M, GE D T, ZHU S, et al. Enhancing CF/PEEK composites by CF decoration with polyimide and loosely-packed CNT arrays[J]. Composites Part A: Applied Science and Manufacturing,2019,127:105613.
    [7] YUAN X Y, JIANG J, WEI H W, et al. PAI/MXene sizing-based dual functional coating for carbon fiber/PEEK composite[J]. Composites Science and Technology,2021,201:108496.
    [8] RIFE J L, KUNG P, HOOPER R J, et al. Structural and mechanical characterization of carbon fibers grown by laser induced chemical vapor deposition at hyperbaric pressures[J]. Carbon,2020,162:95-105. doi: 10.1016/j.carbon.2020.02.018
    [9] YUAN J H, AMANO Y, MACHIDA M. Surface modified mechanism of activated carbon fibers by thermal chemical vapor deposition and nitrate adsorption characteristics in aqueous solution[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2019,580:123710.
    [10] QIN J J, WANG C G, YAO Z Q, et al. Mechanical property deterioration and defect repair factors of carbon fibers during the continuous growth of carbon nanotubes by chemical vapor deposition[J]. Ceramics International,2021,47(13):1-7.
    [11] FENG L, LI K Z, SI Z S, et al. Compressive and interlaminar shear properties of carbon/carbon composite laminates reinforced with carbon nanotube-grafted carbon fibers produced by injection chemical vapor deposition[J]. Materials Science and Engineering: A,2015,626:449-457. doi: 10.1016/j.msea.2014.12.044
    [12] ZHANG Z S, FU K K, LI Y. Improved interlaminar fracture toughness of carbon fiber/epoxy composites with a multiscale cellulose fiber interlayer[J]. Composites Communications,2021,27:100898.
    [13] ZHANG H, WU K F, XIAO G M, et al. Experimental study of the anisotropic thermal conductivity of 2D carbon-fiber/epoxy woven composites[J]. Composite Structures,2021,267:113870.
    [14] YANG L N, HAN P, GU Z. Grafting of a novel hyperbranched polymer onto carbon fiber for interfacial enhancement of carbon fiber reinforced epoxy composites[J]. Materials & Design,2021,200:109456.
    [15] RAVINDRAN A R, LADANI R B, KINLOCH A J, et al. Improving the delamination resistance and impact damage tolerance of carbon fibre-epoxy composites using multi-scale fibre toughening [J]. Composites Part A: Applied Science and Manufacturing, 2021, 150: 106624.
    [16] KIRAN M D, GOVINDARAJU H K, SURESHA B, et al. Fracture toughness study of epoxy composites reinforced with carbon fibers with various thickness[J]. Materials Today: Proceedings,2021,46(7):2630-2634.
    [17] 杨洋, 见雪珍, 袁协尧, 等. 先进热塑性复合材料在大型客机结构零件领域的应用及其制造技术[J]. 玻璃钢, 2017, 4:1-15.

    YANG Yang, JIAN Xuezhen, YUAN Xierao, et al. Application and manufacturing technology of advanced thermoplastic composite materials in the field of large passenger aircraft structural parts[J]. Glass Fiber Reinforced Plastics,2017,4:1-15(in Chinese).
    [18] 陈吉平, 李岩, 刘卫平, 等. 连续纤维增强热塑性树脂基复合材料自动铺放原位成型技术的航空发展现状[J]. 复合材料学报, 2019, 36(4):784-794.

    CHEN Jiping, LI Yan, LIU Weiping, et al. Aerospace development status of continuous fiber-reinforced thermoplastic resin matrix composite material automatic placement and in-situ molding[J]. Acta Materiae Compositae Sinica,2019,36(4):784-794(in Chinese).
    [19] HEUBERGER R, STOCK C, SAHIN J, et al. PEEK as a replacement for CoCrMo in knee prostheses: Pin-on-disc wear test of PEEK-on-polyethylene articulations[J]. Biotribology,2021,27:100189.
    [20] MANZOOR F, GOLBANG A, JINDAL S, et al. 3D printed PEEK/HA composites for bone tissue engineering applications: Effect of material formulation on mechanical performance and bioactive potential[J]. Journal of the Mechanical Behavior of Biomedical Materials,2021,121:104601.
    [21] CHENG B X, DUAN H T, CHEN Q, et al. Effect of laser treatment on the tribological performance of polyetheretherketone (PEEK) under seawater lubrication[J]. Applied Surface Science,2021,566:150668.
    [22] ASTM International. Standard test method for tensile properties of polymer matrix composite materials: ASTM D3039/D3039M-17[S]. West Conshohocken, USA: ASTM International, 2017.
    [23] ASTM International. Standard test method for flexural properties of unreinforced and reinforced plastics and electrical Insulating materials: ASTM D790-03[S]. West Conshohocken, USA: ASTM International, 2003.
    [24] ASTM International. Standard test method for DC resistance or conductance of insulating materials: ASTM D257-99[S]. West Conshohocken, USA: ASTM International, 1999.
    [25] 宿昌厚, 鲁效明. 论四探针法测试半导体电阻率时的厚度修正[J]. 计量技术, 2005, 8:5-7.

    SU Changhou, LU Xiaoming. On the thickness correction of the four-probe method in measuring the resistivity of semiconductors[J]. Measurement Technique,2005,8:5-7(in Chinese).
    [26] 王艳, 范泽文, 赵建, 等. 3D打印制备碳纳米管/环氧树脂电磁屏蔽复合材料[J]. 复合材料学报, 2019, 36(1):1-6.

    WANG Yan, FAN Zewen, ZHAO Jian, et al. 3D-printed carbon nanotubes/epoxy composites for electromagnetic interference shielding[J]. Acta Materiae Compositae Sinica,2019,36(1):1-6(in Chinese).
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  1931
  • HTML全文浏览量:  701
  • PDF下载量:  175
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-30
  • 修回日期:  2021-11-15
  • 录用日期:  2021-11-17
  • 网络出版日期:  2021-11-26
  • 刊出日期:  2022-07-30

目录

    /

    返回文章
    返回